1
|
The GARP Domain of the Rod CNG Channel's β1-Subunit Contains Distinct Sites for Outer Segment Targeting and Connecting to the Photoreceptor Disk Rim. J Neurosci 2021; 41:3094-3104. [PMID: 33637563 DOI: 10.1523/jneurosci.2609-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/15/2021] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
Vision begins when light is captured by the outer segment organelle of photoreceptor cells in the retina. Outer segments are modified cilia filled with hundreds of flattened disk-shaped membranes. Disk membranes are separated from the surrounding plasma membrane, and each membrane type has unique protein components. The mechanisms underlying this protein sorting remain entirely unknown. In this study, we investigated the outer segment delivery of the rod cyclic nucleotide-gated (CNG) channel, which is located in the outer segment plasma membrane, where it mediates the electrical response to light. Using Xenopus and mouse models of both sexes, we now show that the targeted delivery of the CNG channel to the outer segment uses the conventional secretory pathway, including protein processing in both ER and Golgi, and requires preassembly of its constituent α1 and β1 subunits. We further demonstrate that the N-terminal glutamic acid-rich protein (GARP) domain of CNGβ1 contains two distinct functional regions. The glutamic acid-rich region encodes specific information targeting the channel to rod outer segments. The adjacent proline-enriched region connects the CNG channel to photoreceptor disk rims, likely through an interaction with peripherin-2. These data reveal fine functional specializations within the structural domains of the CNG channel and suggest that its sequestration to the outer segment plasma membrane requires an interaction with peripherin-2.SIGNIFICANCE STATEMENT Neurons and other differentiated cells have a remarkable ability to deliver and organize signaling proteins at precise subcellular locations. We now report that the CNG channel, mediating the electrical response to light in rod photoreceptors, contains two specialized regions within the N terminus of its β-subunit: one responsible for delivery of this channel to the ciliary outer segment organelle and another for subsequent channel sequestration into the outer segment plasma membrane. These findings expand our understanding of the molecular specializations used by neurons to populate their critical functional compartments.
Collapse
|
2
|
DeRamus ML, Stacks DA, Zhang Y, Huisingh CE, McGwin G, Pittler SJ. GARP2 accelerates retinal degeneration in rod cGMP-gated cation channel β-subunit knockout mice. Sci Rep 2017; 7:42545. [PMID: 28198469 PMCID: PMC5309851 DOI: 10.1038/srep42545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022] Open
Abstract
The Cngb1 locus-encoded β-subunit of rod cGMP-gated cation channel and associated glutamic acid rich proteins (GARPs) are required for phototransduction, disk morphogenesis, and rod structural integrity. To probe individual protein structure/function of the GARPs, we have characterized several transgenic mouse lines selectively restoring GARPs on a Cngb1 knockout (X1−/−) mouse background. Optical coherence tomography (OCT), light and transmission electron microscopy (TEM), and electroretinography (ERG) were used to analyze 6 genotypes including WT at three and ten weeks postnatal. Comparison of aligned histology/OCT images demonstrated that GARP2 accelerates the rate of degeneration. ERG results are consistent with the structural analyses showing the greatest attenuation of function when GARP2 is present. Even 100-fold or more overexpression of GARP1 could not accelerate degeneration as rapidly as GARP2, and when co-expressed GARP1 attenuated the structural and functional deficits elicited by GARP2. These results indicate that the GARPs are not fully interchangeable and thus, likely have separate and distinct functions in the photoreceptor. We also present a uniform murine OCT layer naming nomenclature system that is consistent with human retina layer designations to standardize murine OCT, which will facilitate data evaluation across different laboratories.
Collapse
Affiliation(s)
- Marci L DeRamus
- Departments of Optometry and Vision Science, University of Alabama at Birmingham, 1670 University Blvd, VH 375, Birmingham, AL 35294-0019, USA
| | - Delores A Stacks
- Departments of Optometry and Vision Science, University of Alabama at Birmingham, 1670 University Blvd, VH 375, Birmingham, AL 35294-0019, USA
| | - Youwen Zhang
- Departments of Optometry and Vision Science, University of Alabama at Birmingham, 1670 University Blvd, VH 375, Birmingham, AL 35294-0019, USA
| | - Carrie E Huisingh
- Department of Ophthalmology, University of Alabama at Birmingham, 700 18th Street South, Suite 609, Birmingham, AL 35294, USA
| | - Gerald McGwin
- Department of Epidemiology, University of Alabama at Birmingham, Ryals Public Health Building, 1665 University Boulevard, Birmingham, AL 35294, USA
| | - Steven J Pittler
- Departments of Optometry and Vision Science, University of Alabama at Birmingham, 1670 University Blvd, VH 375, Birmingham, AL 35294-0019, USA
| |
Collapse
|
3
|
Sarfare S, McKeown AS, Messinger J, Rubin G, Wei H, Kraft TW, Pittler SJ. Overexpression of rod photoreceptor glutamic acid rich protein 2 (GARP2) increases gain and slows recovery in mouse retina. Cell Commun Signal 2014; 12:67. [PMID: 25323447 PMCID: PMC4207353 DOI: 10.1186/s12964-014-0067-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The rod photoreceptor cGMP-gated cation channel, consisting of three α- and one β subunit, controls ion flow into the rod outer segment (ROS). In addition to the β-subunit, the Cngb1 locus encodes an abundant soluble protein, GARP2 that binds stoichiometrically to rod photoreceptor cGMP phosphodiesterase type 6 (PDE6). To examine the in vivo functional role of GARP2 we generated opsin promoter-driven transgenic mice overexpressing GARP2 three-fold specifically in rod photoreceptors. RESULTS In the GARP2 overexpressing transgenic mice (tg), the endogenous channel β-subunit, cGMP phosphodiesterase α-subunit, peripherin2/RDS and guanylate cyclase I were present at WT levels and were properly localized within the ROS. While localized properly within ROS, two proteins cGMP phosphodiesterase α-subunit (1.4-fold) and cGMP-gated cation channel α-subunit (1.2-fold) were moderately, but significantly elevated. Normal stratification of all retinal layers was observed, and ROS were stable in numbers but were 19% shorter than WT. Analysis of the photoresponse using electroretinography (ERG) showed that tg mice exhibit no change in sensitivity indicating overall normal rod function, however two parameters of the photoresponse significantly differed from WT responses. Fitting of the rising phase of the ERG a-wave to an accepted model of phototransduction showed a two-fold increase in phototransduction gain in the tg mice. The increase in gain was confirmed in isolated retinal tissue and by suction electrode recordings of individual rod photoreceptor cells. A measure of response recovery, the dominant time constant (τD) was elevated 69% in isolated retina compared to WT, indicating slower shutoff of the photoresponse. CONCLUSIONS GARP2 may participate in regulating visual signal transduction through a previously unappreciated role in regulating phototransduction gain and recovery.
Collapse
|
4
|
A CNGB1 frameshift mutation in Papillon and Phalène dogs with progressive retinal atrophy. PLoS One 2013; 8:e72122. [PMID: 24015210 PMCID: PMC3756049 DOI: 10.1371/journal.pone.0072122] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
Progressive retinal degenerations are the most common causes of complete blindness both in human and in dogs. Canine progressive retinal atrophy (PRA) or degeneration resembles human retinitis pigmentosa (RP) and is characterized by a progressive loss of rod photoreceptor cells followed by a loss of cone function. The primary clinical signs are detected as vision impairment in a dim light. Although several genes have been associated with PRAs, there are still PRAs of unknown genetic cause in many breeds, including Papillons and Phalènes. We have performed a genome wide association and linkage studies in cohort of 6 affected Papillons and Phalènes and 14 healthy control dogs to map a novel PRA locus on canine chromosome 2, with a 1.9 Mb shared homozygous region in the affected dogs. Parallel exome sequencing of a trio identified an indel mutation, including a 1-bp deletion, followed by a 6-bp insertion in the CNGB1 gene. This mutation causes a frameshift and premature stop codon leading to probable nonsense mediated decay (NMD) of the CNGB1 mRNA. The mutation segregated with the disease and was confirmed in a larger cohort of 145 Papillons and Phalènes (PFisher = 1.4×10−8) with a carrier frequency of 17.2 %. This breed specific mutation was not present in 334 healthy dogs from 10 other breeds or 121 PRA affected dogs from 44 other breeds. CNGB1 is important for the photoreceptor cell function its defects have been previously associated with retinal degeneration in both human and mouse. Our study indicates that a frameshift mutation in CNGB1 is a cause of PRA in Papillons and Phalènes and establishes the breed as a large functional animal model for further characterization of retinal CNGB1 biology and possible retinal gene therapy trials. This study enables also the development of a genetic test for breeding purposes.
Collapse
|
5
|
Hackett NR, Butler MW, Shaykhiev R, Salit J, Omberg L, Rodriguez-Flores JL, Mezey JG, Strulovici-Barel Y, Wang G, Didon L, Crystal RG. RNA-Seq quantification of the human small airway epithelium transcriptome. BMC Genomics 2012; 13:82. [PMID: 22375630 PMCID: PMC3337229 DOI: 10.1186/1471-2164-13-82] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/29/2012] [Indexed: 01/04/2023] Open
Abstract
Background The small airway epithelium (SAE), the cell population that covers the human airway surface from the 6th generation of airway branching to the alveoli, is the major site of lung disease caused by smoking. The focus of this study is to provide quantitative assessment of the SAE transcriptome in the resting state and in response to chronic cigarette smoking using massive parallel mRNA sequencing (RNA-Seq). Results The data demonstrate that 48% of SAE expressed genes are ubiquitous, shared with many tissues, with 52% enriched in this cell population. The most highly expressed gene, SCGB1A1, is characteristic of Clara cells, the cell type unique to the human SAE. Among other genes expressed by the SAE are those related to Clara cell differentiation, secretory mucosal defense, and mucociliary differentiation. The high sensitivity of RNA-Seq permitted quantification of gene expression related to infrequent cell populations such as neuroendocrine cells and epithelial stem/progenitor cells. Quantification of the absolute smoking-induced changes in SAE gene expression revealed that, compared to ubiquitous genes, more SAE-enriched genes responded to smoking with up-regulation, and those with the highest basal expression levels showed most dramatic changes. Smoking had no effect on SAE gene splicing, but was associated with a shift in molecular pattern from Clara cell-associated towards the mucus-secreting cell differentiation pathway with multiple features of cancer-associated molecular phenotype. Conclusions These observations provide insights into the unique biology of human SAE by providing quantit-ative assessment of the global transcriptome under physiological conditions and in response to the stress of chronic cigarette smoking.
Collapse
Affiliation(s)
- Neil R Hackett
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Michaelides M, Hardcastle AJ, Hunt DM, Moore AT. Progressive cone and cone-rod dystrophies: phenotypes and underlying molecular genetic basis. Surv Ophthalmol 2006; 51:232-58. [PMID: 16644365 DOI: 10.1016/j.survophthal.2006.02.007] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The cone and cone-rod dystrophies form part of a heterogeneous group of retinal disorders that are an important cause of visual impairment in children and adults. There have been considerable advances made in recent years in our understanding of the pathogenesis of these retinal dystrophies, with many of the chromosomal loci and causative genes having now been identified. Mutations in 12 genes, including GUCA1A, peripherin/RDS, ABCA4 and RPGR, have been described to date; and in many cases detailed functional assessment of the effects of the encoded mutant proteins has been undertaken. This improved knowledge of disease mechanisms has raised the possibility of future treatments for these disorders, for which there are no specific therapies available at the present time.
Collapse
|
7
|
Brown RL, Strassmaier T, Brady JD, Karpen JW. The pharmacology of cyclic nucleotide-gated channels: emerging from the darkness. Curr Pharm Des 2006; 12:3597-613. [PMID: 17073662 PMCID: PMC2467446 DOI: 10.2174/138161206778522100] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic nucleotide-gated (CNG) ion channels play a central role in vision and olfaction, generating the electrical responses to light in photoreceptors and to odorants in olfactory receptors. These channels have been detected in many other tissues where their functions are largely unclear. The use of gene knockouts and other methods have yielded some information, but there is a pressing need for potent and specific pharmacological agents directed at CNG channels. To date there has been very little systematic effort in this direction - most of what can be termed CNG channel pharmacology arose from testing reagents known to target protein kinases or other ion channels, or by accident when researchers were investigating other intracellular pathways that may regulate the activity of CNG channels. Predictably, these studies have not produced selective agents. However, taking advantage of emerging structural information and the increasing knowledge of the biophysical properties of these channels, some promising compounds and strategies have begun to emerge. In this review we discuss progress on two fronts, cyclic nucleotide analogs as both activators and competitive inhibitors, and inhibitors that target the pore or gating machinery of the channel. We also discuss the potential of these compounds for treating certain forms of retinal degeneration.
Collapse
Affiliation(s)
- R. Lane Brown
- Neurological Sciences Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Timothy Strassmaier
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | - James D. Brady
- Neurological Sciences Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jeffrey W. Karpen
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
8
|
Goldberg AFX. Role of Peripherin/rds in Vertebrate Photoreceptor Architecture and Inherited Retinal Degenerations. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 253:131-75. [PMID: 17098056 DOI: 10.1016/s0074-7696(06)53004-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The vertebrate photoreceptor outer segment (OS) is a highly structured and dynamic organelle specialized to transduce light signals. The elaborate membranous architecture of the OS requires peripherin/rds (P/rds), an integral membrane protein and tetraspanin protein family member. Gene-level defects in P/rds cause a broad variety of late-onset progressive retinal degenerations in humans and dysmorphic photoreceptors in murine and Xenopus models. Although proposed to fulfill numerous roles related to OS structural stability and renewal, P/rds molecular function remains uncertain. An increasingly resolved model of this protein's oligomeric structure can account for disease inheritance patterns and severity in some instances. Nonetheless, the pathogenic mechanisms underlying the uniquely broad spectrum of retinal diseases associated with P/rds defects are not currently well understood. Recent findings point to the possibility that P/rds acts as a multifunctional scaffolding protein for OS architecture and that partial-loss-of-function mutations contribute to the hallmark phenotypic heterogeneity associated with inherited defects in RDS.
Collapse
|
9
|
Batra-Safferling R, Abarca-Heidemann K, Körschen HG, Tziatzios C, Stoldt M, Budyak I, Willbold D, Schwalbe H, Klein-Seetharaman J, Kaupp UB. Glutamic acid-rich proteins of rod photoreceptors are natively unfolded. J Biol Chem 2005; 281:1449-60. [PMID: 16280326 DOI: 10.1074/jbc.m505012200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The outer segment of vertebrate photoreceptors is a specialized compartment that hosts all the signaling components required for visual transduction. Specific to rod photoreceptors is an unusual set of three glutamic acid-rich proteins (GARPs) as follows: two soluble forms, GARP1 and GARP2, and the N-terminal cytoplasmic domain (GARP' part) of the B1 subunit of the cyclic GMP-gated channel. GARPs have been shown to interact with proteins at the rim of the disc membrane. Here we characterized native GARP1 and GARP2 purified from bovine rod photoreceptors. Amino acid sequence analysis of GARPs revealed structural features typical of "natively unfolded" proteins. By using biophysical techniques, including size-exclusion chromatography, dynamic light scattering, NMR spectroscopy, and circular dichroism, we showed that GARPs indeed exhibit a large degree of intrinsic disorder. Analytical ultracentrifugation and chemical cross-linking showed that GARPs exist in a monomer/multimer equilibrium. The results suggested that the function of GARP proteins is linked to their structural disorder. They may provide flexible spacers or linkers tethering the cyclic GMP-gated channel in the plasma membrane to peripherin at the disc rim to produce a stack of rings of these protein complexes along the long axis of the outer segment. GARP proteins could then provide the environment needed for protein interactions in the rim region of discs.
Collapse
Affiliation(s)
- Renu Batra-Safferling
- Institut für Biologische Informationsverarbeitung 1, Forschungszentrum Jülich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Cyclic nucleotide-gated (CNG) channels are nonselective cation channels first identified in retinal photoreceptors and olfactory sensory neurons (OSNs). They are opened by the direct binding of cyclic nucleotides, cAMP and cGMP. Although their activity shows very little voltage dependence, CNG channels belong to the superfamily of voltage-gated ion channels. Like their cousins the voltage-gated K+ channels, CNG channels form heterotetrameric complexes consisting of two or three different types of subunits. Six different genes encoding CNG channels, four A subunits (A1 to A4) and two B subunits (B1 and B3), give rise to three different channels in rod and cone photoreceptors and in OSNs. Important functional features of these channels, i.e., ligand sensitivity and selectivity, ion permeation, and gating, are determined by the subunit composition of the respective channel complex. The function of CNG channels has been firmly established in retinal photoreceptors and in OSNs. Studies on their presence in other sensory and nonsensory cells have produced mixed results, and their purported roles in neuronal pathfinding or synaptic plasticity are not as well understood as their role in sensory neurons. Similarly, the function of invertebrate homologs found in Caenorhabditis elegans, Drosophila, and Limulus is largely unknown, except for two subunits of C. elegans that play a role in chemosensation. CNG channels are nonselective cation channels that do not discriminate well between alkali ions and even pass divalent cations, in particular Ca2+. Ca2+ entry through CNG channels is important for both excitation and adaptation of sensory cells. CNG channel activity is modulated by Ca2+/calmodulin and by phosphorylation. Other factors may also be involved in channel regulation. Mutations in CNG channel genes give rise to retinal degeneration and color blindness. In particular, mutations in the A and B subunits of the CNG channel expressed in human cones cause various forms of complete and incomplete achromatopsia.
Collapse
Affiliation(s)
- U Benjamin Kaupp
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Jülich, Germany.
| | | |
Collapse
|
11
|
He Y, Karpen JW. Probing the interactions between cAMP and cGMP in cyclic nucleotide-gated channels using covalently tethered ligands. Biochemistry 2001; 40:286-95. [PMID: 11141082 DOI: 10.1021/bi002014n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic nucleotide-gated channels contain four ligand-binding subunits, and they are directly activated by the binding of cGMP or cAMP. Channels with different combinations of subunits are known to have different sensitivities to the two nucleotides. However, the consequences of mixed occupancy by cGMP and cAMP are not well understood, and may have important implications for understanding the functions of these channels in different cell types. We studied the activation of homomeric and heteromeric retinal rod cyclic nucleotide-gated channels with the four ligand-binding sites occupied by different combinations of cGMP (a strong agonist) and cAMP (a weak agonist). Control of occupancy was obtained by covalently tethering different numbers of cGMP moieties using the photoaffinity analogue 8-p-azidophenacylthio-cGMP; the remaining sites were then saturated with cAMP, or cGMP, for comparison. The fractional current activated by cAMP increased dramatically as the number of tethered cGMP moieties increased. In homomeric channels comprised of the alpha subunit, cAMP became an effective agonist only after three of the four sites were occupied by tethered cGMP moieties. In contrast, in heteromeric channels comprised of two alpha and two beta subunits, cAMP caused significant activation after two sites were occupied by tethered cGMP moieties. In agreement with earlier work, a single residue on the beta subunit, N1201, accounted for much of the increased efficacy of cAMP on heteromeric channels. The results are consistent with significant interactions between subunits, including the two types of subunits in heteromeric channels.
Collapse
Affiliation(s)
- Y He
- Department of Physiology & Biophysics, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | |
Collapse
|
12
|
Richards MJ, Gordon SE. Cooperativity and cooperation in cyclic nucleotide-gated ion channels. Biochemistry 2000; 39:14003-11. [PMID: 11087347 DOI: 10.1021/bi001639i] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M J Richards
- Department of Ophthalmology, University of Washington School of Medicine, Box 356485, Seattle, Washington 98195-6485, USA
| | | |
Collapse
|
13
|
Sundin OH, Yang JM, Li Y, Zhu D, Hurd JN, Mitchell TN, Silva ED, Maumenee IH. Genetic basis of total colourblindness among the Pingelapese islanders. Nat Genet 2000; 25:289-93. [PMID: 10888875 DOI: 10.1038/77162] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Complete achromatopsia is a rare, autosomal recessive disorder characterized by photophobia, low visual acuity, nystagmus and a total inability to distinguish colours. In this disease, cone photoreceptors, the retinal sensory neurons mediating colour vision, seem viable but fail to generate an electrical response to light. Achromatopsia, or rod monochromatism, was first mapped to 2p11-2q12 (MIM 216900; ref. 3), where it is associated with missense mutations in CNGA3 (ref. 4). CNGA3 encodes the alpha-subunit of the cone cyclic nucleotide-gated cation channel, which generates the light-evoked electrical responses of cone photoreceptors. A second locus at 8q21-q22 has been identified among the Pingelapese islanders of Micronesia, who have a high incidence of recessive achromatopsia (MIM 262300). Here we narrow the achromatopsia locus to 1.4 cM and show that Pingelapese achromatopsia segregates with a missense mutation at a highly conserved site in CNGB3, a new gene that encodes the beta-subunit of the cone cyclic nucleotide-gated cation channel. Two independent frameshift deletions establish that achromatopsia is the null phenotype of CNGB3. Combined with earlier findings, our results demonstrate that both alpha- and beta-subunits of the cGMP-gated channel are essential for phototransduction in all three classes of cones.
Collapse
Affiliation(s)
- O H Sundin
- Laboratory of Developmental Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ardell MD, Bedsole DL, Schoborg RV, Pittler SJ. Genomic organization of the human rod photoreceptor cGMP-gated cation channel beta-subunit gene. Gene 2000; 245:311-8. [PMID: 10717482 DOI: 10.1016/s0378-1119(00)00023-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We previously reported that the CNGB1 locus encoding the rod photoreceptor cGMP-gated channel beta-subunit is complex, comprising non-overlapping transcription units that give rise to at least six transcripts (Ardell, M.D., Aragon, I., Oliveira, L., Porche, G.E., Burke, E., Pittler, S.J., 1996. The beta subunit of human rod photoreceptor cGMP-gated cation channel is generated from a complex transcription unit. FEBS Lett. 389, 213-218). To further understand the transcriptional regulation of this extraordinarily complex locus, and to develop a screen for defects in the gene in patients with hereditary disease, we determined its genomic organization and DNA sequence. The CNGB1 locus consists of 33 exons, which span approximately 100kb of genomic DNA on chromosome 16. The beta-subunit comprises two domains, an N-terminal glutamic acid-rich segment (GARP), and a C-terminal channel-like portion. Two additional exons encoding a short GARP transcript and a truncated channel-like transcript have been identified. A major transcription start point was identified 79bp upstream of the initiator ATG. To begin analysis of the basis for the generation of multiple transcripts, and to identify promoters driving expression in retina, approximately 2.5kb of the upstream region were sequenced. Putative cis-elements, which can bind the retina-specific transcription factors Crx and Erx, were found immediately upstream of the transcription start point, and may be important for gene expression in this tissue. From our analysis, a model is reported to account for at least four of the retinal transcripts.
Collapse
Affiliation(s)
- M D Ardell
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | | | | | | |
Collapse
|
15
|
Molecular cloning and functional characterization of a new modulatory cyclic nucleotide-gated channel subunit from mouse retina. J Neurosci 2000. [PMID: 10662822 DOI: 10.1523/jneurosci.20-04-01324.2000] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) channels play a key role in olfactory and visual transduction. Native CNG channels are heteromeric complexes consisting of the principal alpha subunits (CNG1-3), which can form functional channels by themselves, and the modulatory beta subunits (CNG4-5). The individual alpha and beta subunits that combine to form the CNG channels in rod photoreceptors (CNG1 + CNG4) and olfactory neurons (CNG2 + CNG4 + CNG5) have been characterized. In contrast, only an alpha subunit (CNG3) has been identified so far in cone photoreceptors. Here we report the molecular cloning of a new CNG channel subunit (CNG6) from mouse retina. The cDNA of CNG6 encodes a peptide of 694 amino acids with a predicted molecular weight of 80 kDa. Among the CNG channel subunits, CNG6 has the highest overall similarity to the CNG4 beta subunit (47% sequence identity). CNG6 transcripts are present in a small subset of retinal photoreceptor cells and also in testis. Heterologous expression of CNG6 in human embryonic kidney 293 cells did not lead to detectable currents. However, when coexpressed with the cone photoreceptor alpha subunit, CNG6 induced a flickering channel gating, weakened the outward rectification in the presence of extracellular Ca(2+), increased the sensitivity for L-cis diltiazem, and enhanced the cAMP efficacy of the channel. Taken together, the data indicate that CNG6 represents a new CNG channel beta subunit that may associate with the CNG3 alpha subunit to form the native cone channel.
Collapse
|
16
|
Molday R, Kaupp U. Chapter 4 Ion channels of vertebrate photoreceptors. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1383-8121(00)80007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
17
|
Abstract
Cyclic nucleotide-gated (CNG) channels play central roles in visual and olfactory signal transduction. In the retina, rod photoreceptors express the subunits CNCalpha1 and CNCbeta1a. In cone photoreceptors, only CNCalpha2 expression has been demonstrated so far. Rat olfactory sensory neurons (OSNs) express two homologous subunits, here designated CNCalpha3 and CNCalpha4. This paper describes the characterization of CNCbeta1b, a third subunit expressed in OSNs and establishes it as a component of the native channel. CNCbeta1b is an alternate splice form of the rod photoreceptor CNCbeta1a subunit. Analysis of mRNA and protein expression together suggest co-expression of all three subunits in sensory cilia of OSNs. From single-channel analyses of native rat olfactory channels and of channels expressed heterologously from all possible combinations of the CNCalpha3, -alpha4, and -beta1b subunits, we conclude that the native CNG channel in OSNs is composed of all three subunits. Thus, CNG channels in both rod photoreceptors and olfactory sensory neurons result from coassembly of specific alpha subunits with various forms of an alternatively spliced beta subunit.
Collapse
|
18
|
Biel M, Zong X, Hofmann F. Cyclic nucleotide gated channels. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1999; 33:231-50. [PMID: 10218121 DOI: 10.1016/s1040-7952(99)80012-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- M Biel
- Institut für Pharmakologie und Toxikologie der Technischen Universität München, Germany
| | | | | |
Collapse
|
19
|
Biel M, Zong X, Ludwig A, Sautter A, Hofmann F. Structure and function of cyclic nucleotide-gated channels. Rev Physiol Biochem Pharmacol 1999; 135:151-71. [PMID: 9932483 DOI: 10.1007/bfb0033672] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- M Biel
- Institut für Pharmakologie und Toxikologie, Technischen Universität München, Germany
| | | | | | | | | |
Collapse
|
20
|
Wei JY, Roy DS, Leconte L, Barnstable CJ. Molecular and pharmacological analysis of cyclic nucleotide-gated channel function in the central nervous system. Prog Neurobiol 1998; 56:37-64. [PMID: 9723130 DOI: 10.1016/s0301-0082(98)00029-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most functional studies of cyclic nucleotide-gated (CNG) channels have been confined to photoreceptors and olfactory epithelium, in which CNG channels are abundant and easy to study. The widespread distribution of CNG channels in tissues throughout the body has only recently been recognized and the functions of this channel family in many of these tissues remain largely unknown. The molecular biological and pharmacological properties of the CNG channel family are summarized in order to put in context studies aimed at probing CNG channel functions in these tissues using pharmacological and genetic methods. Compounds have now been identified that are useful in distinguishing CNG channel activated pathways from cAMP/cGMP dependent-protein kinases or other pathways. The ways in which these interact with CNG channels are understood and this knowledge is leading to the identification of more potent and more specific CNG channel subtype-specific agonists or antagonists. Recent molecular and genetic analyses have identified novel roles of CNG channels in neuronal development and plasticity in both invertebrates and vertebrates. Targeting CNG channels via specific drugs and genetic manipulation (such as knockout mice) will permit better understanding of the role of CNG channels in both basic and higher orders of brain function.
Collapse
Affiliation(s)
- J Y Wei
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
21
|
Wiesner B, Weiner J, Middendorff R, Hagen V, Kaupp UB, Weyand I. Cyclic nucleotide-gated channels on the flagellum control Ca2+ entry into sperm. J Cell Biol 1998; 142:473-84. [PMID: 9679145 PMCID: PMC2133051 DOI: 10.1083/jcb.142.2.473] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) channels are key elements of cGMP- and cAMP-signaling pathways in vertebrate photoreceptor cells and in olfactory sensory neurons, respectively. These channels form heterooligomeric complexes composed of at least two distinct subunits (alpha and beta). The alpha subunit of cone photoreceptors is also present in mammalian sperm. Here we identify one short and several long less abundant transcripts of beta subunits in testis. The alpha and beta subunits are expressed in a characteristic temporal and spatial pattern in sperm and precursor cells. In mature sperm, the alpha subunit is observed along the entire flagellum, whereas the short beta subunit is restricted to the principal piece of the flagellum. These findings suggest that different forms of CNG channels coexist in the flagellum. Confocal microscopy in conjunction with the Ca2+ indicator Fluo-3 shows that the CNG channels serve as a Ca2+ entry pathway that responds more sensitively to cGMP than to cAMP. Assuming that CNG channel subtypes differ in their Ca2+ permeability, dissimilar localization of alpha and beta subunits may give rise to a pattern of Ca2+ microdomains along the flagellum, thereby providing the structural basis for control of flagellar bending waves.
Collapse
Affiliation(s)
- B Wiesner
- Forschungsinstitut für Molekulare Pharmakologie, D-10315 Berlin
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The cGMP-gated channel of the rod photoreceptor cell plays a key role in phototransduction by controlling the flow of Na+ and Ca2+ into the outer segment in response to light-induced changes in cGMP concentrations. The rod channel is composed of two homologous subunits designated as alpha and beta. Each subunit contains a core region of six putative membrane spanning segments, a cGMP binding domain, a voltage sensor-like motif and a pore region. In addition the beta-subunit contains an extended N-terminal region that is identical in sequence to a previously cloned retinal glutamic acid rich protein called GARP. Three spliced variants of GARP (the GARP part of the beta channel subunit; full length free GARP; and a truncated form of GARP) are expressed in rod cells and localized within the outer segments. Immunoaffinity chromatography has been used to purify the channel from detergent solubilized rod outer segments. A significant fraction of the rod Na+/Ca(2+)-K+ exchanger copurifies with the channel as measured by western blotting suggesting that the channel can interact with the exchanger under certain conditions.
Collapse
Affiliation(s)
- R S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
23
|
Sautter A, Zong X, Hofmann F, Biel M. An isoform of the rod photoreceptor cyclic nucleotide-gated channel beta subunit expressed in olfactory neurons. Proc Natl Acad Sci U S A 1998; 95:4696-701. [PMID: 9539801 PMCID: PMC22553 DOI: 10.1073/pnas.95.8.4696] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sensory transduction in olfactory neurons involves the activation of a cyclic nucleotide-gated (CNG) channel by cAMP. Previous studies identified a CNG channel alpha subunit (CNG2) and a beta subunit (CNG5), which when heterologously expressed form a channel with properties similar but not identical to those of native olfactory neurons. We have cloned a new type of CNG channel beta subunit (CNG4. 3) from rat olfactory epithelium. CNG4.3 derives from the same gene as the rod photoreceptor beta subunit (CNG4.1) but lacks the long, glutamic acid-rich domain found in the N terminus of CNG4.1. Northern blot and in situ hybridization revealed that CNG4.3 is expressed specifically in olfactory neurons. Expression of CNG4.3 in human embryonic kidney 293 cells did not lead to detectable currents. Coexpression of CNG4.3 with CNG2 induced a current with significantly increased sensitivity for cAMP whereas cGMP affinity was not altered. Additionally, CNG4.3 weakened the outward rectification of the current in the presence of extracellular Ca2+, decreased the relative permeability for Ca2+, and enhanced the sensitivity for L-cis diltiazem. Upon coexpression of CNG2, CNG4.3, and CNG5, a conductance with a cAMP sensitivity greater than that of either the CNG2/CNG4.3 or the CNG2/CNG5 channel and near that of native olfactory channel was observed. Our data suggest that CNG4.3 forms a subunit of the native olfactory CNG channel. The expression of various CNG4 isoforms in retina and olfactory epithelium indicates that the CNG4 subunit may be necessary for normal function of both photoreceptor and olfactory CNG channels.
Collapse
Affiliation(s)
- A Sautter
- Institut für Pharmakologie und Toxikologie der Technischen Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany
| | | | | | | |
Collapse
|
24
|
Grunwald ME, Yu WP, Yu HH, Yau KW. Identification of a domain on the beta-subunit of the rod cGMP-gated cation channel that mediates inhibition by calcium-calmodulin. J Biol Chem 1998; 273:9148-57. [PMID: 9535905 DOI: 10.1074/jbc.273.15.9148] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cGMP-gated cation channel mediating phototransduction in retinal rods has recently been shown to be inhibited by calcium-calmodulin, through direct binding of the latter to the beta-subunit of the heterotetrameric channel complex. Here, we report the characterization of this inhibition and the identification of a domain crucial for this modulation. Heterologous expression of the alpha- and beta-subunits of the human rod channel in HEK 293 cells produced a cGMP-gated current that was highly sensitive to calcium-calmodulin, with half-maximal inhibition at approximately 4 nM. In biochemical and electrophysiological experiments on deletion mutants of the beta-subunit, we have identified a region on its cytoplasmic N terminus that binds calmodulin and is necessary for the calmodulin-mediated inhibition of the channel. However, in gel shift assays and fluorescence emission experiments, peptides derived from this region indicated a low calmodulin affinity, with dissociation constants of approximately 3-10 microM. On the C terminus, a region was also found to bind calmodulin, but it was likewise of low affinity, and its deletion did not abolish the calmodulin-mediated inhibition. We suggest that although the identified region on the N terminus of the beta-subunit is crucial for the calmodulin effect, other regions are likely to be involved as well. In this respect, the rod channel appears to differ from the olfactory cyclic nucleotide-gated channel, which is also modulated by calcium-calmodulin.
Collapse
Affiliation(s)
- M E Grunwald
- Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | | | |
Collapse
|
25
|
Sautter A, Biel M, Hofmann F. Molecular cloning of cyclic nucleotide-gated cation channel subunits from rat pineal gland. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 48:171-5. [PMID: 9379842 DOI: 10.1016/s0169-328x(97)00155-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have investigated the subunit composition and the molecular structure of the CNG channel expressed in rat pineal gland. Three types of subunits have been cloned: an alpha-subunit (CNG1), two beta-subunit splice variants (rCNG4.1 and rCNG4.2) and a hydrophilic glutamic acid-rich protein (rGARP). In situ hybridization with sections of rat brain revealed the co-expression of CNG1, CNG4 and GARP in pinealocytes. In addition, CNG4-specific transcripts were detected in the arcuate, periventricular and supraoptic nuclei of the hypothalamus.
Collapse
Affiliation(s)
- A Sautter
- Institut für Pharmakologie und Toxikologie der Technischen Universität München, Germany
| | | | | |
Collapse
|
26
|
Zhang Q, Pearce-kelling S, Acland GM, Aguirre GD, Ray K. Canine rod photoreceptor cGMP-gated channel protein alpha-subunit: studies on the expression of the gene and characterization of the cDNA. Exp Eye Res 1997; 65:301-9. [PMID: 9268598 DOI: 10.1006/exer.1997.0342] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rod photoreceptor cyclic GMP gated-channel protein is a key component of the visual transduction cascade in the vertebrate retina. The protein is composed of at least two subunits (alpha and beta). Mutations in the alpha-subunit (CNGC1) have been shown to cause retinitis pigmentosa (RP) in humans. Several heterogeneous canine retinal diseases, which are clinically similar to RP, are known collectively as progressive retinal atrophy (PRA) and occur in dogs in a breed-specific manner. For the purpose of examining CNGC1 gene as a candidate for PRA, we report here the characterization of canine CNGC1 cDNA, and examine the expression of the gene in different tissues by northern analysis, reverse transcription and polymerase chain reaction (RT-PCR), and retinal immunocytochemistry. The characterized canine CNGC1 cDNA sequence contains 2717 nucleotides which include 211 bp 5"-untranslated region and 430 bp 3"-untranslated region including the poly A tail. It is predicted to encode a protein containing 691 amino acids which include six putative transmembrane domains, a pore loop and a cGMP binding domain as well as one potential extracellular site for N-linked glycosylation. Over the coding region, the canine CNGC1 shares 85-90% identity in the nucleotide sequence and 91-94% identity in the deduced amino acid sequence with its homologues in other mammalian species. However, the homology drops to only 71% and 78% of shared nucleotide and predicted amino acid sequences, respectively, when compared to the chicken CNGC1. Among all the tissues examined the gene is expressed at a much higher level in retina as a major transcript of 3.5 kb length. In addition, another minor transcript (9.8 kb) is consistently observed in the canine retinal RNA which may represent the canine homologue of the rod specific beta-subunit of the cyclic nucleotide-gated channel protein. Transcripts were detected only in retina by northern analysis but low level of expression of CNGC1 was detected in liver, kidney, heart and brain by RT-PCR. The expression of the CNGC1 protein was found to be localized specifically to the photoreceptor outer segment by immunocytochemistry.
Collapse
Affiliation(s)
- Q Zhang
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|