1
|
Ishii N, Homma T, Watanabe R, Kimura N, Ohnishi M, Kobayashi T, Fujii J. A heterozygous deficiency in protein phosphatase Ppm1b results in an altered ovulation number in mice. Mol Med Rep 2019; 19:5353-5360. [PMID: 31059097 DOI: 10.3892/mmr.2019.10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/16/2019] [Indexed: 11/06/2022] Open
Abstract
Ppm1b, a metal‑dependent serine/threonine protein phosphatase, catalyzes the dephosphorylation of a variety of phosphorylated proteins. Ppm1b‑/‑ mouse embryos die at the fertilized oocyte stage, whereas Ppm1b+/‑ mice with a C57BL/6 background exhibit no phenotypic abnormalities. Because the C57BL/6 strain produces a limited number of pups, in an attempt to produce Ppm1b‑/‑ mice, congenic Ppm1b+/‑ mice with an ICR background were established, which are more fertile and gave birth to more pups. As a result, however, no Ppm1b‑/‑ offspring were obtained when pairs of Ppm1b+/‑ ICR mice were bred again. Ppm1b+/‑ male and female ICR mice were analyzed from the viewpoint of fecundity. The Ppm1b haploinsufficiency had no effect on testicular weight or the number of sperm in male mice. Despite the fact that the levels of Ppm1b protein in the ovaries of sexually mature Ppm1b+/‑ mice were decreased compared with those of Ppm1b+/+ mice, there appeared to be no significant difference in the histological appearance of the ovaries, litter sizes or plasma progesterone levels at the estrous stage. When superovulation was induced by stimulation using a hormone treatment, the number of ovulated oocytes were the same for Ppm1b+/‑ and Ppm1b+/+ mice at 4 weeks of age when the estrous cycle did not proceed, however, the number of ovulated oocytes was lower in sexually mature Ppm1b+/‑ mice at 11 weeks of age compared with Ppm1b+/+ mice in the first and the second superovulation cycles. These collective results suggest that follicle development is excessive in Ppm1b+/‑ mice, and that this leads to a partial depletion of matured follicles and a corresponding decrease in the number of ovulated oocytes.
Collapse
Affiliation(s)
- Naoki Ishii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Yamagata 990‑9585, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Yamagata 990‑9585, Japan
| | - Ren Watanabe
- Laboratory of Animal Reproduction, Graduate School of Agricultural Sciences, Yamagata University, Tsuruoka, Yamagata 997‑8555, Japan
| | - Naoko Kimura
- Laboratory of Animal Reproduction, Graduate School of Agricultural Sciences, Yamagata University, Tsuruoka, Yamagata 997‑8555, Japan
| | - Motoko Ohnishi
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 87‑8501, Japan
| | - Takayasu Kobayashi
- Center for Gene Research, Tohoku University, Sendai, Miyagi 980‑8575, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Yamagata 990‑9585, Japan
| |
Collapse
|
2
|
Sasaki M, Ohnishi M, Tashiro F, Niwa H, Suzuki A, Miyazaki JI, Kobayashi T, Tamura S. Disruption of the mouse protein Ser/Thr phosphatase 2Cβ gene leads to early pre-implantation lethality. Mech Dev 2007; 124:489-99. [PMID: 17499977 DOI: 10.1016/j.mod.2007.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/17/2007] [Accepted: 04/02/2007] [Indexed: 11/29/2022]
Abstract
Protein phosphatase 2Cbeta (PP2Cbeta) is a member of a family of protein Ser/Thr phosphatases (PP2C) that is composed of at least twelve different gene products. Recent studies have revealed that PP2Cbeta mRNA accumulates in mature sperm, unfertilized metaphase II-arrested oocytes and zygotes, but that the mRNA level then decreases sharply between the early two-cell and eight-cell stages, remaining at low levels during the 16-cell to blastocyst stages of mice. These observations raised the possibility that PP2Cbeta plays a crucial role during gametogenesis, fertilization, and/or early stages of embryonic development. In this study, we employed a gene knockout technique in mice to test this possibility. We found that PP2Cbeta(Delta/wt) mice generate normal mature gametes. However, PP2Cbeta(Delta/Delta) embryos die between the two-cell and eight-cell stages. To our interest, PP2Cbeta(Delta/Delta) ES cells which had been generated by transfecting PP2Cbeta(3lox/3lox) ES cells with Cre-expressing plasmid were viable. In addition, knockdown of PP2Cbeta using siRNA did not affect the proliferation of wild-type ES cells. These observations suggest that relatively high PP2Cbeta expression is specifically required during the early stages of pre-implantation development. The possible mechanisms for the early pre-implantation lethality of PP2Cbeta(Delta/Delta) mice are discussed.
Collapse
Affiliation(s)
- Masato Sasaki
- Department of Biochemistry, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Kwon J, Wang YL, Setsuie R, Sekiguchi S, Sakurai M, Sato Y, Lee WW, Ishii Y, Kyuwa S, Noda M, Wada K, Yoshikawa Y. Developmental Regulation of Ubiquitin C-Terminal Hydrolase Isozyme Expression During Spermatogenesis in Mice. Biol Reprod 2004; 71:515-21. [PMID: 15084487 DOI: 10.1095/biolreprod.104.027565] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The ubiquitin pathway functions in the process of protein turnover in eukaryotic cells. This pathway comprises the enzymes that ubiquitinate/deubiquitinate target proteins and the proteasome that degrades ubiquitin-conjugated proteins. Ubiquitin C-terminal hydrolases (UCHs) are thought to be essential for maintaining ubiquitination activity by releasing ubiquitin (Ub) from its substrates. Mammalian UCH-L1 and UCH-L3 are small proteins that share considerable homology at the amino acid level. Both of these UCHs are highly expressed in the testis/ ovary and neuronal cells. Our previous work demonstrated that UCH-L1-deficient gracile axonal dystrophy (gad) mice exhibit progressively decreasing spermatogonial stem cell proliferation, suggesting that UCH isozymes in the testis function during spermatogenesis. To analyze the expression patterns of UCH isozymes during spermatogenesis, we isolated nearly homogeneous populations of spermatogonia, spermatocytes, spermatids, and Sertoli cells from mouse testes. Western blot analysis detected UCH-L1 in spermatogonia and Sertoli cells, whereas UCH-L3 was detected in spermatocytes and spermatids. Moreover, reverse transcription-polymerase chain reaction analysis of UCH isozymes showed that UCH-L1 and UCH-L4 mRNAs are expressed in spermatogonia, whereas UCH-L3 and UCH-L5 mRNAs are expressed mainly in spermatocytes and spermatids. These results suggest that UCH-L1 and UCH-L3 have distinct functions during spermatogenesis, namely, that UCH-L1 may act during mitotic proliferation of spermatogonial stem cells whereas UCH-L3 may function in the meiotic differentiation of spermatocytes into spermatids.
Collapse
Affiliation(s)
- Jungkee Kwon
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Kashiwaba M, Katsura K, Ohnishi M, Sasaki M, Tanaka H, Nishimune Y, Kobayashi T, Tamura S. A novel protein phosphatase 2C family member (PP2Czeta) is able to associate with ubiquitin conjugating enzyme 9. FEBS Lett 2003; 538:197-202. [PMID: 12633878 DOI: 10.1016/s0014-5793(03)00153-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study we have cloned a novel member of mouse protein phosphatase 2C family, PP2Czeta, which is composed of 507 amino acids and has a unique N-terminal region. The overall similarity of the amino acid sequence between PP2Czeta and PP2Calpha was 22%. On Northern blot analysis PP2Czeta was found to be expressed specifically in the testicular germ cells. PP2Czeta expressed in COS7 cells was able to associate with ubiquitin conjugating enzyme 9 (UBC9) and the association was enhanced by co-expression of small ubiquitin-related modifier-1 (SUMO-1), suggesting that PP2Czeta exhibits its specific role through its SUMO-induced recruitment to UBC9.
Collapse
Affiliation(s)
- Mitsuhiro Kashiwaba
- Department of Biochemistry, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Seroussi E, Shani N, Ben-Meir D, Chajut A, Divinski I, Faier S, Gery S, Karby S, Kariv-Inbal Z, Sella O, Smorodinsky NI, Lavi S. Uniquely conserved non-translated regions are involved in generation of the two major transcripts of protein phosphatase 2Cbeta. J Mol Biol 2001; 312:439-51. [PMID: 11563908 DOI: 10.1006/jmbi.2001.4967] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Partial cDNAs of different isoforms of protein phosphatase 2Cbeta (PP2Cbeta or PPM1B) have been characterized in mammals. We disclose here the full cDNAs of two major PP2Cbeta isoforms from human, rat and mouse. These cDNAs (2.6 and 3.3 kb) are able to encode 53 kDa (PP2Cbetal) and 43 kDa (PP2Cbetas) polypeptides, respectively. The isoforms are co-expressed ubiquitously with the highest level in skeletal muscle, as assessed by Northern-blot analysis. Western and in situ analyses using monoclonal antibodies against PP2Cbeta confirmed the existence of two isoforms in the cytoplasm. Comparative sequence analysis revealed that both cDNAs consist of six exons with an alternate usage of the 3' exons that underlies the differences between them. The genomic structure of PP2Cbeta is similar to that of other PP2C paralogs and includes a non-coding first exon followed by a large intron and a large second exon that encoded most of the catalytic domain. Both variants of the ending exon include large non-coding regions. All non-translated regions (NTRs) are highly conserved between the orthologous genes, indicating their regulatory function. The 5'-NTR is long (379 bp), includes upstream start codons and is predicted to contain stable secondary structures. Such features inhibit translation initiation by the scanning mechanism. Introduction of this NTR element into a bi-luciferase expression-cassette enabled expression of the second cistron, suggesting that it might serve as an internal ribosome entry site, or it contains a cryptic promoter. Overexpression of PP2Cbeta under CMV-promoter in 293 cells led to cell-growth arrest or cell death.
Collapse
Affiliation(s)
- E Seroussi
- Institute of Animal Science, Volcani Center, Bet-Dagan, 50250, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hishiya A, Ohnishi M, Tamura S, Nakamura F. Protein phosphatase 2C inactivates F-actin binding of human platelet moesin. J Biol Chem 1999; 274:26705-12. [PMID: 10480873 DOI: 10.1074/jbc.274.38.26705] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During activation of platelets by thrombin phosphorylation of Thr(558) in the C-terminal domain of the membrane-F-actin linking protein moesin increases transiently, and this correlates with protrusion of filopodial structures. Calyculin A enhances phosphorylation of moesin by inhibition of phosphatases. To measure this moesin-specific activity, a nonradioactive enzyme-linked immunosorbent assay method was developed with the synthetic peptide Cys-Lys(555)-Tyr-Lys-Thr(P)-Leu-Arg(560) coupled to bovine serum albumin as the substrate and moesin phosphorylation state-specific polyclonal antibodies for the detection and quantitation of dephosphorylation. Calyculin A-sensitive and -insensitive protein-threonine phosphatase activities were detected in platelet lysates and separated by DEAE-cellulose chromatography. The calyculin A-sensitive enzyme was identified as a type 1 protein phosphatase. The calyculin A-insensitive enzyme activity was purified to homogeneity by phenyl- Sepharose, protamine-, and phosphonic acid peptide-agarose chromatography and characterized biochemically and immunologically as a 53-kDa protein(s) and a type 2C protein phosphatase (PP2C). Phosphorylation of Thr(558) is necessary for F-actin binding of moesin in vitro. The purified enzyme, as well as bacterially made PP2Calpha and PP2Cbeta, efficiently dephosphorylate(s) highly purified platelet phospho-moesin. This reverses the activating effect of phosphorylation, and moesin no longer co-sediments with actin filaments. In vivo, regulation of these phosphatase activities are likely to influence dynamic interactions between the actin cytoskeleton and membrane constituents linked to moesin.
Collapse
Affiliation(s)
- A Hishiya
- Department of Environmental Biology, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | | | | | |
Collapse
|
7
|
Ohnishi M, Chida N, Kobayashi T, Wang H, Ikeda S, Hanada M, Yanagawa Y, Katsura K, Hiraga A, Tamura S. Alternative promoters direct tissue-specific expression of the mouse protein phosphatase 2Cbeta gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:736-45. [PMID: 10469137 DOI: 10.1046/j.1432-1327.1999.00580.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type 2C protein phosphatases (PP2Cs), a class of ubiquitous and evolutionally conserved serine/threonine protein phosphatases, are encoded in at least four distinct genes and implicated in the regulation of various cellular functions. Of these four PP2C genes, the expression of the PP2Cbeta gene has been reported to be tissue-specific and development-dependent. To understand more precisely the regulatory mechanism of this expression, we have isolated and characterized overlapping mouse genomic lambda clones. A comparison of genomic sequences with PP2Cbeta cDNA sequences provided information on the structure and localization of intron/exon boundaries and indicated that PP2Cbeta isoforms with different 5' termini were generated by alternative splicing of its pre-mRNA. The 5'-flanking region of exon 1 had features characteristic of a housekeeping gene: it was GC-rich, lacked TATA boxes and CAAT boxes in the standard positions, and contained potential binding sites for the transcription factor SP1. In the 5'-flanking region of exon 2, several consensus sequences were found, such as a TATA-like sequence and negative regulatory element box-1, -2 and -3. Subsequent analysis by transient transfection assay with a reporter gene showed that these regions act as distinct promoters. Analysis of PP2Cbeta transcripts by reverse transcriptase-PCR showed that exon-1 transcripts were expressed ubiquitously in all of the tissues examined, whereas exon-2 transcripts were predominantly expressed in the testis, intestine and liver. These results suggest that the alternative usage of two promoters within the PP2Cbeta gene regulates tissue-specific expression of PP2Cbeta mRNA.
Collapse
Affiliation(s)
- M Ohnishi
- Department of Biochemistry, Institute of Development, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kusuda K, Kobayashi T, Ikeda S, Ohnishi M, Chida N, Yanagawa Y, Shineha R, Nishihira T, Satomi S, Hiraga A, Tamura S. Mutational analysis of the domain structure of mouse protein phosphatase 2Cbeta. Biochem J 1998; 332 ( Pt 1):243-50. [PMID: 9576874 PMCID: PMC1219474 DOI: 10.1042/bj3320243] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The structures of five distinct isoforms of mammalian protein phosphatase 2Cbeta (PP2Cbeta-1, -2, -3, -4 and -5) have previously been found to differ only at their C-terminal regions. In the present study, we performed mutational analysis of recombinant mouse PP2Cbeta-1 to determine the functional domains of the molecule and elucidate the biochemical significance of the structural differences in the isoforms. Differences in affinity for [32P]phosphohistone but not for [32P]phosphocasein were observed among the five PP2Cbeta isoforms. Deletion of 12 amino acids from the C-terminal end, which form a unique sequence for PP2Cbeta-1, caused a 35% loss of activity against [32P]phosphohistone but no loss of activity against [32P]phosphocasein. Deletion of up to 78 amino acids from this end did not cause any further alteration in activity, whereas deletion of 100 amino acids totally eliminated the activity against both [32P]phosphohistone and [32P]phosphocasein. On the other hand, deletion of 11 amino acids from the N-terminal end caused a 97% loss of enzyme activity, and further deletions caused a total loss of activity. Substitution of any of the six specific amino acids among 16 tested in this study, which were located among the 250 N-terminal residues, caused 98-100% loss of enzyme activity. Among these amino acids, three (Glu-38, -60 and -243) have recently been reported to be essential for the binding of metal ions in the catalytic site of the PP2C molecule [Das, Helps, Cohen and Barford (1996) EMBO J. 15, 6798-6809]. These observations indicate that PP2Cbeta is composed of at least two distinct functional domains, an N-terminal catalytic domain of about 310 amino acids and the remaining C-terminal domain, which is involved in determination of substrate specificity.
Collapse
Affiliation(s)
- K Kusuda
- Department of Biochemistry, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seryomachi, Aoba-ku, Sendai 980, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|