1
|
Beyond Lipid Signaling: Pleiotropic Effects of Diacylglycerol Kinases in Cellular Signaling. Int J Mol Sci 2020; 21:ijms21186861. [PMID: 32962151 PMCID: PMC7554708 DOI: 10.3390/ijms21186861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The diacylglycerol kinase family, which can attenuate diacylglycerol signaling and activate phosphatidic acid signaling, regulates various signaling transductions in the mammalian cells. Studies on the regulation of diacylglycerol and phosphatidic acid levels by various enzymes, the identification and characterization of various diacylglycerol and phosphatidic acid-regulated proteins, and the overlap of different diacylglycerol and phosphatidic acid metabolic and signaling processes have revealed the complex and non-redundant roles of diacylglycerol kinases in regulating multiple biochemical and biological networks. In this review article, we summarized recent progress in the complex and non-redundant roles of diacylglycerol kinases, which is expected to aid in restoring dysregulated biochemical and biological networks in various pathological conditions at the bed side.
Collapse
|
2
|
Liu CS, Schmezer P, Popanda O. Diacylglycerol Kinase Alpha in Radiation-Induced Fibrosis: Potential as a Predictive Marker or Therapeutic Target. Front Oncol 2020; 10:737. [PMID: 32477950 PMCID: PMC7235333 DOI: 10.3389/fonc.2020.00737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy is an efficient tool in cancer treatment, but it brings along the risk of side effects such as fibrosis in the irradiated healthy tissue thus limiting tumor control and impairing quality of life of cancer survivors. Knowledge on radiation-related fibrosis risk and therapeutic options is still limited and requires further research. Recent studies demonstrated that epigenetic regulation of diacylglycerol kinase alpha (DGKA) is associated with radiation-induced fibrosis. However, the specific mechanisms are still unknown. In this review, we scrutinized the role of DGKA in the radiation response and in further cellular functions to show the potential of DGKA as a predictive marker or a novel target in fibrosis treatment. DGKA was reported to participate in immune response, lipid signaling, exosome production, and migration as well as cell proliferation, all processes which are suggested to be critical steps in fibrogenesis. Most of these functions are based on the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) at plasma membranes, but DGKA might have also other, yet not well-known functions in the nucleus. Current evidence summarized here underlines that DGKA activation may play a central role in fibrosis formation post-irradiation and shows a potential of direct DGKA inhibitors or epigenetic modulators to attenuate pro-fibrotic reactions, thus providing novel therapeutic choices.
Collapse
Affiliation(s)
- Chun-Shan Liu
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
3
|
Nuclear Inositides and Inositide-Dependent Signaling Pathways in Myelodysplastic Syndromes. Cells 2020; 9:cells9030697. [PMID: 32178280 PMCID: PMC7140618 DOI: 10.3390/cells9030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies characterized by peripheral blood cytopenia and abnormal myeloproliferation, as well as a variable risk of evolution into acute myeloid leukemia (AML). The nucleus is a highly organized organelle with several distinct domains where nuclear inositides localize to mediate essential cellular events. Nuclear inositides play a critical role in the modulation of erythropoiesis or myelopoiesis. Here, we briefly review the nuclear structure, the localization of inositides and their metabolic enzymes in subnuclear compartments, and the molecular aspects of nuclear inositides in MDS.
Collapse
|
4
|
Ratti S, Ramazzotti G, Faenza I, Fiume R, Mongiorgi S, Billi AM, McCubrey JA, Suh PG, Manzoli L, Cocco L, Follo MY. Nuclear inositide signaling and cell cycle. Adv Biol Regul 2018; 67:1-6. [PMID: 29102395 DOI: 10.1016/j.jbior.2017.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Phosphatidylinositols (PIs) are responsible for several signaling pathways related to many cellular functions, such as cell cycle regulation at different check-points, cell proliferation, cell differentiation, membrane trafficking and gene expression. PI metabolism is not only present at the cytoplasmic level, but also at the nuclear one, where different signaling pathways affect essential nuclear mechanisms in eukaryotic cells. In this review we focus on nuclear inositide signaling in relation to cell cycle regulation. Many evidences underline the pivotal role of nuclear inositide signaling in cell cycle regulation and cell proliferation associated to different strategic physiopathological mechanisms in several cell systems and diseases.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory Department of Biomedical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory Department of Biomedical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory Department of Biomedical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Roberta Fiume
- Cellular Signalling Laboratory Department of Biomedical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory Department of Biomedical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Anna Maria Billi
- Cellular Signalling Laboratory Department of Biomedical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, MS#629, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory Department of Biomedical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory Department of Biomedical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory Department of Biomedical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
5
|
Poli A, Fiume R, Baldanzi G, Capello D, Ratti S, Gesi M, Manzoli L, Graziani A, Suh PG, Cocco L, Follo MY. Nuclear Localization of Diacylglycerol Kinase Alpha in K562 Cells Is Involved in Cell Cycle Progression. J Cell Physiol 2017; 232:2550-2557. [PMID: 27731506 DOI: 10.1002/jcp.25642] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 12/16/2022]
Abstract
Phosphatidylinositol (PI) signaling is an essential regulator of cell motility and proliferation. A portion of PI metabolism and signaling takes place in the nuclear compartment of eukaryotic cells, where an array of kinases and phosphatases localize and modulate PI. Among these, Diacylglycerol Kinases (DGKs) are a class of phosphotransferases that phosphorylate diacylglycerol and induce the synthesis of phosphatidic acid. Nuclear DGKalpha modulates cell cycle progression, and its activity or expression can lead to changes in the phosphorylated status of the Retinoblastoma protein, thus, impairing G1/S transition and, subsequently, inducing cell cycle arrest, which is often uncoupled with apoptosis or autophagy induction. Here we report for the first time not only that the DGKalpha isoform is highly expressed in the nuclei of human erythroleukemia cell line K562, but also that its nuclear activity drives K562 cells through the G1/S transition during cell cycle progression. J. Cell. Physiol. 232: 2550-2557, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alessandro Poli
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, Institute of Human Anatomy, University of Bologna, Bologna, Italy.,Istituto Nazionale Genetica Molecolare "Romeo e Enrica Invernizzi", Milano, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Roberta Fiume
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, Institute of Human Anatomy, University of Bologna, Bologna, Italy
| | - Gianluca Baldanzi
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy
| | - Daniela Capello
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, Institute of Human Anatomy, University of Bologna, Bologna, Italy
| | - Marco Gesi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, Institute of Human Anatomy, University of Bologna, Bologna, Italy
| | - Andrea Graziani
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy.,University Vita e Salute San Raffaele, Milan, Italy
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, Institute of Human Anatomy, University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, Institute of Human Anatomy, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Abstract
Diacylglycerol (DAG), a second messenger generated by phospholipase Cγ1 activity upon engagement of a T-cell receptor, triggers several signaling cascades that play important roles in T cell development and function. A family of enzymes called DAG kinases (DGKs) catalyzes the phosphorylation of DAG to phosphatidic acid, acting as a braking mechanism that terminates DAG-mediated signals. Two DGK isoforms, α and ζ, are expressed predominantly in T cells and synergistically regulate the development of both conventional αβ T cells and invariant natural killer T cells in the thymus. In mature T cells, the activity of these DGK isoforms aids in the maintenance of self-tolerance by preventing T-cell hyperactivation upon T cell receptor stimulation and by promoting T-cell anergy. In CD8 cells, reduced DGK activity is associated with enhanced primary responses against viruses and tumors. Recent work also has established an important role for DGK activity at the immune synapse and identified partners that modulate DGK function. In addition, emerging evidence points to previously unappreciated roles for DGK function in directional secretion and T-cell adhesion. This review describes the multitude of roles played by DGKs in T cell development and function and emphasizes recent advances in the field.
Collapse
Affiliation(s)
- Sruti Krishna
- Department of Pediatrics, Division of Allergy and Immunology and Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
7
|
Matsubara T, Ikeda M, Kiso Y, Sakuma M, Yoshino KI, Sakane F, Merida I, Saito N, Shirai Y. c-Abl tyrosine kinase regulates serum-induced nuclear export of diacylglycerol kinase α by phosphorylation at Tyr-218. J Biol Chem 2011; 287:5507-17. [PMID: 22199356 DOI: 10.1074/jbc.m111.296897] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
c-Abl is a tyrosine kinase involved in many cellular processes, including cell cycle control and proliferation. However, little is known about its substrates. Here, we show that c-Abl directly phosphorylates diacylglycerol kinase α (DGKα), an important regulator of many cellular events through its conversion of diacylglycerol to phosphatidic acid. We found that DGKα was transported from the cytoplasm to the nucleus in response to serum starvation, and serum restoration induced the nuclear export of the enzyme to the cytoplasm. This serum-induced export involves two tyrosine kinases, c-Src and c-Abl. The latter, c-Abl, is activated by c-Src, phosphorylates DGKα, and shuttles between the nucleus and the cytoplasm in a direction opposite to that of DGKα in response to serum restoration. Moreover, an in vitro phosphorylation assay using purified mutants of DGKα identified Tyr-218 as a site of phosphorylation by c-Abl. We confirmed these results for endogenous DGKα using an antibody specific for phospho-Tyr-218, and this phosphorylation was necessary for the serum-induced export of DGKα. These results demonstrate that the nucleo-cytoplasmic shuttling of DGKα is orchestrated by tyrosine phosphorylation by the Src-activated tyrosine kinase c-Abl and that this phosphorylation is important for regulating the function of cytoplasmic and/or nuclear DGKα.
Collapse
Affiliation(s)
- Takehiro Matsubara
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Shulga YV, Topham MK, Epand RM. Regulation and functions of diacylglycerol kinases. Chem Rev 2011; 111:6186-208. [PMID: 21800853 DOI: 10.1021/cr1004106] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yulia V Shulga
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | | |
Collapse
|
9
|
Tu-Sekine B, Raben DM. Regulation and roles of neuronal diacylglycerol kinases: a lipid perspective. Crit Rev Biochem Mol Biol 2011; 46:353-64. [PMID: 21539478 DOI: 10.3109/10409238.2011.577761] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diacylglycerol kinases (DGKs) are a class of enzymes that catalyze the ATP-dependent conversion of diacylglycerol (DAG) to phosphatidic acid (PtdOH), resulting in the coordinate regulation of these two lipid second messengers. This regulation is particularly important in the nervous system where it is now well-established that DAG and PtdOH serve very important roles in modulating a variety of neurological functions. There are currently 10 identified mammalian DGKs, organized into five classes or "Types" based upon similarities in their primary sequences. A number of studies have identified eight of these isoforms in various regions of the mammalian central nervous system (CNS): DGK-α, DGK-β, DGK-γ, DGK-η, DGK-ζ, DGK-ι, DGK-ϵ, and DGK-θ. Further studies have provided compelling evidence supporting roles for these enzymes in neuronal spine density, myelination, synaptic activity, neuronal plasticity, epileptogenesis and neurotransmitter release. The physiological regulation of these enzymes is less clear. Like all interfacial enzymes, DGKs metabolize their hydrophobic substrate (DAG) at a membrane-aqueous interface. Therefore, these enzymes can be regulated by alterations in their subcellular localization, enzymatic activity, and/or membrane association. In this review, we summarize what is currently understood about the localization and regulation of the neuronal DGKs in the mammalian CNS.
Collapse
Affiliation(s)
- Becky Tu-Sekine
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, 21205 MD, USA
| | | |
Collapse
|
10
|
Choi H, Allahdadi KJ, Tostes RCA, Webb RC. Diacylglycerol Kinase Inhibition and Vascular Function. ACTA ACUST UNITED AC 2009; 5:148-152. [PMID: 21547002 DOI: 10.2174/157340809789071137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diacylglycerol kinases (DGKs), a family of lipid kinases, convert diacylglycerol (DG) to phosphatidic acid (PA). Acting as a second messenger, DG activates protein kinase C (PKC). PA, a signaling lipid, regulates diverse functions involved in physiological responses. Since DGK modulates two lipid second messengers, DG and PA, regulation of DGK could induce related cellular responses. Currently, there are 10 mammalian isoforms of DGK that are categorized into five groups based on their structural features. These diverse isoforms of DGK are considered to activate distinct cellular functions according to extracellular stimuli. Each DGK isoform is thought to play various roles inside the cell, depending on its subcellular localization (nuclear, ER, Golgi complex or cytoplasm). In vascular smooth muscle, vasoconstrictors such as angiotensin II, endothelin-1 and norepinephrine stimulate contraction by increasing inositol trisphosphate (IP(3)), calcium, DG and PKC activity. Inhibition of DGK could increase DG availability and decrease PA levels, as well as alter intracellular responses, including calcium-mediated and PKC-mediated vascular contraction. The purpose of this review is to demonstrate a role of DGK in vascular function. Selective inhibition of DGK isoforms may represent a novel therapeutic approach in vascular dysfunction.
Collapse
Affiliation(s)
- Hyehun Choi
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912-3000, USA
| | | | | | | |
Collapse
|
11
|
|
12
|
Yanagisawa K, Yasuda S, Kai M, Imai SI, Yamada K, Yamashita T, Jimbow K, Kanoh H, Sakane F. Diacylglycerol kinase α suppresses tumor necrosis factor-α-induced apoptosis of human melanoma cells through NF-κB activation. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:462-74. [PMID: 17276726 DOI: 10.1016/j.bbalip.2006.12.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 11/15/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
We investigated the implication of diacylglycerol kinase (DGK) alpha (type I isoform) in melanoma cells because we found that this DGK isoform was expressed in several human melanoma cell lines but not in noncancerous melanocytes. Intriguingly, the overexpression of wild-type (WT) DGKalpha, but not of its kinase-dead (KD) mutant, markedly suppressed tumor necrosis factor (TNF)-alpha-induced apoptosis of AKI human melanoma cells. In the reverse experiment, siRNA-mediated knockdown of DGKalpha significantly enhanced the apoptosis. The overexpression of other type I isoforms (DGKbeta and DGKgamma) had, on the other hand, no detectable effects on the apoptosis. These results indicate that DGKalpha specifically suppresses the TNF-alpha-induced apoptosis through its catalytic action. We found that the overexpression of DGKalpha-WT, but not of DGKalpha-KD, further enhanced the TNF-alpha-stimulated transcriptional activity of an anti-apoptotic factor, NF-kappaB. Conversely, DGKalpha-knockdown considerably inhibited the NF-kappaB activity. Moreover, an NF-kappaB inhibitor blunted the anti-apoptotic effect of DGKalpha overexpression. Together, these results strongly suggest that DGKalpha is a novel positive regulator of NF-kappaB, which suppresses TNF-alpha-induced melanoma cell apoptosis.
Collapse
Affiliation(s)
- Kenji Yanagisawa
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wattenberg BW, Pitson SM, Raben DM. The sphingosine and diacylglycerol kinase superfamily of signaling kinases: localization as a key to signaling function. J Lipid Res 2006; 47:1128-39. [PMID: 16520486 DOI: 10.1194/jlr.r600003-jlr200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The sphingosine and diacylglycerol kinases form a superfamily of structurally related lipid signaling kinases. One of the striking features of these kinases is that although they are clearly involved in agonist-mediated signaling, this signaling is accomplished with only a moderate (and sometimes no) increase in the enzymatic activity of the enzymes. Here, we summarize findings that indicate that signaling by these kinases is strongly dependent on their localization to specific intracellular sites rather than on increases in enzyme activity. Both the substrates and products of these enzymes are bioactive lipids. Moreover, many of the metabolic enzymes that act on these lipids are found in specific organelles. Therefore, changes in the membrane localization of these signaling kinases have profound effects not only on the production of signaling lipid phosphates but also on the metabolism of the upstream signaling lipids.
Collapse
|
14
|
Goto K, Hozumi Y, Kondo H. Diacylglycerol, phosphatidic acid, and the converting enzyme, diacylglycerol kinase, in the nucleus. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:535-41. [PMID: 16731035 DOI: 10.1016/j.bbalip.2006.04.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 04/06/2006] [Accepted: 04/07/2006] [Indexed: 01/08/2023]
Abstract
There exists phosphoinositide (PI) cycle in the nucleus, which is operated differentially from the classical PI cycle at the plasma membrane. Evidence has been accumulated that nuclear PIs and the related enzymes are closely involved in a variety of nuclear processes, although the details remain to be elucidated. In this mini review, some components of PI cycle, i.e., diacylglycerol, phosphatidic acid, and the converting enzyme, diacylglycerol kinase, in the nucleus are discussed with focusing on the lipid metabolism, cell cycle regulation, and animal models.
Collapse
Affiliation(s)
- Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Iida-Nishi 2-2-2, Yamagata 990-9585, Japan.
| | | | | |
Collapse
|
15
|
Tabellini G, Billi AM, Falà F, Cappellini A, Evagelisti C, Manzoli L, Cocco L, Martelli AM. Nuclear diacylglycerol kinase-theta is activated in response to nerve growth factor stimulation of PC12 cells. Cell Signal 2005; 16:1263-71. [PMID: 15337525 DOI: 10.1016/j.cellsig.2004.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 03/17/2004] [Indexed: 11/28/2022]
Abstract
Previous evidence from independent laboratories has shown that the nucleus contains diacylglycerol kinase (DGK) isoforms, i.e., the enzymes, which yield phosphatidic acid from diacylglycerol, thus terminating protein kinase C-mediated signaling events. A DGK isoform, which resides in the nucleus of PC12 cells, is DGK-theta. Here, we show that nerve growth factor (NGF) treatment of serum-starved PC12 cells results in the stimulation of both a cytoplasmic and a nuclear DGK activity. However, time course analysis shows that cytoplasmic DGK activity peaked earlier than its nuclear counterpart. While nuclear DGK activity was dramatically down-regulated by a monoclonal antibody known for selectively inhibiting DGK-theta, cytoplasmic DGK activity was not. Moreover, nuclear DGK activity was stimulated by phosphatidylserine, an anionic phospholipid that had no effect on cytoplasmic DGK activity. Upon NGF stimulation, the amount and the activity of DGK-theta, which was bound to the insoluble nuclear matrix fraction, substantially increased. Epidermal growth factor up-regulated a nuclear DGK activity insensitive to anti-DGK-theta monoclonal antibody. Overall, our findings identify nuclear DGK-theta as a down-stream target of NGF signaling in PC12 cells.
Collapse
Affiliation(s)
- Giovanna Tabellini
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Cell Signalling Laboratory, Università degli Studi di Bologna, via Irnerio 48, 40126, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
During the past twenty years, evidence has accumulated for the presence of phospholipids within the nuclei of eukaryotic cells. These phospholipids are distinct from those that are obviously present in the nuclear envelope. The best characterized of the intranuclear lipids are the inositol lipids that form the components of a phosphoinositide-phospholipase C cycle. However, exactly as has been discovered in the cytoplasm, this is just part of a complex picture that involves many other lipids and functions.
Collapse
Affiliation(s)
- Robin F Irvine
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1QJ, UK.
| |
Collapse
|
17
|
Yagisawa H, Yamaga M, Okada M, Sasaki K, Fujii M. Regulation of the intracellular localization of phosphoinositide-specific phospholipase Cdelta(1). ADVANCES IN ENZYME REGULATION 2002; 42:261-84. [PMID: 12123720 DOI: 10.1016/s0065-2571(01)00040-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hitoshi Yagisawa
- Department of Life Science, Himeji Institute of Technology, Harima Science Garden City, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Abstract
Abundant evidence now supports the existence of phospholipids in the nucleus that resist washing of nuclei with detergents. These lipids are apparently not in the nuclear envelope as part of a bilayer membrane, but are actually within the nucleus in the form of proteolipid complexes with unidentified proteins. This review discusses the experimental evidence that attempts to explain their existence. Among these nuclear lipids are the polyphosphoinositol lipids which, together with the enzymes that synthesize them, form an intranuclear phospholipase C (PI-PLC) signaling system that generates diacylglycerol (DAG) and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. The isoforms of PI-PLC that are involved in this signaling system, and how they are regulated, are not yet entirely clear. Generation of DAG within the nucleus is believed to recruit protein kinase C (PKC) to the nucleus to phosphorylate intranuclear proteins. Generation of Ins(1,4,5)P3 may mobilize Ca2+ from the space between the nuclear membranes and thus increase nucleoplasmic Ca2+. Less well understood are the increasing number of variations and complications on the "simple" idea of a PI-PLC system. These include, all apparently within the nucleus, (i) two routes of synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]; (ii) two sources of DAG, one from the PI-PLC pathway and the other probably from phosphatidylcholine; (iii) several isoforms of PKC translocating to nuclei; (iv) increases in activity of the PI-PLC pathway at two points in the cell cycle; (v) a pathway of phosphorylation of Ins(1,4,5)P3, which may have several functions, including a role in the transfer of mRNA out of the nucleus; and (vi) the possible existence of other lipid signaling pathways that may include sphingolipids, phospholipase A2, and, in particular, 3-phosphorylated inositol lipids, which are now emerging as possible major players in nuclear signaling.
Collapse
Affiliation(s)
- Robin F Irvine
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1QJ, UK.
| |
Collapse
|
20
|
Outram SV, Crompton T, Merida I, Varas A, Martinez-A C. Diacylglycerol kinase alpha activity promotes survival of CD4+ 8+ double positive cells during thymocyte development. Immunology 2002; 105:391-8. [PMID: 11985659 PMCID: PMC1782680 DOI: 10.1046/j.1365-2567.2002.01385.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diacylglycerol kinases (DGK) form a family of isoenzymes that catalyse the conversion of diacylglycerol (DAG) to phosphatidic acid (PA), both powerful second messengers in the cell. DGKalpha is expressed in brain, peripheral T cells and thymocytes and has been shown to translocate to the nuclear matrix upon T-cell receptor (TCR) engagement. Here, we show that high level expression of DGKalpha is induced following a signal transmitted through the pre-TCR and the protein tyrosine kinase, lck. Activity of DGKalpha contributes to survival in CD4+ 8+ (DP) thymocytes as pharmacological inhibition of DGK activity results in death of this cell population both in cell suspension and thymic explants. DGKalpha promotes survival in these thymocytes through a Bcl-regulated pathway. A consequence of inhibition of DGKalpha is the specific down-regulation of Bcl-xl, whereas in transgenic mice that over-express Bcl-2, death induced by the inhibitor is partially blocked. Thus we report a novel activity of DGKalpha in survival of thymocytes immediately after entry into the DP stage in development.
Collapse
Affiliation(s)
- Susan V Outram
- Department of Biology, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
21
|
Jones DR, Sanjuán MA, Stone JC, Mérida I. Expression of a catalytically inactive form of diacylglycerol kinase alpha induces sustained signaling through RasGRP. FASEB J 2002; 16:595-7. [PMID: 11919165 DOI: 10.1096/fj.01-0762fje] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Regulating the generation and clearance of lipid second messengers, such as diacylglycerol (DAG), is critical for the correct propagation of intracellular signaling pathways. DAGK type alpha acts as a negative modulator of the DAG levels generated during T cell activation, which is initiated by triggering of the endogenous T cell receptor (TCR), as well as by stimulation of an ectopically expressed human muscarinic type 1 receptor. Here we show that stimulation of either of these receptors causes rapid, transient membrane translocation of the recently discovered Ras guanyl nucleotide release protein (RasGRP), followed by activation of mitogen-activated protein kinase (MAPK). When cells expressing a catalytically inactive form of DAGKalpha were analyzed, however, similar agonist stimulation resulted in sustained signaling through RasGRP and MAPK. Biochemical analysis showed that expression of kinase-dead diacylglycerol kinase a (DGKalpha) led to a greater, more sustained, DAG accumulation following receptor stimulation. These results suggest that, in T cells, agonist-stimulated DAG generation is the key factor controlling activation of the Ras/MAPK signaling pathway through membrane translocation of RasGRP. Moreover, we demonstrate that through the modulation of the intracellular level of agonist-stimulated DAG, DGKalpha alters Ras activation and downstream signaling dramatically, a process of utmost importance for sound immunological function.
Collapse
Affiliation(s)
- David R Jones
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Jones DR, D'Santos CS, Mérida I, Divecha N. T lymphocyte nuclear diacylglycerol is derived from both de novo synthesis and phosphoinositide hydrolysis. Int J Biochem Cell Biol 2002; 34:158-68. [PMID: 11809418 DOI: 10.1016/s1357-2725(01)00108-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Novel phospholipid metabolism in T lymphocytes and the generation of biologically active lipid second messengers (LSMs) has attracted much attention in recent years. Despite this interest, no reports have attempted to characterise such events in the nuclei of these cells. In order to gain insight into the structural relationships between the lipids diglyceride (DG) and phosphatidic acid (PtdOH) and their structural precursors phosphatidylcholine (PtdCho) and phosphatidylinositides (PtdIns) in the nuclei of CTLL-2 T lymphocytes, an analysis of their molecular species was performed. The results clearly indicated that there were two pools of DG. The major pool consisted primarily of saturated and monunsaturated structures whereas the minor pool consisted of more unsaturated species, most likely derived from PtdIns. Only the latter pool was found to be accessible to endogenous nuclear diacylglycerol kinase (DGK) activity which showed partial inhibition with the recognised DGK inhibitor R59949. Molecular species analysis of the endogenous nuclear PtdOH revealed it to be distinct from that generated by the endogenous DGK, but instead resembled that of PtdCho species. We were unable to detect enzymatic activities which targeted PtdCho (PtdCho-phospholipase C (PtdCho-PLC), PtdCho-phospholipase D (PtdCho-PLD) and sphingomyelin synthase (SMS)) but instead a detectable PtdOH phosphatase (PAP) activity. We propose that, in exponentially growing CTLL-2 cells, synthesis de novo represents one of the routes for the biosynthesis of structural phospholipids which may be the source of biologically active LSMs in the nucleus.
Collapse
Affiliation(s)
- David R Jones
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
23
|
Du X, Jiang Y, Qian W, Lu X, Walsh JP. Fatty acids inhibit growth-factor-induced diacylglycerol kinase alpha activation in vascular smooth-muscle cells. Biochem J 2001; 357:275-82. [PMID: 11415460 PMCID: PMC1221952 DOI: 10.1042/0264-6021:3570275] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have previously shown that unsaturated fatty acids amplify platelet-derived-growth-factor (PDGF)-induced protein kinase C (PKC) activation in vascular smooth-muscle cells (VSMCs). Diacylglycerol-induced PKC activation is normally terminated by diacylglycerol kinases (DGKs). We thus hypothesized that fatty acids act by inhibiting a DGK. Fractionation of VSMC extracts demonstrated that the DGK alpha isoform was the major DGK activity present. PDGF markedly increased the DGK activity of cultured cells. An inhibitor selective for the DGK alpha isoform, R59949 [3-[2-[4-(bis-(4-fluorophenyl)methylene]piperidin-1-yl)ethyl]-2,3-dihydro-2-thioxo-4(1H)-quinazolinone], abolished the growth-factor-induced increase in DGK activity, but had little effect on basal activity. PDGF thus selectively activates DGKalpha. Epidermal growth factor and alpha-thrombin stimulated total DGK activity similarly to PDGF. Activation by epidermal growth factor was sensitive to R59949, again suggesting involvement of DGKalpha. However, the alpha-thrombin-induced activity was unaffected by this agent. Unsaturated fatty acids inhibited growth-factor-induced DGKalpha activation, but had no effect on basal activity. Fatty acids also amplified the PDGF-induced increase in cell diacylglycerol content. These results indicate that inhibition of DGKalpha contributes to fatty-acid-induced amplification of PKC activation. Increased levels of fatty acids in diabetes may thus contribute to chronic PKC activation associated with this disorder.
Collapse
Affiliation(s)
- X Du
- Department of Medicine, Indiana University School of Medicine, Roudebush VA Medical Center (111-E), 1481 West Tenth Street, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
24
|
Bregoli L, Baldassare JJ, Raben DM. Nuclear diacylglycerol kinase-theta is activated in response to alpha-thrombin. J Biol Chem 2001; 276:23288-95. [PMID: 11309392 DOI: 10.1074/jbc.m101501200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Currently, there is substantial evidence that nuclear lipid metabolism plays a critical role in a number of signal transduction cascades. Previous work from our laboratory showed that stimulation of quiescent fibroblasts with alpha-thrombin leads to the production of two lipid second messengers in the nucleus: an increase in nuclear diacylglycerol mass and an activation of phospholipase D, which catalyzes the hydrolysis of phosphatidylcholine to generate phosphatidic acid. Diacylglycerol kinase (DGK) catalyzes the conversion of diacylglycerol to phosphatidic acid, making it an attractive candidate for a signal transduction component. There is substantial evidence that this activity is indeed regulated in a number of signaling cascades (reviewed by van Blitterswijk, W. J., and Houssa, B. (1999) Chem. Phys. Lipids 98, 95-108). In this report, we show that the addition of alpha-thrombin to quiescent IIC9 fibroblasts results in an increase in nuclear DGK activity. The examination of nuclei isolated from quiescent IIC9 cells indicates that DGK-theta and DGK-delta are both present. We took advantage of the previous observations that phosphatidylserine inhibits DGK-delta (reviewed by Sakane, F., Imai, S., Kai, M., Wada, I., and Kanoh, H. (1996) J. Biol. Chem. 271, 8394-8401), and constitutively active RhoA inhibits DGK-theta (reviewed by Houssa, B., de Widt, J., Kranenburg, O., Moolenaar, W. H., and van Blitterswijk, W. J. (1999) J. Biol. Chem. 274, 6820-6822) to identify the activity induced by alpha-thrombin. Constitutively active RhoA inhibited the nuclear stimulated activity, whereas phosphatidylserine did not have an inhibitory effect. In addition, a monoclonal anti-DGK-theta antibody inhibited the alpha-thrombin-stimulated nuclear activity in vitro. These results demonstrate that DGK-theta is the isoform responsive to alpha-thrombin stimulation. Western blot and immunofluorescence microscopy analyses showed that alpha-thrombin induced the translocation of DGK-theta to the nucleus, implicating that this translocation is at least partly responsible for the increased nuclear activity. Taken together, these data are the first to demonstrate an agonist-induced activity of nuclear DGK-theta activity and a nuclear localization of DGK-delta.
Collapse
Affiliation(s)
- L Bregoli
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
25
|
Abstract
Diacylglycerol kinases (DGKs) phosphorylate the second-messenger diacylglycerol (DAG) to phosphatidic acid (PA). The family of DGKs is well conserved among most species. Nine mammalian isotypes have been identified, and are classified into five subgroups based on their primary structure. DGKs contain a conserved catalytic domain and an array of other conserved motifs that are likely to play a role in lipid-protein and protein-protein interactions in various signalling pathways dependent on DAG and/or PA production. DGK is therefore believed to be activated at the (plasma) membrane where DAG is generated. Some isotypes are found associated with and/or regulated by small GTPases of the Rho family, presumably acting in cytoskeletal rearrangements. Others are (also) found in the nucleus, in association with other regulatory enzymes of the phosphoinositide cycle, and have an effect on cell cycle progression. Most DGK isotypes show high expression in the brain, often in distinct brain regions, suggesting that each individual isotype has a unique function.
Collapse
Affiliation(s)
- W J van Blitterswijk
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | | |
Collapse
|
26
|
Jiang Y, Sakane F, Kanoh H, Walsh JP. Selectivity of the diacylglycerol kinase inhibitor 3-[2-(4-[bis-(4-fluorophenyl)methylene]-1-piperidinyl)ethyl]-2, 3-dihydro-2-thioxo-4(1H)quinazolinone (R59949) among diacylglycerol kinase subtypes. Biochem Pharmacol 2000; 59:763-72. [PMID: 10718334 DOI: 10.1016/s0006-2952(99)00395-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Diacylglycerol kinases (DGKs) attenuate diacylglycerol-induced protein kinase C activation during stimulated phosphatidylinositol turnover. This reaction also initiates phosphatidylinositol resynthesis. Two agents, 3-(2-(4-[bis-(4-fluorophenyl)methylene]-1-piperidinyl)ethyl)-2,3-dihydro -2-thioxo-4(1H)quinazolinone (R59949) and 6-(2-(4-[(4-fluorophenyl)phenylmethylene]-1-piperidinyl)ethyl)-7-m ethyl-5H-thiazolo(3,2-a)pyrimidin-5-one (R59022), inhibit diacylglycerol phosphorylation in several systems. To examine the mechanism of this effect, we developed a mixed micelle method suitable for in vitro study of DGK inhibition. Animal cells express multiple DGK isoforms. In a survey of DGK isotypes, these agents selectively inhibited Ca2+-activated DGKs. R59949 was the more selective of the two. To map the site of interaction with the enzyme, a series of DGKalpha deletion mutants were prepared and examined. Deletion of the Ca2+-binding EF hand motif, which is shared by Ca2+-activated DGKs, had no effect on inhibition. Consistent with this observation, inhibition kinetics were noncompetitive with Ca2+. A construct expressing only the catalytic domain was also inhibited by R59949. Studies of substrate kinetics demonstrated that MgATP potentiated R59949 inhibition, indicating synergy of inhibitor and MgATP binding. These results indicate that R59949 inhibits DGKalpha by binding to its catalytic domain.
Collapse
Affiliation(s)
- Y Jiang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Diacylglycerol kinase (DGK) phosphorylates the second messenger diacylglycerol (DAG) to phosphatidic acid. A family of nine mammalian isotypes have been identified. Their primary structure shows a diverse array of conserved domains, such as a catalytic domain, zinc fingers, pleckstrin homology domains and EF-hand structures, known to interact with other proteins, lipids or Ca2+, in signal transduction processes. DGK is believed to act in the phosphoinositide cycle in which DAG is enriched with arachidonoyl moieties, but the majority of DGK isotypes do not show specificity for this DAG species in vitro. This could imply that DGKs may also have other functions in the cell. DGK activity is not only found in membranes, but also in the nucleus and at the cytoskeleton. Agonist-induced translocations of DGK to or from these subcellular sites are known to occur. Some isotypes are contained in signaling complexes in specific association with members of the Rho family of small GTP binding proteins, suggesting that they are involved in Rho-mediated processes such as cytoskeletal reorganization.
Collapse
Affiliation(s)
- W J van Blitterswijk
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | |
Collapse
|