1
|
Schnell L, Felix I, Müller B, Sadi M, Bank F, Papatheodorou P, Popoff MR, Aktories K, Waltenberger E, Benz R, Weichbrodt C, Fauler M, Frick M, Barth H. Revisiting an old antibiotic: bacitracin neutralizes binary bacterial toxins and protects cells from intoxication. FASEB J 2019; 33:5755-5771. [DOI: 10.1096/fj.201802453r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Leonie Schnell
- Institute of Pharmacology and ToxicologyUniversity of Ulm Medical Center Ulm Germany
| | - Ina Felix
- Institute of Pharmacology and ToxicologyUniversity of Ulm Medical Center Ulm Germany
| | - Bastian Müller
- Institute of Pharmacology and ToxicologyUniversity of Ulm Medical Center Ulm Germany
| | - Mirko Sadi
- Institute of Pharmacology and ToxicologyUniversity of Ulm Medical Center Ulm Germany
| | - Franziska Bank
- Institute of Pharmacology and ToxicologyUniversity of Ulm Medical Center Ulm Germany
| | | | | | - Klaus Aktories
- Institute of ExperimentalClinical Pharmacology and ToxicologyUniversity of Freiburg Freiburg Germany
| | - Eva Waltenberger
- Department of Life Sciences and ChemistryJacobs University Bremen Bremen Germany
| | - Roland Benz
- Department of Life Sciences and ChemistryJacobs University Bremen Bremen Germany
| | | | - Michael Fauler
- Institute of General PhysiologyUniversity of Ulm Ulm Germany
| | - Manfred Frick
- Institute of General PhysiologyUniversity of Ulm Ulm Germany
| | - Holger Barth
- Institute of Pharmacology and ToxicologyUniversity of Ulm Medical Center Ulm Germany
| |
Collapse
|
2
|
Comparative Studies of Actin- and Rho-Specific ADP-Ribosylating Toxins: Insight from Structural Biology. Curr Top Microbiol Immunol 2017; 399:69-86. [PMID: 27540723 DOI: 10.1007/82_2016_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mono-ADP-ribosylation is a major post-translational modification performed by bacterial toxins, which transfer an ADP-ribose moiety to a substrate acceptor residue. Actin- and Rho-specific ADP-ribosylating toxins (ARTs) are typical ARTs known to have very similar tertiary structures but totally different targets. Actin-specific ARTs are the A components of binary toxins, ADP-ribosylate actin at Arg177, leading to the depolymerization of the actin cytoskeleton. On the other hand, C3-like exoenzymes are Rho-specific ARTs, ADP-ribosylate Rho GTPases at Asn41, exerting an indirect effect on the actin cytoskeleton. This review focuses on the differences and similarities of actin- and Rho-specific ARTs, especially with respect to their substrate recognition and cell entry mechanisms, based on structural studies.
Collapse
|
3
|
Crystal structure and structure-based mutagenesis of actin-specific ADP-ribosylating toxin CPILE-a as novel enterotoxin. PLoS One 2017; 12:e0171278. [PMID: 28199340 PMCID: PMC5310789 DOI: 10.1371/journal.pone.0171278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/17/2017] [Indexed: 01/07/2023] Open
Abstract
Unusual outbreaks of food poisoning in Japan were reported in which Clostridium perfringens was strongly suspected to be the cause based on epidemiological information and fingerprinting of isolates. The isolated strains lack the typical C. perfringens enterotoxin (CPE) but secrete a new enterotoxin consisting of two components: C. perfringens iota-like enterotoxin-a (CPILE-a), which acts as an enzymatic ADP-ribosyltransferase, and CPILE-b, a membrane binding component. Here we present the crystal structures of apo-CPILE-a, NAD+-CPILE-a and NADH-CPILE-a. Though CPILE-a structure has high similarity with known iota toxin-a (Ia) with NAD+, it possesses two extra-long protruding loops from G262-S269 and E402-K408 that are distinct from Ia. Based on the Ia-actin complex structure, we focused on actin-binding interface regions (I-V) including two protruding loops (PT) and examined how mutations in these regions affect the ADP-ribosylation activity of CPILE-a. Though some site-directed mutagenesis studies have already been conducted on the actin binding site of Ia, in the present study, mutagenesis studies were conducted against both α- and β/γ-actin in CPILE-a and Ia. Interestingly, CPILE-a ADP-ribosylates both α- and β/γ-actin, but its sensitivity towards β/γ-actin is 36% compared with α-actin. Our results contrast to that only C2-I ADP-ribosylates β/γ-actin. We also showed that PT-I and two convex-concave interactions in CPILE-a are important for actin binding. The current study is the first detailed analysis of site-directed mutagenesis in the actin binding region of Ia and CPILE-a against both α- and β/γ-actin.
Collapse
|
4
|
Toxin Transport by A-B Type of Toxins in Eukaryotic Target Cells and Its Inhibition by Positively Charged Heterocyclic Molecules. Curr Top Microbiol Immunol 2017; 406:229-256. [DOI: 10.1007/82_2017_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Davies AH, McGlashan J, Posner MG, Roberts AK, Shone CC, Acharya KR. Functional significance of active site residues in the enzymatic component of the Clostridium difficile binary toxin. Biochem Biophys Rep 2016; 8:55-61. [PMID: 28955942 PMCID: PMC5613739 DOI: 10.1016/j.bbrep.2016.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile binary toxin (CDT) is an ADP-ribosyltransferase which is linked to enhanced pathogenesis of C. difficile strains. CDT has dual function: domain a (CDTa) catalyses the ADP-ribosylation of actin (enzymatic component), whereas domain b (CDTb) transports CDTa into the cytosol (transport component). Understanding the molecular mechanism of CDT is necessary to assess its role in C. difficile infection. Identifying amino acids that are essential to CDTa function may aid drug inhibitor design to control the severity of C. difficile infections. Here we report mutations of key catalytic residues within CDTa and their effect on CDT cytotoxicity. Rather than an all-or-nothing response, activity of CDTa mutants vary with the type of amino acid substitution; S345A retains cytotoxicity whereas S345Y was sufficient to render CDT non-cytotoxic. Thus CDTa cytotoxicity levels are directly linked to ADP-ribosyltransferase activity. ADP-ribosyltransferase activity determines cytotoxicity of CDTa from Clostridium difficile. CDT ADP-ribosylation follows SN1 mechanism. A single amino acid mutation is sufficient to impair CDTa cytotoxicity.
Collapse
Key Words
- ADP-ribosylation
- ARTT, ADP-ribosyl turn-turn
- C2, C. botulinum toxin C2.
- CDT, C. difficile binary toxin
- CDTa, C. difficile toxin domain a
- CDTb, C. difficile toxin domain b residues 1-876
- CDTb′, residues 42-876 of CDTb (no signal peptide sequence)
- CDTb′′, residues 209-876 of CDTb (no activation domain)
- Clostridium difficile binary toxin
- Enzymology
- Ia, C. perfringens Iota binary toxin
- Mutagenesis
- TcdA, C. difficile exotoxin A
- TcdB, C. difficile exotoxin B
- rCDTa, recombinant wild-type C. difficile toxin domain a
Collapse
Affiliation(s)
- Abigail H. Davies
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | - Mareike G. Posner
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | - K. Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Correspondence to: Department of Biology and Biochemistry, University of Bath, Building 4-South, Claverton Down, Bath BA2 7AY, UK.Department of Biology and Biochemistry, University of BathBuilding 4-South, Claverton DownBathBA2 7AYUK
| |
Collapse
|
6
|
EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin. Toxins (Basel) 2016; 8:101. [PMID: 27043629 PMCID: PMC4848627 DOI: 10.3390/toxins8040101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/18/2022] Open
Abstract
The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.
Collapse
|
7
|
A novel Hsp70 inhibitor prevents cell intoxication with the actin ADP-ribosylating Clostridium perfringens iota toxin. Sci Rep 2016; 6:20301. [PMID: 26839186 PMCID: PMC4738285 DOI: 10.1038/srep20301] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
Abstract
Hsp70 family proteins are folding helper proteins involved in a wide variety of cellular pathways. Members of this family interact with key factors in signal transduction, transcription, cell-cycle control, and stress response. Here, we developed the first Hsp70 low molecular weight inhibitor specifically targeting the peptide binding site of human Hsp70. After demonstrating that the inhibitor modulates the Hsp70 function in the cell, we used the inhibitor to show for the first time that the stress-inducible chaperone Hsp70 functions as molecular component for entry of a bacterial protein toxin into mammalian cells. Pharmacological inhibition of Hsp70 protected cells from intoxication with the binary actin ADP-ribosylating iota toxin from Clostridium perfringens, the prototype of a family of enterotoxins from pathogenic Clostridia and inhibited translocation of its enzyme component across cell membranes into the cytosol. This finding offers a starting point for novel therapeutic strategies against certain bacterial toxins.
Collapse
|
8
|
Belyy A, Tabakova I, Lang AE, Jank T, Belyi Y, Aktories K. Roles of Asp179 and Glu270 in ADP-Ribosylation of Actin by Clostridium perfringens Iota Toxin. PLoS One 2015; 10:e0145708. [PMID: 26713879 PMCID: PMC4699905 DOI: 10.1371/journal.pone.0145708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 12/08/2015] [Indexed: 12/19/2022] Open
Abstract
Clostridium perfringens iota toxin is a binary toxin composed of the enzymatically active component Ia and receptor binding component Ib. Ia is an ADP-ribosyltransferase, which modifies Arg177 of actin. The previously determined crystal structure of the actin-Ia complex suggested involvement of Asp179 of actin in the ADP-ribosylation reaction. To gain more insights into the structural requirements of actin to serve as a substrate for toxin-catalyzed ADP-ribosylation, we engineered Saccharomyces cerevisiae strains, in which wild type actin was replaced by actin variants with substitutions in residues located on the Ia-actin interface. Expression of the actin mutant Arg177Lys resulted in complete resistance towards Ia. Actin mutation of Asp179 did not change Ia-induced ADP-ribosylation and growth inhibition of S. cerevisiae. By contrast, substitution of Glu270 of actin inhibited the toxic action of Ia and the ADP-ribosylation of actin. In vitro transcribed/translated human β-actin confirmed the crucial role of Glu270 in ADP-ribosylation of actin by Ia.
Collapse
Affiliation(s)
- Alexander Belyy
- Gamaleya Research Institute, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Alexander E. Lang
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Thomas Jank
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Yury Belyi
- Gamaleya Research Institute, Moscow, Russia
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
9
|
Pfaumann V, Lang AE, Schwan C, Schmidt G, Aktories K. The actin and Rho-modifying toxins PTC3 and PTC5 ofPhotorhabdus luminescens: enzyme characterization and induction of MAL/SRF-dependent transcription. Cell Microbiol 2014; 17:579-94. [DOI: 10.1111/cmi.12386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/11/2014] [Accepted: 10/19/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Vanda Pfaumann
- Institute of Experimental and Clinical Pharmacology and Toxicology; University of Freiburg; Freiburg Germany
| | - Alexander E. Lang
- Institute of Experimental and Clinical Pharmacology and Toxicology; University of Freiburg; Freiburg Germany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology; University of Freiburg; Freiburg Germany
| | - Gudula Schmidt
- Institute of Experimental and Clinical Pharmacology and Toxicology; University of Freiburg; Freiburg Germany
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology; University of Freiburg; Freiburg Germany
- Centre for Biological Signalling Studies (BIOSS); University of Freiburg; Freiburg Germany
| |
Collapse
|
10
|
Stiles BG, Pradhan K, Fleming JM, Samy RP, Barth H, Popoff MR. Clostridium and bacillus binary enterotoxins: bad for the bowels, and eukaryotic being. Toxins (Basel) 2014; 6:2626-56. [PMID: 25198129 PMCID: PMC4179152 DOI: 10.3390/toxins6092626] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 12/18/2022] Open
Abstract
Some pathogenic spore-forming bacilli employ a binary protein mechanism for intoxicating the intestinal tracts of insects, animals, and humans. These Gram-positive bacteria and their toxins include Clostridium botulinum (C2 toxin), Clostridium difficile (C. difficile toxin or CDT), Clostridium perfringens (ι-toxin and binary enterotoxin, or BEC), Clostridium spiroforme (C. spiroforme toxin or CST), as well as Bacillus cereus (vegetative insecticidal protein or VIP). These gut-acting proteins form an AB complex composed of ADP-ribosyl transferase (A) and cell-binding (B) components that intoxicate cells via receptor-mediated endocytosis and endosomal trafficking. Once inside the cytosol, the A components inhibit normal cell functions by mono-ADP-ribosylation of globular actin, which induces cytoskeletal disarray and death. Important aspects of each bacterium and binary enterotoxin will be highlighted in this review, with particular focus upon the disease process involving the biochemistry and modes of action for each toxin.
Collapse
Affiliation(s)
- Bradley G Stiles
- Biology Department, Wilson College, 1015 Philadelphia Avenue, Chambersburg, PA 17201, USA.
| | - Kisha Pradhan
- Environmental Science Department, Wilson College, 1015 Philadelphia Avenue, Chambersburg, PA 17201, USA.
| | - Jodie M Fleming
- Department of Biology, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA.
| | - Ramar Perumal Samy
- Venom and Toxin Research Programme, Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge 117597, Singapore.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, Ulm D-89081, Germany.
| | - Michel R Popoff
- Bacteries Anaerobies et Toxines, Institut Pasteur, 28 Rue du Docteur Roux, Paris 75724, France.
| |
Collapse
|
11
|
Ernst K, Langer S, Kaiser E, Osseforth C, Michaelis J, Popoff MR, Schwan C, Aktories K, Kahlert V, Malesevic M, Schiene-Fischer C, Barth H. Cyclophilin-facilitated membrane translocation as pharmacological target to prevent intoxication of mammalian cells by binary clostridial actin ADP-ribosylated toxins. J Mol Biol 2014; 427:1224-38. [PMID: 25058685 DOI: 10.1016/j.jmb.2014.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/03/2014] [Accepted: 07/13/2014] [Indexed: 11/16/2022]
Abstract
Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin and Clostridium difficile CDT belong to the family of binary actin ADP-ribosylating toxins and are composed of a binding/translocation component and a separate enzyme component. The enzyme components ADP-ribosylate G-actin in the cytosol of target cells resulting in depolymerization of F-actin, cell rounding and cell death. The binding/translocation components bind to their cell receptors and form complexes with the respective enzyme components. After receptor-mediated endocytosis, the binding/translocation components form pores in membranes of acidified endosomes and the enzyme components translocate through these pores into the cytosol. This step is facilitated by the host cell chaperone heat shock protein 90 and peptidyl-prolyl cis/trans isomerases including cyclophilin A. Here, we demonstrate that a large isoform of cyclophilin A, the multi-domain enzyme cyclophilin 40 (Cyp40), binds to the enzyme components C2I, Ia and CDTa in vitro. Isothermal titration calorimetry revealed a direct binding to C2I with a calculated affinity of 101 nM and to Ia with an affinity of 1.01 μM. Closer investigation for the prototypic C2I revealed that binding to Cyp40 did not depend on its ADP-ribosyltransferase activity but was stronger for unfolded C2I. The interaction of C2I with Cyp40 was also demonstrated in lysates from C2-treated cells by pull-down. Treatment of cells with a non-immunosuppressive cyclosporine A derivative, which still binds to and inhibits the peptidyl-prolyl cis/trans isomerase activity of cyclophilins, protected cells from intoxication with C2, iota and CDT toxins, offering an attractive approach for development of novel therapeutic strategies against binary actin ADP-ribosylating toxins.
Collapse
Affiliation(s)
- Katharina Ernst
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89081 Ulm, Germany
| | - Simon Langer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89081 Ulm, Germany
| | - Eva Kaiser
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89081 Ulm, Germany
| | | | - Jens Michaelis
- Institute of Biophysics, University of Ulm, 89081 Ulm, Germany
| | - Michel R Popoff
- Department of Anaerobic Bacteria, Pasteur Institute, 75724 Paris, France
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany
| | - Viktoria Kahlert
- Max Planck Research Unit for Enzymology of Protein Folding Halle, 06120 Halle (Saale), Germany
| | - Miroslav Malesevic
- Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Cordelia Schiene-Fischer
- Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
12
|
Inhibitions of the translocation pore of Clostridium botulinum C2 toxin by tailored azolopyridinium salts protects human cells from intoxication. Toxicology 2014; 316:25-33. [DOI: 10.1016/j.tox.2013.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/13/2013] [Accepted: 12/22/2013] [Indexed: 11/19/2022]
|
13
|
Tsuge H, Tsurumura T. Reaction Mechanism of Mono-ADP-Ribosyltransferase Based on Structures of the Complex of Enzyme and Substrate Protein. Curr Top Microbiol Immunol 2014; 384:69-87. [PMID: 24990621 DOI: 10.1007/82_2014_415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mono-ADP-ribosylation is a post-translational protein modification catalyzed by bacterial toxins and exoenzymes that function as ADP-ribosyltransferases. Despite the importance of this modification, the reaction mechanism remains poorly understood due to a lack of information on the crystal structure of these enzymes in complex with a substrate protein. Recently, the structures of two such complexes became available, which shed new light on the mechanisms of mono-ADP-ribosylation. In this review, we consider the reaction mechanism based on the structures of ADP-ribosyltransferases in complex with a substrate protein.
Collapse
Affiliation(s)
- Hideaki Tsuge
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto, 603-8555, Japan,
| | | |
Collapse
|
14
|
Bezrukov SM, Liu X, Karginov VA, Wein AN, Leppla SH, Popoff MR, Barth H, Nestorovich EM. Interactions of high-affinity cationic blockers with the translocation pores of B. anthracis, C. botulinum, and C. perfringens binary toxins. Biophys J 2013; 103:1208-17. [PMID: 22995493 DOI: 10.1016/j.bpj.2012.07.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/02/2012] [Accepted: 07/24/2012] [Indexed: 10/27/2022] Open
Abstract
Cationic β-cyclodextrin derivatives were recently introduced as highly effective, potentially universal blockers of three binary bacterial toxins: anthrax toxin of Bacillus anthracis, C2 toxin of Clostridium botulinum, and iota toxin of Clostridium perfringens. The binary toxins are made of two separate components: the enzymatic A component, which acts on certain intracellular targets, and the binding/translocation B component, which forms oligomeric channels in the target cell membrane. Here we studied the voltage and salt dependence of the rate constants of binding and dissociation reactions of two structurally different β-cyclodextrins (AmPrβCD and AMBnTβCD) in the PA(63), C2IIa, and Ib channels (B components of anthrax, C2, and iota toxins, respectively). With all three channels, the blocker carrying extra hydrophobic aromatic groups on the thio-alkyl linkers of positively charged amino groups, AMBnTβCD, demonstrated significantly stronger binding compared with AmPrβCD. This effect is seen as an increased residence time of the blocker in the channels, whereas the time between blockages characterizing the binding reaction on-rate stays practically unchanged. Surprisingly, the voltage sensitivity, expressed as a slope of the logarithm of the blocker residence time as a function of voltage, turned out to be practically the same for all six cases studied, suggesting structural similarities among the three channels. Also, the more-effective AMBnTβCD blocker shows weaker salt dependence of the binding and dissociation rate constants compared with AmPrβCD. By estimating the relative contributions of the applied transmembrane field, long-range Coulomb, and salt-concentration-independent, short-range forces, we found that the latter represent the leading interaction, which accounts for the high efficiency of blockage. In a search for the putative groups in the channel lumen that are responsible for the short-range forces, we performed measurements with the F427A mutant of PA(63), which lacks the functionally important phenylalanine clamp. We found that the on-rates of the blockage were virtually conserved, but the residence times and, correspondingly, the binding constants dropped by more than an order of magnitude, which also reduced the difference between the efficiencies of the two blockers.
Collapse
Affiliation(s)
- Sergey M Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kaiser E, Böhm N, Ernst K, Langer S, Schwan C, Aktories K, Popoff M, Fischer G, Barth H. FK506-binding protein 51 interacts with Clostridium botulinum C2 toxin and FK506 inhibits membrane translocation of the toxin in mammalian cells. Cell Microbiol 2012; 14:1193-205. [PMID: 22420783 DOI: 10.1111/j.1462-5822.2012.01788.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The binary Clostridium botulinum C2 toxin consists of the binding/translocation component C2IIa and the separate enzyme component C2I. C2IIa delivers C2I into the cytosol of eukaryotic target cells where C2I ADP-ribosylates actin. After receptor-mediated endocytosis of the C2IIa/C2I complex, C2IIa forms pores in membranes of acidified early endosomes and unfolded C2I translocates through the pores into the cytosol. Membrane translocation of C2I is facilitated by the activities of host cell chaperone Hsp90 and the peptidyl-prolyl cis/trans isomerase (PPIase) cyclophilin A. Here, we demonstrated that Hsp90 co-precipitates with C2I from lysates of C2 toxin-treated cells and identified the FK506-binding protein (FKBP) 51 as a novel interaction partner of C2I in vitro and in intact mammalian cells. Prompted by this finding, we used the specific pharmacological inhibitor FK506 to investigate whether the PPIase activity of FKBPs plays a role during membrane translocation of C2 toxin. Treatment of cells with FK506 protected cultured cells from intoxication with C2 toxin. Moreover, FK506 inhibited the pH-dependent translocation of C2I across membranes into the cytosol but did not interfere with the enzyme activity of C2I or binding of C2 toxin to cells. Furthermore, FK506 treatment delayed intoxication with the related binary actin ADP-ribosylating toxins from Clostridium perfringens (iota toxin) and Clostridium difficile (CDT) but not with the Rho-glucosylating Clostridium difficile toxin A (TcdA). In conclusion, our results support the hypothesis that clostridial binary actin-ADP-ribosylating toxins share a specific FKBP-dependent translocation mechanism during their uptake into mammalian cells.
Collapse
Affiliation(s)
- Eva Kaiser
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tailored ß-cyclodextrin blocks the translocation pores of binary exotoxins from C. botulinum and C. perfringens and protects cells from intoxication. PLoS One 2011; 6:e23927. [PMID: 21887348 PMCID: PMC3161792 DOI: 10.1371/journal.pone.0023927] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/31/2011] [Indexed: 11/19/2022] Open
Abstract
Background Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin are binary exotoxins, which ADP-ribosylate actin in the cytosol of mammalian cells and thereby destroy the cytoskeleton. C2 and iota toxin consists of two individual proteins, an enzymatic active (A-) component and a separate receptor binding and translocation (B-) component. The latter forms a complex with the A-component on the surface of target cells and after receptor-mediated endocytosis, it mediates the translocation of the A-component from acidified endosomal vesicles into the cytosol. To this end, the B-components form heptameric pores in endosomal membranes, which serve as translocation channels for the A-components. Methodology/Principal Findings Here we demonstrate that a 7-fold symmetrical positively charged ß-cyclodextrin derivative, per-6-S-(3-aminomethyl)benzylthio-ß-cyclodextrin, protects cultured cells from intoxication with C2 and iota toxins in a concentration-dependent manner starting at low micromolar concentrations. We discovered that the compound inhibited the pH-dependent membrane translocation of the A-components of both toxins in intact cells. Consistently, the compound strongly blocked transmembrane channels formed by the B-components of C2 and iota toxin in planar lipid bilayers in vitro. With C2 toxin, we consecutively ruled out all other possible inhibitory mechanisms showing that the compound did not interfere with the binding of the toxin to the cells or with the enzyme activity of the A-component. Conclusions/Significance The described ß-cyclodextrin derivative was previously identified as one of the most potent inhibitors of the binary lethal toxin of Bacillus anthracis both in vitro and in vivo, implying that it might represent a broad-spectrum inhibitor of binary pore-forming exotoxins from pathogenic bacteria.
Collapse
|
17
|
Membrane translocation of binary actin-ADP-ribosylating toxins from Clostridium difficile and Clostridium perfringens is facilitated by cyclophilin A and Hsp90. Infect Immun 2011; 79:3913-21. [PMID: 21768281 DOI: 10.1128/iai.05372-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Some hypervirulent strains of Clostridium difficile produce the binary actin-ADP-ribosylating toxin C. difficile transferase (CDT) in addition to Rho-glucosylating toxins A and B. It has been suggested that the presence of CDT increases the severity of C. difficile-associated diseases, including pseudomembranous colitis. CDT contains a binding and translocation component, CDTb, that mediates the transport of the separate enzyme component CDTa into the cytosol of target cells, where CDTa modifies actin. Here we investigated the mechanism of cellular CDT uptake and found that bafilomycin A1 protects cultured epithelial cells from intoxication with CDT, implying that CDTa is translocated from acidified endosomal vesicles into the cytosol. Consistently, CDTa is translocated across the cytoplasmic membranes into the cytosol when cell-bound CDT is exposed to acidic medium. Radicicol and cyclosporine A, inhibitors of the heat shock protein Hsp90 and cyclophilins, respectively, protected cells from intoxication with CDT but not from intoxication with toxins A and B. Moreover, both inhibitors blocked the pH-dependent membrane translocation of CDTa, strongly suggesting that Hsp90 and cyclophilin are crucial for this process. In contrast, the inhibitors did not interfere with the ADP-ribosyltransferase activity, receptor binding, or endocytosis of the toxin. We obtained comparable results with the closely related iota-toxin from Clostridium perfringens. Moreover, CDTa and Ia, the enzyme component of iota-toxin, specifically bound to immobilized Hsp90 and cyclophilin A in vitro. In combination with our recently obtained data on the C2 toxin from C. botulinum, these results imply a common Hsp90/cyclophilin A-dependent translocation mechanism for the family of binary actin-ADP-ribosylating toxins.
Collapse
|
18
|
Clostridium perfringens iota-toxin: structure and function. Toxins (Basel) 2009; 1:208-28. [PMID: 22069542 PMCID: PMC3202787 DOI: 10.3390/toxins1020208] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 12/16/2009] [Accepted: 12/21/2009] [Indexed: 01/15/2023] Open
Abstract
Clostridium perfringens iota-toxin is composed of the enzyme component (Ia) and the binding component (Ib). Ib binds to receptor on targeted cells and translocates Ia into the cytosol of the cells. Ia ADP-ribosylates actin, resulting in cell rounding and death. Comparisons of the deduced amino acid sequence from the gene and three-dimensional structure of Ia with those of ADP-ribosylating toxins (ARTs) suggests that there is striking structural similarity among these toxins. Our objectives are to review the recent advances in the character, structure-function, and the mode of action of iota-toxin by consideration of the findings about ARTs.
Collapse
|
19
|
The long-lived nature of clostridium perfringens iota toxin in mammalian cells induces delayed apoptosis. Infect Immun 2009; 77:5593-601. [PMID: 19805536 DOI: 10.1128/iai.00710-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mono-ADP ribosylation of actin by bacterial toxins, such as Clostridium perfringens iota or Clostridium botulinum C2 toxins, results in rapid depolymerization of actin filaments and cell rounding. Here we report that treatment of African green monkey kidney (Vero) cells with iota toxin resulted in delayed caspase-dependent death. Unmodified actin did not reappear in toxin-treated cells, and enzyme-active toxin was detectable in the cytosol for at least 24 h. C2 toxin showed comparable, long-lived effects in cells, while a C2 toxin control lacking ADP-ribosyltransferase activity did not induce cell death. To address whether the remarkable stability of the iota and C2 toxins in cytosol was crucial for inducing cell death, we treated cells with C/SpvB, the catalytic domain of Salmonella enterica SpvB. Although C/SpvB also mono-ADP ribosylates actin as do the iota and C2 toxins, cells treated with a cell-permeating C/SpvB fusion toxin became rounded but recovered and remained viable. Moreover, unmodified actin reappeared in these cells, and ADP-ribosyltransferase activity due to C/SpvB was not detectable in the cytosol after 24 h, a result most likely due to degradation of C/SpvB. Repeated application of C/SpvB prevented recovery of cells and reappearance of unmodified actin. In conclusion, a complete but transient ADP ribosylation of actin was not sufficient to trigger apoptosis, implying that long-term stability of actin-ADP-ribosylating toxins, such as iota and C2, in the cytosol is crucial for inducing delayed, caspase-dependent cell death.
Collapse
|
20
|
Fehr D, Burr SE, Gibert M, d'Alayer J, Frey J, Popoff MR. Aeromonas Exoenzyme T of Aeromonas salmonicida Is a Bifunctional Protein That Targets the Host Cytoskeleton. J Biol Chem 2007; 282:28843-28852. [PMID: 17656370 DOI: 10.1074/jbc.m704797200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type III protein secretion has been shown recently to be important in the virulence of the fish pathogen Aeromonas salmonicida. The ADP-ribosylating toxin Aeromonas exoenzyme T (AexT) is one effector protein targeted for secretion via this system. In this study, we identified muscular and nonmuscular actin as substrates of the ADP-ribosylating activity of AexT. Furthermore, we show that AexT also functions as a GTPase-activating protein (GAP), displaying GAP activity against monomeric GTPases of the Rho family, specifically Rho, Rac, and Cdc42. Transfection of fish cells with wild type AexT resulted in depolymerization of the actin cytoskeleton and cell rounding. Point mutations within either the GAP or the ADP-ribosylating active sites of AexT (Arg-143 as well as Glu-398 and Glu-401, respectively) abolished enzymatic activity, yet did not prevent actin filament depolymerization. However, inactivation of the two catalytic sites simultaneously did. These results suggest that both the GAP and ADP-ribosylating domains of AexT contribute to its biological activity. This is the first bacterial virulence factor to be described that has a specific actin ADP-ribosylation activity and GAP activity toward Rho, Rac, and Cdc42, both enzymatic activities contributing to actin filament depolymerization.
Collapse
Affiliation(s)
- Désirée Fehr
- Institute of Veterinary Bacteriology, Universität Bern, Länggassstrasse 122, Postfach, CH-3001 Bern, Switzerland and
| | - Sarah E Burr
- Institute of Veterinary Bacteriology, Universität Bern, Länggassstrasse 122, Postfach, CH-3001 Bern, Switzerland and
| | - Maryse Gibert
- Unité des Bacteries Anaerobies et Toxines, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Jacques d'Alayer
- Plateforme d'Analyse et de Microsequençage des Protéines, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Joachim Frey
- Institute of Veterinary Bacteriology, Universität Bern, Länggassstrasse 122, Postfach, CH-3001 Bern, Switzerland and.
| | - Michel R Popoff
- Unité des Bacteries Anaerobies et Toxines, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
21
|
Blonder J, Hale ML, Chan KC, Yu LR, Lucas DA, Conrads TP, Zhou M, Popoff MR, Issaq HJ, Stiles BG, Veenstra TD. Quantitative Profiling of the Detergent-Resistant Membrane Proteome of Iota-b Toxin Induced Vero Cells. J Proteome Res 2005; 4:523-31. [PMID: 15822930 DOI: 10.1021/pr049790s] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzyme-mediated 18O/16O differential labeling of proteome samples often suffers from incomplete exchange of the carboxy-terminus oxygen atoms, resulting in ambiguity in the measurable abundance differences. In this study, an 18O/16O labeling strategy was optimized for and applied to the solution-based comparative analysis of the detergent-resistant membrane proteome (DRMP) of untreated and Iota-b (Ib)-induced Vero cells. Solubilization and tryptic digestion of the DRMP was conducted in a buffer containing 60% methanol. Unfortunately, the activity of trypsin is attenuated at this methanol concentration hampering the ability to obtain complete oxygen atom turnover. Therefore, the incorporation of the 18O atoms was decoupled from the protein digestion step by carrying out the trypsin-mediated heavy atom incorporation in a buffer containing 20% methanol; a concentration at which trypsin activity is enhanced compared to purely aqueous conditions. After isotopic labeling, the samples were combined, fractionated by strong cation exchange and analyzed by microcapillary reversed-phase liquid chromatography coupled on-line with electrospray ionization tandem mass spectrometry. In total, over 1400 unique peptides, corresponding to almost 600 proteins, were identified and quantitated, including all known caveolar and lipid raft marker proteins. The quantitative profiling of Ib-induced DRMP from Vero cells revealed several proteins with altered expression levels suggesting their possible role in Ib binding/uptake.
Collapse
Affiliation(s)
- Josip Blonder
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., National Cancer Institute at Frederick, P.O. Box B, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Streptococcus pyogenes, the aetiological agent of both respiratory and skin infections, produces numerous exotoxins to establish infection. This report identifies a new exotoxin produced by this organism, termed SpyA, for S. pyogenesADP-ribosylating toxin. SpyA, MW 24.9, has amino acid identity with the ADP-riboslytransferases (ADPRTs) Staphylococcus aureus EDIN and Clostridium botulinum C3. Recombinant SpyA was able to hydrolyse beta-NAD(+), and this activity was dependent on a glutamate at position 187. SpyA has a putative biglutamate active site, and similar to most biglutamate ADPRTs, was able to ADP-ribosylate poly-l-arginine. SpyA modified numerous proteins in both CHO and HeLa cell lysates. Two-dimesional gel analysis and MALDI-TOF MS analysis of modified proteins indicated that vimentin, tropomyosin and actin, all cytoskeletal proteins, are targets. Expression of spyA in HeLa cells resulted in loss of actin microfilaments. We hypothesize that SpyA is produced by S. pyogenes to disrupt cytoskeletal structures and promote colonization of the host.
Collapse
Affiliation(s)
- Lisette H Coye
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL 33136, USA
| | | |
Collapse
|
23
|
Barth H, Aktories K, Popoff MR, Stiles BG. Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 2004; 68:373-402, table of contents. [PMID: 15353562 PMCID: PMC515256 DOI: 10.1128/mmbr.68.3.373-402.2004] [Citation(s) in RCA: 285] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Certain pathogenic species of Bacillus and Clostridium have developed unique methods for intoxicating cells that employ the classic enzymatic "A-B" paradigm for protein toxins. The binary toxins produced by B. anthracis, B. cereus, C. botulinum, C. difficile, C. perfringens, and C. spiroforme consist of components not physically associated in solution that are linked to various diseases in humans, animals, or insects. The "B" components are synthesized as precursors that are subsequently activated by serine-type proteases on the targeted cell surface and/or in solution. Following release of a 20-kDa N-terminal peptide, the activated "B" components form homoheptameric rings that subsequently dock with an "A" component(s) on the cell surface. By following an acidified endosomal route and translocation into the cytosol, "A" molecules disable a cell (and host organism) via disruption of the actin cytoskeleton, increasing intracellular levels of cyclic AMP, or inactivation of signaling pathways linked to mitogen-activated protein kinase kinases. Recently, B. anthracis has gleaned much notoriety as a biowarfare/bioterrorism agent, and of primary interest has been the edema and lethal toxins, their role in anthrax, as well as the development of efficacious vaccines and therapeutics targeting these virulence factors and ultimately B. anthracis. This review comprehensively surveys the literature and discusses the similarities, as well as distinct differences, between each Clostridium and Bacillus binary toxin in terms of their biochemistry, biology, genetics, structure, and applications in science and medicine. The information may foster future studies that aid novel vaccine and drug development, as well as a better understanding of a conserved intoxication process utilized by various gram-positive, spore-forming bacteria.
Collapse
Affiliation(s)
- Holger Barth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, Otto-Krayer-Haus, Albertstrasse 25, D-79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
24
|
Sakurai J, Nagahama M, Hisatsune J, Katunuma N, Tsuge H. Clostridium perfringens iota-toxin, ADP-ribosyltransferase: structure and mechanism of action. ADVANCES IN ENZYME REGULATION 2004; 43:361-77. [PMID: 12791397 DOI: 10.1016/s0065-2571(02)00044-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jun Sakurai
- Faculty of Pharmaceutical Sciences, Department of Microbiology, Tokushima Bunri University, Tokushima 770-8514, Japan.
| | | | | | | | | |
Collapse
|
25
|
Marvaud JC, Stiles BG, Chenal A, Gillet D, Gibert M, Smith LA, Popoff MR. Clostridium perfringens iota toxin. Mapping of the Ia domain involved in docking with Ib and cellular internalization. J Biol Chem 2002; 277:43659-66. [PMID: 12221101 DOI: 10.1074/jbc.m207828200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clostridium perfringens iota toxin consists of two unlinked proteins. The binding component (Ib) is required to internalize into cells an enzymatic component (Ia) that ADP-ribosylates G-actin. To characterize the Ia domain that interacts with Ib, fusion proteins were constructed between the C. botulinum C3 enzyme, which ADP-ribosylates Rho, and various truncated versions of Ia. These chimeric molecules retained the wild type ADP-ribosyltransferase activity specific for Rho and were recognized by antibodies against C3 enzyme and Ia. Internalization of each chimera into Vero cells was assessed by measuring the disorganization of the actin cytoskeleton and intracellular ADP-ribosylation of Rho. Fusion proteins containing C3 linked to the C terminus of Ia were transported most efficiently into cells like wild type Ia in an Ib-dependent manner that was blocked by bafilomycin A1. The minimal Ia fragment that promoted translocation of Ia-C3 chimeras into cells consisted of 128 central residues (129-257). These findings revealed that iota toxin is a suitable system for mediating the entry of heterologous proteins such as C3 into cells.
Collapse
|
26
|
Nagahama M, Nagayasu K, Kobayashi K, Sakurai J. Binding component of Clostridium perfringens iota-toxin induces endocytosis in Vero cells. Infect Immun 2002; 70:1909-14. [PMID: 11895954 PMCID: PMC127877 DOI: 10.1128/iai.70.4.1909-1914.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens iota-toxin is a binary toxin consisting of two individual proteins, the binding component (Ib) and the enzyme component (Ia). Wild-type Ib bound to Vero cells at 4 and 37 degrees C and formed oligomers at 37 degrees C but not at 4 degrees C. The Ib-induced K(+) release from the cells was dependent on the oligomer formation of Ib in the cells, but the oligomer formation did not induce rounding activity or cytotoxicity. After incubation of the cells with recombinant Ib (rIb) at 37 degrees C, the Ib oligomer in the cell became resistant to pronase treatment with time, but the Ib monomer was sensitive to the treatment. Furthermore, treatment of Vero cells with rIb in the presence of bafilomycin, methylamine, or ethylamine resulted in accumulation of the oligomer in the cells but had no effect on K(+) release. Moreover, incubation with Ib plus Ia in the presence of these agents caused no rounding in the cells. These observations suggest that Ib binds to Vero cells, itself oligomerizing to form ion-permeable channels and that the formation of oligomer then induces endocytosis.
Collapse
Affiliation(s)
- Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | | | | | | |
Collapse
|
27
|
Barth H, Roebling R, Fritz M, Aktories K. The binary Clostridium botulinum C2 toxin as a protein delivery system: identification of the minimal protein region necessary for interaction of toxin components. J Biol Chem 2002; 277:5074-81. [PMID: 11741886 DOI: 10.1074/jbc.m109167200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binary Clostridium botulinum C2 toxin is composed of the enzyme component C2I and the binding component C2II, which are individual and non-linked proteins. Activated C2IIa mediates cell binding and translocation of C2I into the cytoplasm. C2I ADP-ribosylates G-actin at Arg-177 to depolymerize actin filaments. A fusion toxin containing the N-terminal domain of C2I (residues 1-225) transports C3 ADP-ribosyltransferase from Clostridium limosum into cells (Barth, H., Hofmann, F., Olenik, C., Just, I., and Aktories, K. (1998) Infect. Immun. 66, 1364-1369). We characterized the adaptor function of C2I and its interaction with C2IIa. The fusion toxin GST-C2I(1-225)-C3 was efficiently transported by C2IIa, indicating that C2IIa translocates proteins into the cytosol even when the C2I(1-225) adaptor was positioned in the middle of a fusion protein. Amino acid residues 1-87 of C2I were sufficient for interaction with C2IIa and for translocation of C2I fusion toxins into HeLa cells. Residues 1-87 were the minimal part of C2I to bind to C2IIa on the cell surface, as detected by fluorescence-activated cytometry. An excess of C2I(1-87) (but not of further truncated C2I fragments) competed with Alexa488-labeled C2I for binding to C2IIa. Also, the fragment C2I(30-431) and the fusion toxin C2I(30-225)-C3 competed with C2I-Alexa488 for binding to C2IIa. C2I(30-225)-C3 did not induce cytotoxic effects on cells when applied together with C2IIa, indicating that amino acid residues 1-29 are involved in translocation of C2I but are not absolutely essential for binding to C2IIa.
Collapse
Affiliation(s)
- Holger Barth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, D-79104 Freiburg Germany.
| | | | | | | |
Collapse
|
28
|
Wilde C, Aktories K. The Rho-ADP-ribosylating C3 exoenzyme from Clostridium botulinum and related C3-like transferases. Toxicon 2001; 39:1647-60. [PMID: 11595628 DOI: 10.1016/s0041-0101(01)00152-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- C Wilde
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, Albertstr. 25, D-79104, Freiburg, Germany
| | | |
Collapse
|
29
|
Gülke I, Pfeifer G, Liese J, Fritz M, Hofmann F, Aktories K, Barth H. Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile. Infect Immun 2001; 69:6004-11. [PMID: 11553537 PMCID: PMC98728 DOI: 10.1128/iai.69.10.6004-6011.2001] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain strains of Clostridium difficile produce the ADP-ribosyltransferase CDT, which is a binary actin ADP-ribosylating toxin. The toxin consists of the binding component CDTb, which mediates receptor binding and cellular uptake, and the enzyme component CDTa. Here we studied the enzyme component (CDTa) of the toxin using the binding component of Clostridium perfringens iota toxin (Ib), which is interchangeable with CDTb as a transport component. Ib was used because CDTb was not expressed as a recombinant protein in Escherichia coli. Similar to iota toxin, CDTa ADP-ribosylates nonmuscle and skeletal muscle actin. The N-terminal part of CDTa (CDTa1-240) competes with full-length CDTa for binding to the iota toxin binding component. The C-terminal part (CDTa244-263) harbors the enzyme activity but was much less active than the full-length CDTa. Changes of Glu428 and Glu430 to glutamine, Ser388 to alanine, and Arg345 to lysine blocked ADP-ribosyltransferase activity. Comparison of CDTa with C. perfringens iota toxin and Clostridium botulinum C2 toxin revealed full enzyme activity of the fragment Ia208-413 but loss of activity of several N-terminally deleted C2I proteins including C2I103-431, C2I190-431, and C2I30-431. The data indicate that CDTa belongs to the iota toxin subfamily of binary actin ADP-ribosylating toxins with respect to interaction with the binding component and substrate specificity. It shares typical conserved amino acid residues with iota toxin and C2 toxin that are suggested to be involved in NAD-binding and/or catalytic activity. The enzyme components of CDT, iota toxin, and C2 toxin differ with respect to the minimal structural requirement for full enzyme activity.
Collapse
Affiliation(s)
- I Gülke
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Marvaud JC, Smith T, Hale ML, Popoff MR, Smith LA, Stiles BG. Clostridium perfringens iota-toxin: mapping of receptor binding and Ia docking domains on Ib. Infect Immun 2001; 69:2435-41. [PMID: 11254604 PMCID: PMC98176 DOI: 10.1128/iai.69.4.2435-2441.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Clostridium perfringens iota-toxin is a binary toxin consisting of iota a (Ia), an ADP-ribosyltransferase that modifies actin, and iota b (Ib), which binds to a cell surface protein and translocates Ia into a target cell. Fusion proteins of recombinant Ib and truncated variants were tested for binding to Vero cells and docking with Ia via fluorescence-activated cytometry and cytotoxicity experiments. C-terminal residues (656 to 665) of Ib were critical for cell surface binding, and truncated Ib variants containing > or = 200 amino acids of the C terminus were effective Ib competitors and prevented iota cytotoxicity. The N-terminal domain (residues 1 to 106) of Ib was important for Ia docking, yet this region was not an effective competitor of iota cytotoxicity. Further studies showed that Ib lacking just the N-terminal 27 residues did not facilitate Ia entry into a target cell and subsequent cytotoxicity. Five monoclonal antibodies against Ib were also tested with each truncated Ib variant for epitope and structural mapping by surface plasmon resonance and an enzyme-linked immunosorbent assay. Each antibody bound to a linear epitope within the N terminus (residues 28 to 66) or the C terminus (residues 632 to 655). Antibodies that target the C terminus neutralized in vitro cytotoxicity and delayed the lethal effects of iota-toxin in mice.
Collapse
Affiliation(s)
- J C Marvaud
- Toxinology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702-5011, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Lesnick ML, Reiner NE, Fierer J, Guiney DG. The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol Microbiol 2001; 39:1464-70. [PMID: 11260464 DOI: 10.1046/j.1365-2958.2001.02360.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ADP-ribosylating enzymes, such as cholera and diphtheria toxins, are key virulence factors for a variety of extracellular bacterial pathogens but have not been implicated previously during intracellular pathogenesis. Salmonella strains are capable of invading epithelial cells and localizing in macrophages during infection. The spvB virulence gene of Salmonella is required for human macrophage cytotoxicity in vitro and for enhancing intracellular bacterial proliferation during infection. Here, we present evidence that spvB encodes an ADP-ribosylating enzyme that uses actin as a substrate and depolymerizes actin filaments when expressed in CHO cells. Furthermore, site-directed mutagenesis demonstrates that the ADP-ribosylating activity of SpvB is essential for Salmonella virulence in mice. As spvB is expressed by Salmonella strains after invasion of epithelial cells or phagocytosis by macrophages, these results suggest that SpvB functions as an intracellular ADP-ribosylating toxin critical for the pathogenesis of Salmonella infections.
Collapse
Affiliation(s)
- M L Lesnick
- Department of Medicine 0640, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
32
|
Han S, Arvai AS, Clancy SB, Tainer JA. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. J Mol Biol 2001; 305:95-107. [PMID: 11114250 DOI: 10.1006/jmbi.2000.4292] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clostridium botulinum C3 exoenzyme inactivates the small GTP-binding protein family Rho by ADP-ribosylating asparagine 41, which depolymerizes the actin cytoskeleton. C3 thus represents a major family of the bacterial toxins that transfer the ADP-ribose moiety of NAD to specific amino acids in acceptor proteins to modify key biological activities in eukaryotic cells, including protein synthesis, differentiation, transformation, and intracellular signaling. The 1.7 A resolution C3 exoenzyme structure establishes the conserved features of the core NAD-binding beta-sandwich fold with other ADP-ribosylating toxins despite little sequence conservation. Importantly, the central core of the C3 exoenzyme structure is distinguished by the absence of an active site loop observed in many other ADP-ribosylating toxins. Unlike the ADP-ribosylating toxins that possess the active site loop near the central core, the C3 exoenzyme replaces the active site loop with an alpha-helix, alpha3. Moreover, structural and sequence similarities with the catalytic domain of vegetative insecticidal protein 2 (VIP2), an actin ADP-ribosyltransferase, unexpectedly implicates two adjacent, protruding turns, which join beta5 and beta6 of the toxin core fold, as a novel recognition specificity motif for this newly defined toxin family. Turn 1 evidently positions the solvent-exposed, aromatic side-chain of Phe209 to interact with the hydrophobic region of Rho adjacent to its GTP-binding site. Turn 2 evidently both places the Gln212 side-chain for hydrogen bonding to recognize Rho Asn41 for nucleophilic attack on the anomeric carbon of NAD ribose and holds the key Glu214 catalytic side-chain in the adjacent catalytic pocket. This proposed bipartite ADP-ribosylating toxin turn-turn (ARTT) motif places the VIP2 and C3 toxin classes into a single ARTT family characterized by analogous target protein recognition via turn 1 aromatic and turn 2 hydrogen-bonding side-chain moieties. Turn 2 centrally anchors the catalytic Glu214 within the ARTT motif, and furthermore distinguishes the C3 toxin class by a conserved turn 2 Gln and the VIP2 binary toxin class by a conserved turn 2 Glu for appropriate target side-chain hydrogen-bonding recognition. Taken together, these structural results provide a molecular basis for understanding the coupled activity and recognition specificity for C3 and for the newly defined ARTT toxin family, which acts in the depolymerization of the actin cytoskeleton. This beta5 to beta6 region of the toxin fold represents an experimentally testable and potentially general recognition motif region for other ADP-ribosylating toxins that have a similar beta-structure framework.
Collapse
Affiliation(s)
- S Han
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, MB 4, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
33
|
The best defense is a good offense – Salmonella deploys an ADP-ribosylating toxin: Response. Trends Microbiol 2001. [DOI: 10.1016/s0966-842x(00)01904-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Gibert M, Petit L, Raffestin S, Okabe A, Popoff MR. Clostridium perfringens iota-toxin requires activation of both binding and enzymatic components for cytopathic activity. Infect Immun 2000; 68:3848-53. [PMID: 10858193 PMCID: PMC101657 DOI: 10.1128/iai.68.7.3848-3853.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iota-toxin is produced by Clostridium perfringens type E strains and consists of two independent components, the enzymatic and binding components, referred to as Ia and Ib, respectively. A recombinant C. perfringens strain, strain 667/pMRP147, produced processed Ia and partially processed Ib, while a recombinant C. perfringens type A strain, strain TS133/pMRP147, in which the VirR-VirS two-component system is inactivated, produced only precursor forms of Ia and Ib. This suggests that iota-toxin is processed by a VirR-VirS-responsive protease, although not completely in the recombinant type A strain. The precursor forms of Ia and Ib were purified from cultures of the latter strain, and their proteolytic activation was examined. Treatment with proteases cleaved off small peptides (9 to 13 amino acid residues) and a 20-kDa peptide from the N termini of the Ia and Ib precursors, respectively, leading to their active forms. They were activated efficiently by alpha-chymotrypsin, pepsin, proteinase K, subtilisin, and thermolysin but only weakly by trypsin, as demonstrated by the cell-rounding assay. lambda-Protease from the C. perfringens type E strain, which was found to be a zinc-dependent protease related to thermolysin, activated iota-toxin as efficiently as did alpha-chymotrypsin. These results suggest that lambda-protease is most responsible for the activation of iota-toxin in type E strains.
Collapse
Affiliation(s)
- M Gibert
- Unité des Toxines Microbiennes, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
35
|
Nagahama M, Sakaguchi Y, Kobayashi K, Ochi S, Sakurai J. Characterization of the enzymatic component of Clostridium perfringens iota-toxin. J Bacteriol 2000; 182:2096-103. [PMID: 10735850 PMCID: PMC111256 DOI: 10.1128/jb.182.8.2096-2103.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/1999] [Accepted: 01/20/2000] [Indexed: 11/20/2022] Open
Abstract
The iota(a) component (i(a)) of Clostridium perfringens ADP ribosylates nonmuscle beta/gamma actin and skeletal muscle alpha-actin. Replacement of Arg-295 in i(a) with alanine led to a complete loss of NAD(+)-glycohydrolase (NADase) and ADP-ribosyltransferase (ARTase); that of the residue with lysine caused a drastic reduction in NADase and ARTase activities (<0.1% of the wild-type activities) but did not completely diminish them. Substitution of alanine for Glu-378 and Glu-380 caused a complete loss of NADase and ARTase. However, exchange of Glu-378 to aspartic acid or glutamine resulted in little effect on NADase activity but a drastic reduction in ARTase activity (<0.1% of the wild-type activity). Exchange of Glu-380 to aspartic acid caused a drastic reduction in NADase and ARTase activities (<0.1% of the wild-type activities) but did not completely diminish them; that of the residue to glutamine caused a complete loss of ARTase activity. Replacement of Ser-338 with alanine resulted in 0.7 to 2.3% wild-type activities, and that of Ser-340 and Thr-339 caused a reduction in these activities of 5 to 30% wild-type activities. The kinetic analysis showed that Arg-295 and Ser-338 also play an important role in the binding of NAD(+) to i(a), that Arg-295, Glu-380, and Ser-338 play a crucial role in the catalytic rate of NADase activity, and that these three amino acid residues and Glu-378 are essential for ARTase activity. The effect of amino acid replacement in i(a) on ARTase activity was similar to that on lethal and cytotoxic activities, suggesting that lethal and cytotoxic activities in i(a) are dependent on ARTase activity.
Collapse
Affiliation(s)
- M Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | | | | | | | | |
Collapse
|
36
|
Okazaki IJ, Moss J. Characterization of glycosylphosphatidylinositiol-anchored, secreted, and intracellular vertebrate mono-ADP-ribosyltransferases. Annu Rev Nutr 1999; 19:485-509. [PMID: 10448534 DOI: 10.1146/annurev.nutr.19.1.485] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mono-ADP-ribosylation is a posttranslational modification of proteins in which the ADP-ribose moiety of nicotinamide adenine dinucleotide is transferred to an acceptor amino acid. Five mammalian ADP-ribosyltransferases (ART1--ART5) have been cloned and expression is restricted to tissues such as cardiac and skeletal muscle, leukocytes, brain, and testis. ART1 and ART2 are glycosylphosphatidylinositol (GPI)-anchored ectoenzymes. ART5 appears not to be GPI-linked and may be secreted. In skeletal muscle and lymphocytes, ART1 modifies specific members of the integrin family of adhesion molecules, suggesting that ADP-ribosylation affects cell-matrix or cell-cell interactions. In lymphocytes, ADP-ribosylation of surface proteins is associated with changes in p56lck tyrosine kinase-mediated signaling. The catalytic sites of bacterial toxins and vertebrate transferases have conserved structural features, consistent with a common reaction mechanism. ADP-ribosylation can be reversed by ADP-ribosylarginine hydrolases, resulting in the regeneration of free arginine. Thus, an ADP-ribosylation cycle may play a regulatory role in vertebrate tissues.
Collapse
Affiliation(s)
- I J Okazaki
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1434, USA.
| | | |
Collapse
|
37
|
Abstract
Clostridium perfringens is a ubiquitous pathogen that produces many toxins and hydrolytic enzymes. Because the toxin-encoding genes can be located on extrachromosomal elements or in variable regions of the chromosome, several pathovars have arisen, each of which is involved in a specific disease. Pathovar identification is required for a precise diagnosis of associated pathologies and to define vaccine requirements. For these purposes, toxin genotyping is more reliable than the classical toxinotyping.
Collapse
Affiliation(s)
- L Petit
- Centre National de Reference des Anaérobies, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
38
|
Radke J, Pederson KJ, Barbieri JT. Pseudomonas aeruginosa exoenzyme S is a biglutamic acid ADP-ribosyltransferase. Infect Immun 1999; 67:1508-10. [PMID: 10024602 PMCID: PMC96488 DOI: 10.1128/iai.67.3.1508-1510.1999] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kinetic analysis of two mutations within Pseudomonas aeruginosa exoenzyme S (ExoS) showed that a E379D mutation inhibited expression of ADP-ribosyltransferase activity but had little effect on the expression of NAD glycohydrolase activity while a E381D mutation inhibited expression of both activities. These data identify ExoS as a biglutamic acid ADP-ribosyltransferase, where E381 is the catalytic residue and E379 contributes to the transfer of ADP-ribose to the target protein.
Collapse
Affiliation(s)
- J Radke
- Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
39
|
Barth H, Preiss JC, Hofmann F, Aktories K. Characterization of the catalytic site of the ADP-ribosyltransferase Clostridium botulinum C2 toxin by site-directed mutagenesis. J Biol Chem 1998; 273:29506-11. [PMID: 9792657 DOI: 10.1074/jbc.273.45.29506] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The actin ADP-ribosylating Clostridium botulinum C2 toxin is a binary toxin composed of the binding component C2II and the enzyme component C2I. C2I ADP-ribosylates G-actin at arginine 177, resulting in the depolymerization of the actin cytoskeleton. Here, we studied the structure-function relationship of C2I by site-directed mutagenesis. Exchange of Glu389 to glutamine caused the complete loss of ADP-ribosyltransferase and NAD-glycohydrolase activities of C2I. In contrast, exchange of Glu387 to glutamine blocked ADP-ribosyltransferase but not NAD-glycohydrolase activity. Whereas photoaffinity labeling of the double mutant E387Q/E389Q C2I with [carbonyl-14C]NAD was blocked, labeling of the single C2I mutants was reduced (E389Q) or not changed (E387Q). Exchange of the STS motif (amino acid residues 348-350) of C2I caused a decrease in transferase activity by more than 99 (S348A) and 90% (T349V), or did not affect activity (S350A). Exchange of Arg299 and Arg300 to lysine reduced transferase activity to <0.1 and approximately 35% of wild-type activity. The data indicate that the amino acid residues Glu389, Glu387, Ser348, and Arg299, which are conserved in various prokaryotic and eukaryotic arginine-modifying ADP-ribosyltransferases, are essential for ADP-ribosyltransferase activity of the enzyme component of C. botulinum C2 toxin.
Collapse
Affiliation(s)
- H Barth
- Institut für Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
40
|
Barth H, Hofmann F, Olenik C, Just I, Aktories K. The N-terminal part of the enzyme component (C2I) of the binary Clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP-ribosylating C3-like fusion toxin. Infect Immun 1998; 66:1364-9. [PMID: 9529054 PMCID: PMC108061 DOI: 10.1128/iai.66.4.1364-1369.1998] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The binary actin-ADP-ribosylating Clostridium botulinum C2 toxin consists of the enzyme component C2I and the binding component C2II, which are separate proteins. The active component C2I enters cells through C2II by receptor-mediated endocytosis and membrane translocation. The N-terminal part of C2I (C2IN), which consists of 225 amino acid residues but lacks ADP-ribosyltransferase activity, was identified as the C2II contact site. A fusion protein (C2IN-C3) of C2IN and the full-length C3-like ADP-ribosyltransferase from Clostridium limosum was constructed. The fusion protein C2IN-C3 ADP-ribosylated Rho but not actin in CHO cell lysates. Together with C2II, C2IN-C3 induced complete rounding up of CHO and HeLa cells after incubation for 3 h. No cell rounding was observed without C2II or with the original C3-like transferase from C. limosum. The data indicate that the N-terminal 225 amino acid residues of C2I are sufficient to cause the cellular uptake of C. limosum transferase via the binding component of C2II, thereby increasing the cytotoxicity of the C3-like exoenzyme several hundred-fold.
Collapse
Affiliation(s)
- H Barth
- Institut für Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | | | |
Collapse
|
41
|
Clostridium spiroforme Toxin Genes are Related to C. perfringens Iota Toxin Genes but have a Different Genomic Localization. Syst Appl Microbiol 1997. [DOI: 10.1016/s0723-2020(97)80001-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Perelle S, Gibert M, Bourlioux P, Corthier G, Popoff MR. Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect Immun 1997; 65:1402-7. [PMID: 9119480 PMCID: PMC175146 DOI: 10.1128/iai.65.4.1402-1407.1997] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A Clostridium difficile isolate was found to produce an actin-specific ADP-ribosyltransferase (CDT) homologous to the enzymatic components of Clostridium perfringens iota toxin and Clostridium spiroforme toxin (M. R. Popoff, E. J. Rubin, D. M. Gill, and P. Boquet, Infect. Immun. 56:2299-2306, 1988). The CDT locus from C. difficile CD196 was cloned and sequenced. It contained two genes (cdtA and cdtB) which display organizations and sequences similar to those of the iota toxin gene. The deduced enzymatic (CDTa) and binding (CDTb) components have 81 and 84% identity, respectively, with the corresponding components of iota toxin. CDTa and CDTb induced actin cytoskeleton alterations similar to those caused by other clostridial binary toxins. The lower level of production of binary toxin by CD196 than of iota toxin by C. perfringens was related to a lower transcript level, possibly due to a promoter region different from that of iota toxin genes. The cdtA and cdtB genes have been detected in 3 of 24 clinical isolates examined, and cdtB alone was found in 2 additional strains. One strain (in addition to CD196) was shown by Western blotting to produce CDTa and CDTb. These results indicate that some C. difficile strains synthesize a binary toxin that could be an additional virulence factor.
Collapse
Affiliation(s)
- S Perelle
- Unité des Toxines Microbiennes, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|