1
|
Yan S, Biswal BK, Balasubramanian R. Insights into interactions of biodegradable and non-biodegradable microplastics with heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107419-107434. [PMID: 37335512 DOI: 10.1007/s11356-023-27906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/21/2023] [Indexed: 06/21/2023]
Abstract
Biodegradable microplastics (BMPs) are considered to be environmentally friendly compared to non-biodegradable plastics (NMPs). However, BMPs are likely to become toxic during their transport because of the adsorption of pollutants (e.g., heavy metals) onto them. This study investigated the uptake of six heavy metals (Cd2+, Cu2+, Cr3+, Ni2+, Pb2+, and Zn2+) by a common BMPs (polylactic acid (PLA)) and compared their adsorption characteristics to those of three types of NMPs (polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC)) for the first time. The order of heavy metal adsorption capacity among the four MPs was PE > PLA > PVC > PP. The findings suggest that BMPs contained more toxic heavy metals than some NMPs. Among the six heavy metals, Cr3+ showed considerably stronger adsorption than other heavy metals in both BMPS and NMPs. The adsorption of heavy metals on MPs can be well explained using the Langmuir isotherm model, while the adsorption kinetic curves showed the best fit to the pseudo-second-order kinetic equation. Desorption experiments revealed that BMPs released a higher percentage of heavy metals (54.6-62.6%) in the acidic environment in a shorter time (~ 6 h) compared to NMPs. Overall, this study provides insights into interactions of BMPs and NMPs with heavy metals and their removal mechanisms in aquatic environment.
Collapse
Affiliation(s)
- Shuyue Yan
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
2
|
Okamoto T, Okamoto S, Yamamoto K, Takasu A, Murashima Y, Fukui S, Fukuda K. Bulbar and post-bulbar duodenal ulcers: characteristics based on location. Eur J Gastroenterol Hepatol 2023; 35:955-961. [PMID: 37395188 DOI: 10.1097/meg.0000000000002585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
OBJECTIVES Most research on duodenal ulcers has focused on bulbar ulcers; details on post-bulbar ulcers remain largely unknown. This study was conducted to determine the characteristics of patients with post-bulbar duodenal ulcers depending on their location. METHODS AND MATERIALS We conducted a retrospective study of hospitalized patients newly diagnosed with duodenal ulcers on endoscopy at a tertiary referral center in Japan between April 2004 and March 2019. Five hundred fifty-one patients diagnosed with duodenal ulcers were extracted for analysis. RESULTS Ulcers were observed only in the bulbus in 383 cases, only in the post-bulbar duodenum in 82 cases, and were co-existing in both areas in 86 cases. The Bulbar group had less comorbidities and was more likely to have atrophic gastritis, while the Post-bulbar and Co-existing groups were more likely to be admitted for non-gastrointestinal conditions. Regular acid suppressant use was more common in the post-bulbar group than in the Bulbar group. Bulbar ulcers were associated with a shorter length of stay relative to post-bulbar and co-existing ulcers, but ulcer location was not an independent predictor of length of stay. Patients with co-existing bulbar and post-bulbar ulcers have characteristics similar to those with post-bulbar ulcers alone. CONCLUSION Patients with post-bulbar ulcers and those with co-existing bulbar and post-bulbar ulcers have different characteristics and outcomes relative to patients with bulbar ulcers.
Collapse
Affiliation(s)
- Takeshi Okamoto
- Department of Gastroenterology, St. Luke's International Hospital
- Division of Hepato-Biliary-Pancreatic Medicine, Department of Gastroenterology, Cancer Institute Hospital of Japanese Foundation for Cancer Research
| | | | - Kazuki Yamamoto
- Department of Gastroenterology, St. Luke's International Hospital
| | - Ayaka Takasu
- Department of Gastroenterology, St. Luke's International Hospital
| | - Yuko Murashima
- Department of Gastroenterology, St. Luke's International Hospital
| | - Sho Fukui
- Emergency and General Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Katsuyuki Fukuda
- Department of Gastroenterology, St. Luke's International Hospital
| |
Collapse
|
3
|
Wang CC, Chen YL, Lu TC, Lee C, Chang YC, Chan YF, Mathew P, Lin XR, Hsieh WR, Huang TY, Huang HL, Hwang TL. Design and evaluation of oral formulation for apixaban. Heliyon 2023; 9:e18422. [PMID: 37534003 PMCID: PMC10391955 DOI: 10.1016/j.heliyon.2023.e18422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
Non-valvular atrial fibrillation (NVAF) is a common form of cardiac arrhythmia that affects 1-1.5% of adults and roughly 10% of elderly adults with dysphagia. Apixaban is an anticoagulant referred to as a factor Xa inhibitor, which has been shown to reduce the risk of stroke and systemic embolism in cases of NVAF. Our objective in the current study was to formulate an orally disintegrating film to facilitate the administration of apixaban to elderly patients who have difficulty swallowing. Researchers have used a wide variety of cellulose-based or non-cellulose-based polymers in a variety of combinations to achieve specific characteristics related to film formation, disintegration performance, drug content, in vitro drug release, and stability. One of the two formulations in this study was specify that bioequivalence criteria met with respect to Cmax of the reference drug (ELIQUIS®) in terms of pharmacokinetic profile. Further research will be required to assess the applicability of orodispersible films created using colloidal polymers of high and low molecular weights to other drugs with poor solubility in water.
Collapse
Affiliation(s)
- Chien-Chiao Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, 333, Taiwan
- TAHO Pharmaceuticals Ltd. Neihu Dist., Taipei City, 114, Taiwan
| | - Yu-Li Chen
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, 333, Taiwan
| | - Ta-Chien Lu
- TAHO Pharmaceuticals Ltd. Neihu Dist., Taipei City, 114, Taiwan
| | - Catherine Lee
- TAHO Pharmaceuticals Ltd. Neihu Dist., Taipei City, 114, Taiwan
| | - Yu-Chia Chang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, 333, Taiwan
| | - Yen-Fan Chan
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, 333, Taiwan
| | - Philip Mathew
- Novum Pharmaceutical Research Inc. Toronto, ON, M1L 4S4, Canada
| | - Xing-Rong Lin
- TAHO Pharmaceuticals Ltd. Neihu Dist., Taipei City, 114, Taiwan
| | - Wen-Rung Hsieh
- TAHO Pharmaceuticals Ltd. Neihu Dist., Taipei City, 114, Taiwan
| | - Ting-Yun Huang
- TAHO Pharmaceuticals Ltd. Neihu Dist., Taipei City, 114, Taiwan
| | - Hsin-Lan Huang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, 333, Taiwan
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, 333, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan City, 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan
| |
Collapse
|
4
|
Fan W, Tan Q. Application of the steady-state intestinal perfusion system in measuring intestinal fluid absorption and bicarbonate secretion in vivo. Front Physiol 2023; 14:1163888. [PMID: 37497438 PMCID: PMC10366686 DOI: 10.3389/fphys.2023.1163888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Background: The steady-state intestinal perfusion system represents a tool used in measuring intestinal fluid absorption and bicarbonate secretion in vivo; however, detailed procedures and parameters were not elucidated fully. Aim: We focused on the methods of the steady-state intestinal perfusion system comprehensively including the blood pressure, hematocrit, blood gas, and heart rate of mouse. Methods: Anesthetized, tracheally intubated, and artificially ventilated mice were used for this system. The blood pressure, hematocrit, blood gas, heart rate, and rate of fluid absorption and HCO3 - secretion of the small intestine and colon at different time points were evaluated. Results: Blood pressure, hematocrit, blood gas, and heart rate became stable at the 30 min time point after completion of surgery and could be maintained for 2 h. Rates of fluid absorption and bicarbonate secretion were also kept stable during the period of steady state of mice. Rates of fluid absorption and bicarbonate secretion were different among the jejunum, ileum, proximal, and mid-distal colon. Conclusion: The steady-state intestinal perfusion system is a reliable system for measuring intestinal fluid absorption and bicarbonate secretion in vivo.
Collapse
|
5
|
Esser A, Mayer G. Characterization of the glmS Ribozymes from Listeria Monocytogenes and Clostridium Difficile. Chemistry 2023; 29:e202202376. [PMID: 36194523 PMCID: PMC10099748 DOI: 10.1002/chem.202202376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 11/23/2022]
Abstract
The glmS ribozyme regulates the expression of the essential GlmS enzyme being involved in cell wall biosynthesis. While >450 variants of the glmS ribozyme were identified by in silico approaches and homology searches, only a few have yet been experimentally investigated. Herein, we validate and characterize the glmS ribozymes of the human pathogens Clostridium difficile and Listeria monocytogenes. Both ribozymes, as their previous characterized homologs rely on glucosamine-6-phosphate as co-factor and the presence of divalent cations for exerting the cleavage reaction. The observed EC50 values in turn were found to be in the submicromolar range, at least an order of magnitude lower than observed for glmS ribozymes from other bacteria. The glmS ribozyme of L. monocytogenes was further shown to bear unique properties. It discriminates between co-factors very stringently and other than the glmS ribozyme of C. difficile retains activity at low temperatures. This finding illustrates that albeit being highly conserved, glmS ribozymes have unique characteristics.
Collapse
Affiliation(s)
- Anna Esser
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Günter Mayer
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany.,Center of Aptamer Research & Development, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| |
Collapse
|
6
|
Han ZY, Chen QW, Fu ZJ, Cheng SX, Zhang XZ. Probiotic Spore-Based Oral Drug Delivery System for Enhancing Pancreatic Cancer Chemotherapy by Gut-Pancreas-Axis-Guided Delivery. NANO LETTERS 2022; 22:8608-8617. [PMID: 36259687 DOI: 10.1021/acs.nanolett.2c03131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The chemotherapeutic effectiveness of pancreatic ductal adenocarcinoma (PDAC) is severely hampered by insufficient intratumoral delivery of antitumor drugs. Here, we demonstrate that enhanced pancreatic cancer chemotherapy can be achieved by probiotic spore-based oral drug delivery system via gut-pancreas axis translocation. Clostridium butyricum spores resistant to harsh external stress are extracted as drug carriers, which are further covalently conjugated with gemcitabine-loaded mesoporous silicon nanoparticles (MGEM). The spore-based oral drug delivery system (SPORE-MGEM) migrates upstream into pancreatic tumors from the gut, which increases intratumoral drug accumulation by ∼3-fold compared with MGEM. In two orthotopic PDAC mice models, tumor growth is markedly suppressed by SPORE-MGEM without obvious side effects. Leveraging the biological contact of the gut-pancreas axis, this probiotic spore-based oral drug delivery system reveals a new avenue for enhancing PDAC chemotherapy.
Collapse
Affiliation(s)
- Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhuang-Jiong Fu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, People's Republic of China
| |
Collapse
|
7
|
Abbas M, Hayirli Z, Drakesmith H, Andrews SC, Lewis MC. Effects of iron deficiency and iron supplementation at the host-microbiota interface: Could a piglet model unravel complexities of the underlying mechanisms? Front Nutr 2022; 9:927754. [PMID: 36267902 PMCID: PMC9577221 DOI: 10.3389/fnut.2022.927754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/05/2022] [Indexed: 01/14/2023] Open
Abstract
Iron deficiency is the most prevalent human micronutrient deficiency, disrupting the physiological development of millions of infants and children. Oral iron supplementation is used to address iron-deficiency anemia and reduce associated stunting but can promote infection risk since restriction of iron availability serves as an innate immune mechanism against invading pathogens. Raised iron availability is associated with an increase in enteric pathogens, especially Enterobacteriaceae species, accompanied by reductions in beneficial bacteria such as Bifidobacteria and lactobacilli and may skew the pattern of gut microbiota development. Since the gut microbiota is the primary driver of immune development, deviations from normal patterns of bacterial succession in early life can have long-term implications for immune functionality. There is a paucity of knowledge regarding how both iron deficiency and luminal iron availability affect gut microbiota development, or the subsequent impact on immunity, which are likely to be contributors to the increased risk of infection. Piglets are naturally iron deficient. This is largely due to their low iron endowments at birth (primarily due to large litter sizes), and their rapid growth combined with the low iron levels in sow milk. Thus, piglets consistently become iron deficient within days of birth which rapidly progresses to anemia in the absence of iron supplementation. Moreover, like humans, pigs are omnivorous and share many characteristics of human gut physiology, microbiota and immunity. In addition, their precocial nature permits early maternal separation, individual housing, and tight control of nutritional intake. Here, we highlight the advantages of piglets as valuable and highly relevant models for human infants in promoting understanding of how early iron status impacts physiological development. We also indicate how piglets offer potential to unravel the complexities of microbiota-immune responses during iron deficiency and in response to iron supplementation, and the link between these and increased risk of infectious disease.
Collapse
Affiliation(s)
- Munawar Abbas
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Zeynep Hayirli
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon C. Andrews
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Marie C. Lewis
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
8
|
Jover A, Troncoso J, di Gregorio MC, Fraga López F. Thermodynamic properties of sodium deoxycholate at the gel-sol transition. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Xia X. Multiple regulatory mechanisms for pH homeostasis in the gastric pathogen, Helicobacter pylori. ADVANCES IN GENETICS 2022; 109:39-69. [PMID: 36334916 DOI: 10.1016/bs.adgen.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acid-resistance in gastric pathogen Helicobacter pylori requires the coordination of four essential processes to regulate urease activity. Firstly, urease expression above a base level needs to be finely tuned at different ambient pH. Secondly, as nickel is needed to activate urease, nickel homeostasis needs to be maintained by proteins that import and export nickel ions, and sequester, store and release nickel when needed. Thirdly, urease accessary proteins that activate urease activity by nickel insertion need to be expressed. Finally, a reliable source of urea needs to be maintained by both intrinsic and extrinsic sources of urea. Two-component systems (arsRS and flgRS), as well as a nickel response regulator (NikR), sense the change in pH and act on a variety of genes to accomplish the function of acid resistance without causing cellular overalkalization and nickel toxicity. Nickel storage proteins also feature built-in switches to store nickel at neutral pH and release nickel at low pH. This review summarizes the current status of H. pylori research and highlights a number of hypotheses that need to be tested.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, Ottawa, Canada.
| |
Collapse
|
10
|
3- O-Ethyl-L-Ascorbic Acid Doped Enteric-Coated Gelatin Capsules towards the Advanced Oral Curcumin Delivery for Cancers. Polymers (Basel) 2022; 14:polym14112207. [PMID: 35683880 PMCID: PMC9182627 DOI: 10.3390/polym14112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Among plant-derived polyphenols, curcumin has been recognized as a therapeutically potent nutrient presenting pleiotropic pharmacological effects on various cancers. However, the poor absorption and bioavailability of curcumin limit the use of this excellent naturally occurring polyphenol. 3-O-ethyl-L-ascorbic acid (EA) doped enteric-coated gelatin capsules were studied in the search for advanced oral curcumin delivery. The EA doped enteric-coated gelatin capsules were successfully created based on a developed inner dual enteric coating technique. When placed in four buffer solutions with different pHs (pH 2.0, 5.0, 6.0, and 7.3), the coated gelatin capsules showed delayed-release profiles of curcumin below pH 6.0. In contrast, both pristine and fabricated gelatin capsules showed similar curcumin release profiles at pH 7.3, which is a common pH observed in the lower gastrointestinal tract, especially intestinal regions. In conclusion, these results demonstrated the potential of the EA doped enteric-coated gelatin capsules in developing advanced oral delivery of curcumin targeting intestinal-specific regions.
Collapse
|
11
|
Rivera del Rio A, van der Wielen N, Gerrits WJ, Boom RM, Janssen AE. In silico modelling of protein digestion: A case study on solid/liquid and blended meals. Food Res Int 2022; 157:111271. [DOI: 10.1016/j.foodres.2022.111271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/26/2022]
|
12
|
pH-taxis drives aerobic bacteria in duodenum to migrate into the pancreas with tumors. Sci Rep 2022; 12:1783. [PMID: 35110595 PMCID: PMC8810860 DOI: 10.1038/s41598-022-05554-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/13/2022] [Indexed: 01/07/2023] Open
Abstract
As oral or intestinal bacteria have been found in pancreatic cystic fluid and tumors, understanding bacterial migration from the duodenum into the pancreas via hepato-pancreatic duct is critical. Mathematical models of migration of aerobic bacteria from the duodenum to the pancreas with tumors were developed. Additionally, the bacterial distributions under the pH gradient and those under flow were measured in double-layer flow based microfluidic device and T-shaped cylinders. Migration of aerobic bacteria from the duodenum into pancreas is counteracted by bile and pancreatic juice flow but facilitated by pH-taxis from acidic duodenum fluid toward more favorable slightly alkaline pH in pancreatic juice. Additionally, the reduced flow velocity in cancer patients, due to compressed pancreatic duct by solid tumor, facilitates migration. Moreover, measured distribution of GFP E. coli under the pH gradient in a microfluidic device validated pH-tactic behaviors. Furthermore, Pseudomonas fluorescens in hydrochloride solution, but not in bicarbonate solution, migrated upstream against bicarbonate flow of > 20 μm/s, with an advancement at approximately 50 μm/s.
Collapse
|
13
|
Saffarionpour S, Diosady LL. Delivery of Ferric Sodium EDTA by Water-in-Oil-in-Water (W1/O/W2) Double Emulsions: Influence of Carrier Oil on its in Vitro Bioaccessibility. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02756-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
On the feasibility of spray-dried eudragit-trehalose microparticles for enteric drug delivery. Int J Pharm 2021; 610:121264. [PMID: 34742827 DOI: 10.1016/j.ijpharm.2021.121264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 11/21/2022]
Abstract
Enteric infections have long constituted a silent epidemic responsible for hundreds of thousands of deaths around the world every year. Because of the global rise in antibiotic-resistant bacteria and the slow development of new small-molecule antibiotics, alternatives such as bacteriophage therapy have become a much sought-after option in the treatment of enteric infections. However, the administration of therapeutics through the oral route to target gastrointestinal infections poses challenges to dosage formulation because these active ingredients, particularly relatively fragile biological entities, require protection from the stomach's harsh acids. Encapsulation of the therapeutics within a pH-responsive coating capable of surviving low pH conditions has the potential to provide such protection. In this study, we developed a spray-dried powder vehicle capable of withstanding low pH comparable to stomach conditions, using Eudragit® S100 as a protective particle coating and trehalose as a stabilizing excipient for a possible active component. A particle formation model and a monodisperse droplet chain technique were initially used to study the formation process of Eudragit-trehalose composite microparticles at different ratios and in different ratios of water-ethanol solvent, which showed formation of particles with Eudragit shells varying in thickness from 0.13 μm to 0.75 μm. Promising Eudragit-trehalose formulations were subsequently spray-dried and their survival in acidic and alkaline environments studied using a new shadowgraphic imaging method. The results demonstrated that Eudragit was capable of creating a protective shell in the particles irrespective of the type of solvent used to prepare the formulations. The trehalose cores of particles with higher than 5% w/w of Eudragit remained protected after one hour of exposure at pH 2, indicating the potential of Eudragit-trehalose formulations for enteric delivery of drugs.
Collapse
|
15
|
Wagner M, Hess T, Zakowiecki D. Studies on the pH-dependent solubility of various grades of calcium phosphate-based pharmaceutical excipients. J Pharm Sci 2021; 111:1749-1760. [PMID: 34890630 DOI: 10.1016/j.xphs.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022]
Abstract
Calcium phosphate-based pharmaceutical excipients, including calcium hydrogen phosphate anhydrous and dihydrate, calcium hydroxide phosphate have been well established in pharmaceutical technology for a very long time. Nowadays, they are of increasing interest to the pharmaceutical industry because, in addition to their advanced functional properties, they offer beneficial biocompatible and biodegradable properties. Yet, there is limited availability of embracing information regarding the solubility of these popular excipients, especially in variable pH conditions, reflecting those of the gastrointestinal tract (GIT). The study has shown that the solubility of calcium phosphates as well as their dissolution rate decreases significantly with increasing pH of dissolution fluids. The highest solubility was observed for dibasic calcium phosphate dihydrate, the lowest for tribasic calcium phosphate. This article provides also a comparison of various calcium phosphate types originating from different manufacturers, which may prove to be useful and help formulation scientists to design new medicinal products.
Collapse
Affiliation(s)
- Michael Wagner
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany
| | - Tobias Hess
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany
| | - Daniel Zakowiecki
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany.
| |
Collapse
|
16
|
Miedzybrodzka EL, Foreman RE, Lu VB, George AL, Smith CA, Larraufie P, Kay RG, Goldspink DA, Reimann F, Gribble FM. Stimulation of motilin secretion by bile, free fatty acids, and acidification in human duodenal organoids. Mol Metab 2021; 54:101356. [PMID: 34662713 PMCID: PMC8590067 DOI: 10.1016/j.molmet.2021.101356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/06/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Motilin is a proximal small intestinal hormone with roles in gastrointestinal motility, gallbladder emptying, and hunger initiation. In vivo motilin release is stimulated by fats, bile, and duodenal acidification but the underlying molecular mechanisms of motilin secretion remain poorly understood. This study aimed to establish the key signaling pathways involved in the regulation of secretion from human motilin-expressing M-cells. METHODS Human duodenal organoids were CRISPR-Cas9 modified to express the fluorescent protein Venus or the Ca2+ sensor GCaMP7s under control of the endogenous motilin promoter. This enabled the identification and purification of M-cells for bulk RNA sequencing, peptidomics, calcium imaging, and electrophysiology. Motilin secretion from 2D organoid-derived cultures was measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS), in parallel with other gut hormones. RESULTS Human duodenal M-cells synthesize active forms of motilin and acyl-ghrelin in organoid culture, and also co-express cholecystokinin (CCK). Activation of the bile acid receptor GPBAR1 stimulated a 3.4-fold increase in motilin secretion and increased action potential firing. Agonists of the long-chain fatty acid receptor FFA1 and monoacylglycerol receptor GPR119 stimulated secretion by 2.4-fold and 1.5-fold, respectively. Acidification (pH 5.0) was a potent stimulus of M-cell calcium elevation and electrical activity, an effect attributable to acid-sensing ion channels, and a modest inducer of motilin release. CONCLUSIONS This study presents the first in-depth transcriptomic and functional characterization of human duodenal motilin-expressing cells. We identify several receptors important for the postprandial and interdigestive regulation of motilin release.
Collapse
Affiliation(s)
- Emily L Miedzybrodzka
- Wellcome Trust - MRC Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Rachel E Foreman
- Wellcome Trust - MRC Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Van B Lu
- Wellcome Trust - MRC Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Amy L George
- Wellcome Trust - MRC Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Christopher A Smith
- Wellcome Trust - MRC Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Pierre Larraufie
- Wellcome Trust - MRC Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Richard G Kay
- Wellcome Trust - MRC Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Deborah A Goldspink
- Wellcome Trust - MRC Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Frank Reimann
- Wellcome Trust - MRC Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Fiona M Gribble
- Wellcome Trust - MRC Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
17
|
Jokioja J, Yang B, Linderborg KM. Acylated anthocyanins: A review on their bioavailability and effects on postprandial carbohydrate metabolism and inflammation. Compr Rev Food Sci Food Saf 2021; 20:5570-5615. [PMID: 34611984 DOI: 10.1111/1541-4337.12836] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/31/2022]
Abstract
Anthocyanins, the natural red and purple colorants of berries, fruits, vegetables, and tubers, improve carbohydrate metabolism and decrease the risk factors of metabolic disorders, but their industrial use is limited by their chemical instability. Acylation of the glycosyl moieties of anthocyanins, however, changes the chemical properties of anthocyanins and provides enhanced stability. Thus, acylated anthocyanins are more usable as natural colorants and bioactive components of innovative functional foods. Acylated anthocyanins are common in pigmented vegetables and tubers, the consumption of which has the potential to increase the intake of health-promoting anthocyanins as part of the daily diet. For the first time, this review presents the current findings on bioavailability, absorption, metabolism, and health effects of acylated anthocyanins with comparison to more extensively investigated nonacylated anthocyanins. The structural differences between nonacylated and acylated anthocyanins lead to enhanced color stability, altered absorption, bioavailability, in vivo stability, and colonic degradation. The impact of phenolic metabolites and their potential health effects regardless of the low bioavailability of the parent anthocyanins as such is discussed. Here, purple-fleshed potatoes are presented as a globally available, eco-friendly model food rich in acylated anthocyanins, which further highlights the industrial possibilities and nutritional relevance of acylated anthocyanins. This work supports the academic community and industry in food research and development by reviewing the current literature and highlighting gaps of knowledge.
Collapse
Affiliation(s)
- Johanna Jokioja
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Turku, Finland
| | - Kaisa M Linderborg
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
18
|
Trestini I, Carbognin L, Peretti U, Sperduti I, Caldart A, Tregnago D, Avancini A, Auriemma A, Orsi G, Pilotto S, Frulloni L, Capurso G, Bria E, Reni M, Tortora G, Milella M. Pancreatic Enzyme Replacement Therapy in Patients Undergoing First-Line Gemcitabine Plus nab-paclitaxel for Advanced Pancreatic Adenocarcinoma. Front Oncol 2021; 11:688889. [PMID: 34568019 PMCID: PMC8458827 DOI: 10.3389/fonc.2021.688889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/17/2021] [Indexed: 01/06/2023] Open
Abstract
Background The clinical consequences of pancreatic exocrine insufficiency and its treatment in advanced pancreatic ductal adenocarcinoma (PDAC) are poorly investigated. This retrospective study aims at investigating the pancreatic enzyme replacement therapy (PERT) use and its impact on survival and maldigestion-related symptoms in advanced PDAC patients undergoing chemotherapy. Methods A retrospective analysis was conducted on advanced PDAC patients, treated with first-line gemcitabine plus nab-paclitaxel at two academic institutions (March 2015-October 2018). Data were correlated with overall survival (OS) using Cox regression model. Kaplan-Meier curves were compared using Log-Rank test. Results Data from 110 patients were gathered. PERT was administered in 55 patients (50%). No significant differences in baseline characteristics with those who did not receive PERT were found. Median OS for the entire group was 12 months (95% CI 9-15). At multivariate analysis, previous surgical resection of the primary tumor, (HR 2.67, p=0.11), weight gain after 3 months (HR 1.68, p=0.07) and PERT (HR 2.85, p ≤ 0.001) were independent predictors of OS. Patients who received PERT reported an improvement of maldigestion-related symptoms at 3 months more frequently than patients who did not (85.2% vs 14.8%, p ≤ 0.0001). Conclusion PERT is associated with significantly prolonged survival and maldigestion-related symptoms alleviation in advanced PDAC patients.
Collapse
Affiliation(s)
- Ilaria Trestini
- Section of Oncology, Department of Medicine, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) di Verona, Verona, Italy
| | - Luisa Carbognin
- Division of Gynecologic Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Biomedical Sciences, Department of Medicine, University of Verona, Verona, Italy
| | - Umberto Peretti
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Isabella Sperduti
- Biostatistics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alberto Caldart
- Section of Oncology, Department of Medicine, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) di Verona, Verona, Italy
| | - Daniela Tregnago
- Section of Oncology, Department of Medicine, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) di Verona, Verona, Italy
| | - Alice Avancini
- Biomedical Sciences, Department of Medicine, University of Verona, Verona, Italy
| | - Alessandra Auriemma
- Section of Oncology, Department of Medicine, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) di Verona, Verona, Italy
| | - Giulia Orsi
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Medicine, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) di Verona, Verona, Italy
| | - Luca Frulloni
- Department of Medicine, University of Verona, Verona, Italy
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Unità Operativa Complessa (UOC) Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Michele Reni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Unità Operativa Complessa (UOC) Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) di Verona, Verona, Italy
| |
Collapse
|
19
|
Sibinelli-Sousa S, de Araújo-Silva AL, Hespanhol JT, Bayer-Santos E. Revisiting the steps of Salmonella gut infection with a focus on antagonistic interbacterial interactions. FEBS J 2021; 289:4192-4211. [PMID: 34546626 DOI: 10.1111/febs.16211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
A commensal microbial community is established in the mammalian gut during its development, and these organisms protect the host against pathogenic invaders. The hallmark of noninvasive Salmonella gut infection is the induction of inflammation via effector proteins secreted by the type III secretion system, which modulate host responses to create a new niche in which the pathogen can overcome the colonization resistance imposed by the microbiota. Several studies have shown that endogenous microbes are important to control Salmonella infection by competing for resources. However, there is limited information about antimicrobial mechanisms used by commensals and pathogens during these in vivo disputes for niche control. This review aims to revisit the steps that Salmonella needs to overcome during gut colonization-before and after the induction of inflammation-to achieve an effective infection. We focus on a series of reported and hypothetical antagonistic interbacterial interactions in which both contact-independent and contact-dependent mechanisms might define the outcome of the infection.
Collapse
Affiliation(s)
| | | | - Julia Takuno Hespanhol
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Ethel Bayer-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| |
Collapse
|
20
|
Márquez-Ruiz G, Holgado F, Ruiz-Méndez MV, Velasco J. Chemical Changes of Hydroperoxy-, Epoxy-, Keto- and Hydroxy-Model Lipids under Simulated Gastric Conditions. Foods 2021; 10:foods10092035. [PMID: 34574145 PMCID: PMC8471306 DOI: 10.3390/foods10092035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Chemical changes occurring in dietary lipid oxidation compounds throughout the gastrointestinal tract are practically unknown. The first site for potential chemical modifications is the stomach due to the strong acidic conditions. In this study, model lipids representative of the most abundant groups of dietary oxidation compounds were subjected to in vitro gastric conditions. Thus, methyl linoleate hydroperoxides were used as representative of the major oxidation compounds formed in food storage at low and moderate temperatures. Methyl 9,10-epoxystearate, 12-oxostearate and 12-hydroxystearate were selected as model compounds bearing the oxygenated functional groups predominantly found in oxidation compounds formed at the high temperatures of frying. Analyses were performed using gas-liquid chromatography/flame ionization detection/mass spectrometry and high performance-liquid chromatography/ultraviolet detection. Losses of methyl 9,10-epoxystearate and linoleate hydroperoxides in the ranges 17.8–58.8% and 42.3–61.7% were found, respectively, whereas methyl 12-oxostearate and methyl 12-hydroxystearate remained unaltered. Although quantitative data of the compounds formed after digestion were not obtained, methyl 9,10-dihydroxystearate was detected after digestion of methyl 9,10-epoxystearate, and some major volatiles were detected after digestion of linoleate hydroperoxides. Overall, the results showed that significant modifications of dietary oxidized lipids occurred during gastric digestion and supported that the low pH of the gastric fluid played an important role.
Collapse
Affiliation(s)
- Gloria Márquez-Ruiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas (ICTAN-CSIC), 28040 Madrid, Spain;
- Correspondence:
| | - Francisca Holgado
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas (ICTAN-CSIC), 28040 Madrid, Spain;
| | - María Victoria Ruiz-Méndez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (IG-CSIC), 41089 Sevilla, Spain; (M.V.R.-M.); (J.V.)
| | - Joaquín Velasco
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (IG-CSIC), 41089 Sevilla, Spain; (M.V.R.-M.); (J.V.)
| |
Collapse
|
21
|
Baker LM, Davies TS, Masetti G, Hughes TR, Marchesi JR, Jack AA, Joyce TSC, Allen MD, Plummer SF, Michael DR, Ramanathan G, Del Sol R, Facey PD. A genome guided evaluation of the Lab4 probiotic consortium. Genomics 2021; 113:4028-4038. [PMID: 34391865 DOI: 10.1016/j.ygeno.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 12/01/2022]
Abstract
In this study, we present the draft genome sequences of the Lab4 probiotic consortium using whole genome sequencing. Draft genome sequences were retrieved and deposited for each of the organisms; PRJNA559984 for B. bifidum CUL20, PRJNA482335 for Lactobacillus acidophilus CUL60, PRJNA482434 for Lactobacillus acid. Probiogenomic in silico analyses confirmed existing taxonomies and identified the presence putative gene sequences that were functionally related to the performance of each organism during in vitro assessments of bile and acid tolerability, adherence to enterocytes and susceptibility to antibiotics. Predictions of genomic stability identified no significant risk of horizontal gene transfer in any of the Lab4 strains and the absence of both antibiotic resistance and virulence genes. These observations were supported by the outcomes of acute phase and repeat dose tolerability studies in Wistar rats where challenge with high doses of Lab4 did not result in any mortalities, clinical/histopathological abnormalities nor indications of systemic toxicity. Detection of increased numbers of lactobacilli and bifidobacteria in the faeces of supplemented rats implied an ability to survive transit through the gastrointestinal tract and/or impact upon the intestinal microbiota composition. In summary, this study provides in silico, in vitro and in vivo support for probiotic functionality and the safety of the Lab4 consortium.
Collapse
Affiliation(s)
- L M Baker
- Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea SA2 8PP, United Kingdom
| | - T S Davies
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, United Kingdom
| | - G Masetti
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, United Kingdom
| | - T R Hughes
- Systems Immunity Research Institute, Henry Welcome Building, Cardiff University, CF14 4XN, United Kingdom
| | - J R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - A A Jack
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, United Kingdom
| | - T S C Joyce
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, United Kingdom
| | - M D Allen
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, United Kingdom
| | - S F Plummer
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, United Kingdom
| | - D R Michael
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, United Kingdom
| | - G Ramanathan
- Pharmacology based Clinical Trials, Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA 70808, USA
| | - R Del Sol
- Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea SA2 8PP, United Kingdom
| | - P D Facey
- Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea SA2 8PP, United Kingdom.
| |
Collapse
|
22
|
Revealing the complex self-assembly behaviour of sodium deoxycholate in aqueous solution. J Colloid Interface Sci 2021; 604:415-428. [PMID: 34271493 DOI: 10.1016/j.jcis.2021.06.140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS Sodium deoxycholate is a natural bile salt produced by animals and fulfilling important physiological processes. It is also used as dispersive surfactant and building block for self-assembled architectures in biology and material science. Although long debated, the study of its self-assembly in water is hereto incomplete and the models of the known aggregates are still controversial. This background suggests a complex scenario likely missing of additional mesophases. EXPERIMENTS Electron and optical microscopy techniques were crossed with SAXS data for the research. FINDINGS Novel rod, sponge, vesicle, lamellae, nanotube phases and reversible transitions among them arise at conditions (concentration, pH, temperature, ionic strength, ionic composition) fitting the physiological working environment of sodium deoxycholate. These findings enlarge the perspective towards different directions. The integration of the previous literature with this work removes any interpretative contradiction since all the structures cover the entire spectrum of phases expected for surfactants, thus being explained according to the Israelachvili's scheme. It is not trivial that a single molecule can show such a high structural variability. This fact highlights a very versatile system. Probably it is not a coincidence that it occurs in a multitasking biomolecule. These results furnish fundamental knowledge to clarify the bile salts' role in vivo.
Collapse
|
23
|
Chikina A, Matic Vignjevic D. At the right time in the right place: How do luminal gradients position the microbiota along the gut? Cells Dev 2021; 168:203712. [PMID: 34174490 DOI: 10.1016/j.cdev.2021.203712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023]
Abstract
The gastrointestinal system is highly compartmentalized, where individual segments perform separate tasks to achieve common physiological goals. The gut luminal content, chyme, changes its chemical and physical properties as it passes through different intestinal segments. Together, the chyme composition, mucus, pH and oxygen gradients along the gut create a variety of highly distinct ecological niches that form, maintain and reinforce the symbiosis with the particular microbiota. Hosting different microbiota members at specific locations creates one of the most complex and sophisticated gradient - gradient of the local ecosystems that live and interact with each other, providing advantages and challenges to the host and creating our microbial self. Here, we discuss how intestinal luminal gradients are created and maintained in homeostasis, their role in a correct microbiota positioning, and their change upon inflammation and cancer.
Collapse
Affiliation(s)
- Aleksandra Chikina
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France.
| | | |
Collapse
|
24
|
Azevedo C, Andersen JT, Traverso G, Sarmento B. The potential of porcine ex vivo platform for intestinal permeability screening of FcRn-targeted drugs. Eur J Pharm Biopharm 2021; 162:99-104. [PMID: 33771621 DOI: 10.1016/j.ejpb.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Conventionally, the intestinal permeability of drugs is evaluated using cell monolayer models that lack morphological, physiological and architectural features, as well as realistic neonatal Fc receptor (FcRn) expression. In addition, it is time-consuming, expensive and excessive to use a large number of mice for large-scale screening of FcRn-targeted candidates. For preclinical validation, it is critical to use suitable models that mimic the human intestine; the porcine ex vivo model is widely used for intestinal permeability studies, due to its physiological and anatomical similarities to humans. This study intended to analyze the potential to measure the intestinal permeability of FcRn-targeted substances using a porcine ex vivo platform, which is able to analyze 96 samples at the same time. In addition, the platform allows the screening of FcRn-targeting substances for transmucosal delivery, taking into consideration (cross-species) receptor-ligand binding kinetics. After analyzing the morphology of the porcine tissue, the FcRn expression across the gastrointestinal tract was verified. By studying the stomach, duodenum and jejunum, it was demonstrated that FcRn expression is maintained for up to 7 days. When evaluating the duodenum permeability of free engineered human albumin variants, it was shown that the variant with the mutation K573P (KP) is more efficiently transported. Given this, the porcine ex vivo platform was revealed to be a potential model for the screening of FcRn-targeted oral drug formulations.
Collapse
Affiliation(s)
- Cláudia Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Jan Terje Andersen
- Department of Immunology, Centre for Immune Regulation (CIR), Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway; Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|
25
|
Broesder A, Kosta AMMAC, Woerdenbag HJ, Nguyen DN, Frijlink HW, Hinrichs WLJ. pH-dependent ileocolonic drug delivery, part II: preclinical evaluation of novel drugs and novel excipients. Drug Discov Today 2020; 25:1374-1388. [PMID: 32562842 DOI: 10.1016/j.drudis.2020.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 01/18/2023]
Abstract
Novel drugs and novel excipients in pH-dependent ileocolonic drug delivery systems have to be tested in animals. Which animal species are suitable and what in vivo methods are used to verify ileocolonic drug delivery?
Collapse
Affiliation(s)
- Annemarie Broesder
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anne-Marijke M A C Kosta
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells and Systems, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Herman J Woerdenbag
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Duong N Nguyen
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henderik W Frijlink
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wouter L J Hinrichs
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
26
|
Broesder A, Woerdenbag HJ, Prins GH, Nguyen DN, Frijlink HW, Hinrichs WLJ. pH-dependent ileocolonic drug delivery, part I: in vitro and clinical evaluation of novel systems. Drug Discov Today 2020; 25:1362-1373. [PMID: 32554060 DOI: 10.1016/j.drudis.2020.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
After the pH dependency of novel pH-dependent ileocolonic drug delivery systems is confirmed in vitro, their performance should be evaluated in human volunteers.
Collapse
Affiliation(s)
- Annemarie Broesder
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Herman J Woerdenbag
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Grietje H Prins
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Duong N Nguyen
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henderik W Frijlink
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wouter L J Hinrichs
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
27
|
Sutehall S, Galloway SDR, Bosch A, Pitsiladis Y. Addition of an Alginate Hydrogel to a Carbohydrate Beverage Enhances Gastric Emptying. Med Sci Sports Exerc 2020; 52:1785-1792. [PMID: 32079920 DOI: 10.1249/mss.0000000000002301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE This study aimed to examine the effect of altering osmolality or adding sodium alginate and pectin to a concentrated carbohydrate (CHO) beverage on gastric-emptying (GE) rate. METHODS Boluses (500 mL) of three drinks were instilled double blind in eight healthy men while seated, GE was measured using the double sampling method for 90 min, and blood samples were collected regularly. Drinks consisted of glucose and fructose (MON; 1392 mOsmol·kg), maltodextrin and fructose (POLY; 727 mOsmol·kg), and maltodextrin, fructose, sodium alginate, and pectin (ENCAP; 732 mOsmol·kg) with each providing 180 g·L CHO (CHO ratio of 1:0.7 maltodextrin or glucose/fructose). RESULTS Time to empty half of the ingested bolus was faster for ENCAP (21 ± 9 min) than for POLY (37 ± 8 min); both were faster than MON (51 ± 15 min). There were main effects for time and drink in addition to an interaction effect for the volume of test drink remaining in the stomach over the 90 min period, but there were no differences between MON and POLY at any time point. ENCAP had a smaller volume of the test drink in the stomach than MON at 30 min (193 ± 62 vs 323 ± 54 mL), which remained less up to 60 min (93 ± 37 vs 210 ± 88 mL). There was a smaller volume of the drink remaining in the stomach in ENCAP compared with POLY 20 min (242 ± 73 vs 318 ± 47 mL) and 30 min (193 ± 62 vs 304 ± 40 mL) after ingestion. Although there was a main effect of time, there was no effect of drink or an interaction effect on serum glucose, insulin or nonesterified fatty acid concentrations. CONCLUSION The addition of sodium alginate and pectin to a CHO beverage enhances early GE rate but did not affect serum glucose, insulin, or nonesterified fatty acid concentration at rest.
Collapse
Affiliation(s)
- Shaun Sutehall
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, SOUTH AFRICA
| | - Stuart D R Galloway
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UNITED KINGDOM
| | - Andrew Bosch
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, SOUTH AFRICA
| | - Yannis Pitsiladis
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UNITED KINGDOM
| |
Collapse
|
28
|
Pancreatic Enzyme Replacement Therapy in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12020275. [PMID: 31979186 PMCID: PMC7073203 DOI: 10.3390/cancers12020275] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer is an aggressive malignancy and the seventh leading cause of global cancer deaths in industrialised countries. More than 80% of patients suffer from significant weight loss at diagnosis and over time tend to develop severe cachexia. A major cause of weight loss is malnutrition. Patients may experience pancreatic exocrine insufficiency (PEI) before diagnosis, during nonsurgical treatment, and/or following surgery. PEI is difficult to diagnose because testing is cumbersome. Consequently, PEI is often detected clinically, especially in non-specialised centres, and treated empirically. In this position paper, we review the current literature on nutritional support and pancreatic enzyme replacement therapy (PERT) in patients with operable and non-operable pancreatic cancer. To increase awareness on the importance of PERT in pancreatic patients, we provide recommendations based on literature evidence, and when data were lacking, based on our own clinical experience.
Collapse
|
29
|
Integrating Duodenal Sampling in a Human Mass Balance Study to Quantify the Elimination Pathways of JNJ-53718678, a Respiratory Syncytial Virus Fusion Protein Inhibitor. Adv Ther 2020; 37:578-591. [PMID: 31832988 DOI: 10.1007/s12325-019-01162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION The study objective was to characterize the excretion and metabolic profile of the respiratory syncytial virus fusion protein inhibitor, JNJ-53718678. Prior animal and in vitro studies suggested three main elimination pathways: N-glucuronidation to M8; CYP(3A4) metabolism leading to circulating metabolites M5, M12, M19 and M37; and JNJ-53718678 biliary excretion. To gain insight into the relative contribution of JNJ-53718678 and M8 biliary excretion, duodenal fluid sampling was incorporated into this mass balance study. METHODS A single oral dose of 500 mg 14C-JNJ-53718678 was administered to six healthy male subjects. Four hours after study drug intake, gallbladder contraction was stimulated and duodenal fluid samples were collected. JNJ-53718678, its key circulating metabolites and total radioactivity (TR) were quantified in plasma, feces, urine and duodenal fluid. Safety was monitored throughout. RESULTS JNJ-53718678 and M12 represented 47.4% and 17.8%, respectively, of TR area under the curve (AUC)∞ in plasma. M37 (9.6%), M19 (5.2%), M5 (4.3%) and M8 (1.4%) were minor metabolites; 70.6% of TR was recovered in feces and 19.9% in urine. Duodenal fluid concentrations (% of TR) were highest for JNJ-53718678 (11.6%) followed by M8 (10.4%), M5 (5.9%) and M12 (1.1%). In feces, 10-16% of TR was JNJ-53718678, 5-8% M5, < 1% M12 and < 1% M8. N-glucuronidation to M8 and direct biliary excretion of JNJ-53718678 represented 7% and 8% of drug clearance, respectively. JNJ-53718678 was safe and well tolerated. CONCLUSIONS JNJ-53718678 is primarily eliminated through CYP3A4-mediated metabolism. By integrating duodenal sampling, N-glucuronidation was confirmed as another metabolic pathway despite the low amount of M8 excreted in urine and feces. TRIAL REGISTRATION Eudract no. 2016-002664-14.
Collapse
|
30
|
Osojnik Črnivec IG, Istenič K, Skrt M, Poklar Ulrih N. Thermal protection and pH-gated release of folic acid in microparticles and nanoparticles for food fortification. Food Funct 2020; 11:1467-1477. [DOI: 10.1039/c9fo02419k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dispersed folic acid was successfully encapsulated in alginate–pectin hydrogels, proliposomes, and combinations thereof, providing an efficient pH-responsive delivery system.
Collapse
Affiliation(s)
- Ilja Gasan Osojnik Črnivec
- Chair of Biochemistry and Food Chemistry
- Department of Food Science and Technology
- Biotechnical Faculty
- University of Ljubljana
- SI-1000 Ljubljana
| | - Katja Istenič
- Chair of Biochemistry and Food Chemistry
- Department of Food Science and Technology
- Biotechnical Faculty
- University of Ljubljana
- SI-1000 Ljubljana
| | - Mihalea Skrt
- Chair of Biochemistry and Food Chemistry
- Department of Food Science and Technology
- Biotechnical Faculty
- University of Ljubljana
- SI-1000 Ljubljana
| | - Nataša Poklar Ulrih
- Chair of Biochemistry and Food Chemistry
- Department of Food Science and Technology
- Biotechnical Faculty
- University of Ljubljana
- SI-1000 Ljubljana
| |
Collapse
|
31
|
Gesenberg C, Mathias NR, Xu Y, Crison J, Savant I, Saari A, Good DJ, Hemenway JN, Narang AS, Schartman RR, Zheng N, Buzescu A, Patel J. Utilization of In Vitro, In Vivo and In Silico Tools to Evaluate the pH-Dependent Absorption of a BCS Class II Compound and Identify a pH-Effect Mitigating Strategy. Pharm Res 2019; 36:164. [PMID: 31637544 DOI: 10.1007/s11095-019-2698-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
|
32
|
Abstract
Mucus selectively controls the transport of molecules, particulate matter, and microorganisms to the underlying epithelial layer. It may be desirable to weaken the mucus barrier to enable effective delivery of drug carriers. Alternatively, the mucus barrier can be strengthened to prevent epithelial interaction with pathogenic microbes or other exogenous materials. The dynamic mucus layer can undergo changes in structure (e.g., pore size) and/or composition (e.g., protein concentrations, mucin glycosylation) in response to stimuli that occur naturally or are purposely administered, thus altering its barrier function. This review outlines mechanisms by which mucus provides a selective barrier and methods to engineer the mucus layer from the perspective of strengthening or weakening its barrier properties. In addition, we discuss strategic design of drug carriers and dosing formulation properties for efficient delivery across the mucus barrier.
Collapse
Affiliation(s)
- T L Carlson
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA;
| | - J Y Lock
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - R L Carrier
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA; .,Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
33
|
Histidine-Rich Glycoprotein Inhibits HIV-1 Infection in a pH-Dependent Manner. J Virol 2019; 93:JVI.01749-18. [PMID: 30518643 DOI: 10.1128/jvi.01749-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/13/2018] [Indexed: 01/27/2023] Open
Abstract
Histidine-rich glycoprotein (HRG) is an abundant plasma protein with a multidomain structure, allowing its interaction with many ligands, including phospholipids, plasminogen, fibrinogen, IgG antibodies, and heparan sulfate. HRG has been shown to regulate different biological responses, such as angiogenesis, coagulation, and fibrinolysis. Here, we found that HRG almost completely abrogated the infection of Ghost cells, Jurkat cells, CD4+ T cells, and macrophages by HIV-1 at a low pH (range, 6.5 to 5.5) but not at a neutral pH. HRG was shown to interact with the heparan sulfate expressed by target cells, inhibiting an early postbinding step associated with HIV-1 infection. More importantly, by acting on the viral particle itself, HRG induced a deleterious effect, which reduces viral infectivity. Because cervicovaginal secretions in healthy women show low pH values, even after semen deposition, our observations suggest that HRG might represent a constitutive defense mechanism in the vaginal mucosa. Of note, low pH also enabled HRG to inhibit the infection of HEp-2 cells and Vero cells by respiratory syncytial virus (RSV) and herpes simplex virus 2 (HSV-2), respectively, suggesting that HRG might display broad antiviral activity under acidic conditions.IMPORTANCE Vaginal intercourse represents a high-risk route for HIV-1 transmission. The efficiency of male-to-female HIV-1 transmission has been estimated to be 1 in every 1,000 episodes of sexual intercourse, reflecting the high degree of protection conferred by the genital mucosa. However, the contribution of different host factors to the protection against HIV-1 at mucosal surfaces remains poorly defined. Here, we report for the first time that acidic values of pH enable the plasma protein histidine-rich glycoprotein (HRG) to strongly inhibit HIV-1 infection. Because cervicovaginal secretions usually show low pH values, our observations suggest that HRG might represent a constitutive antiviral mechanism in the vaginal mucosa. Interestingly, infection by other viruses, such as respiratory syncytial virus and herpes simplex virus 2, was also markedly inhibited by HRG at low pH values, suggesting that extracellular acidosis enables HRG to display broad antiviral activity.
Collapse
|
34
|
Roberts KJ, Bannister CA, Schrem H. Enzyme replacement improves survival among patients with pancreatic cancer: Results of a population based study. Pancreatology 2019; 19:114-121. [PMID: 30385188 DOI: 10.1016/j.pan.2018.10.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic exocrine insufficiency (PEI) and malnutrition are prevalent among patients with pancreatic adenocarcinoma. Pancreatic enzyme replacement therapy (PERT) can correct PEI but its use among patients with pancreatic cancer is unclear as are effects upon survival. This population-based study sought to address these issues METHODS: Subjects with pancreatic adenocarcinoma were identified from the UK Clinical Practice Research Datalink (CPRD). Propensity score matching generated matched pairs of subjects who did and did not receive PERT. Progression to all-cause mortality was compared using parametric survival models that included a range of relevant co-variables RESULTS: PERT use among the whole cohort (987/4554) was 21.7%. Some 1614 subjects generated 807 matched pairs. This resulted in a total, censored follow-up period of 1643 years. There were 1403 deaths in total, representing unadjusted mortality rates of 748 and 994 deaths per 1000 person-years for PERT-treated cases and their matched non-PERT-treated controls, respectively. With reference to the observed survival in pancreatic adenocarcinoma patients, adjusted median survival time was 262% greater in PERT-treated cases (survival time ratio (STR) = 2.62, 95% CI 2.27-3.02) when compared with matched, non-PERT-treated controls. Survival remained significantly greater among subjects receiving PERT regardless of the studied subgroup with respect to use of surgery or chemotherapy CONCLUSIONS: This population based study observes that the majority of patients with pancreatic adenocarcinoma do not receive PERT. PERT is associated with increased survival among patients with pancreatic adenocarcinoma suggesting a lack of clinical awareness and potential benefit of addressing malnutrition among these patients.
Collapse
Affiliation(s)
- K J Roberts
- Honorary Reader and Consultant Surgeon, Institute of Immunology and Immunotherapy, University of Birmingham, UK.
| | | | - H Schrem
- Consultant Surgeon, Dept Visceral, General and Transplant Surgery, Hannover Medical School, Germany
| |
Collapse
|
35
|
Wang S, Ha Y, Huang X, Chin B, Sim W, Chen R. A New Strategy for Intestinal Drug Delivery via pH-Responsive and Membrane-Active Nanogels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36622-36627. [PMID: 30300550 DOI: 10.1021/acsami.8b15661] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oral administration of hydrophobic and poorly intestinal epithelium-permeable drugs is a significant challenge. Herein, we report a new strategy to overcome this problem by using novel, pH-responsive, and membrane-active nanogels as drug carriers. Prepared by simple physical cross-linking of amphiphilic pseudopeptidic polymers with pH-controlled membrane-activity, the size and hydrophobicity-hydrophilicity balance of the nanogels could be well-tuned. Furthermore, the amphiphilic nanogels could release hydrophobic payloads and destabilize cell membranes at duodenum and jejunum pH 5.0-6.0, which suggests their great potential for intestinal drug delivery.
Collapse
Affiliation(s)
- Shiqi Wang
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Youlim Ha
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Xiaozhen Huang
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Benjamin Chin
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Wen Sim
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Rongjun Chen
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| |
Collapse
|
36
|
Gut Microbiota and Iron: The Crucial Actors in Health and Disease. Pharmaceuticals (Basel) 2018; 11:ph11040098. [PMID: 30301142 PMCID: PMC6315993 DOI: 10.3390/ph11040098] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
Iron (Fe) is a highly ample metal on planet earth (~35% of the Earth’s mass) and is particularly essential for most life forms, including from bacteria to mammals. Nonetheless, iron deficiency is highly prevalent in developing countries, and oral administration of this metal is so far the most effective treatment for human beings. Notably, the excessive amount of unabsorbed iron leave unappreciated side effects at the highly interactive host–microbe interface of the human gastrointestinal tract. Recent advances in elucidating the molecular basis of interactions between iron and gut microbiota shed new light(s) on the health and pathogenesis of intestinal inflammatory diseases. We here aim to present the dynamic modulation of intestinal microbiota by iron availability, and conversely, the influence on dietary iron absorption in the gut. The central part of this review is intended to summarize our current understanding about the effects of luminal iron on host–microbe interactions in the context of human health and disease.
Collapse
|
37
|
Felicijan T, Pišlar M, Vene K, Bogataj M. The Influence of Simulated Fasted Gastrointestinal pH Profiles on Diclofenac Sodium Dissolution in a Glass-Bead Flow-Through System. AAPS PharmSciTech 2018; 19:2875-2884. [PMID: 30151730 DOI: 10.1208/s12249-018-1140-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/06/2018] [Indexed: 01/06/2023] Open
Abstract
High inter- and intra-individual variability in the pH of fluids in the human gastrointestinal (GI) tract has been described in the literature. The aim of this study was to assess the influence of physiological variability in fasted pH profiles of media along the GI tract on diclofenac sodium (DF-Na) dissolution from matrix tablets. Four individual in vivo fasted pH profiles were selected from the literature that differed in pH values and transit times from the stomach to the proximal colon. Using a glass-bead device flow-through dissolution system, these pH profiles were simulated in vitro using a specific media sequence and considering simulated intestinal buffer capacities corresponding to in vivo literature data. Dissolution experiments were then performed in the same system with media sequence following individual pH profiles. In dissolution experiments, where influences of simulated gastric emptying time (GET), gastric pH value, small intestinal transit time, and colonic pH were studied; high influence of gastric pH value and GET on DF-Na dissolution was observed. The effect of variability in pH profiles in the range of individual in vivo data on DF-Na dissolution was also clearly observed in experiments, where dissolution studies were performed following three simulated in vivo individual pH profiles. The differences in DF-Na release between three individual pH profiles were substantial; they also reflected in simulated plasma concentration profiles and can be attributed to pH dependent diclofenac solubility.
Collapse
|
38
|
Ling Tan JS, Roberts CJ, Billa N. Mucoadhesive chitosan-coated nanostructured lipid carriers for oral delivery of amphotericin B. Pharm Dev Technol 2018; 24:504-512. [DOI: 10.1080/10837450.2018.1515225] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | - Nashiru Billa
- School of Pharmacy, University of Nottingham, Semenyih, Malaysia
| |
Collapse
|
39
|
Abstract
Clostridium difficile is an anaerobic spore-forming human pathogen that is the leading cause of nosocomial infectious diarrhea worldwide. Germination of infectious spores is the first step in the development of a C. difficile infection (CDI) after ingestion and passage through the stomach. This study investigates the specific conditions that facilitate C. difficile spore germination, including the following: location within the gastrointestinal (GI) tract, pH, temperature, and germinant concentration. The germinants that have been identified in culture include combinations of bile salts and amino acids or bile salts and calcium, but in vitro, these function at concentrations that far exceed normal physiological ranges normally found in the mammalian GI tract. In this work, we describe and quantify a previously unreported synergy observed when bile salts, calcium, and amino acids are added together. These germinant cocktails improve germination efficiency by decreasing the required concentrations of germinants to physiologically relevant levels. Combinations of multiple germinant types are also able to overcome the effects of inhibitory bile salts. In addition, we propose that the acidic conditions within the GI tract regulate C. difficile spore germination and could provide a biological explanation for why patients taking proton pump inhibitors are associated with increased risk of developing a CDI. Clostridium difficile is a Gram-positive obligate anaerobe that forms spores in order to survive for long periods in the unfavorable environment outside a host. C. difficile is the leading cause of nosocomial infectious diarrhea worldwide. C. difficile infection (CDI) arises after a patient treated with broad-spectrum antibiotics ingests infectious spores. The first step in C. difficile pathogenesis is the metabolic reactivation of dormant spores within the gastrointestinal (GI) tract through a process known as germination. In this work, we aim to elucidate the specific conditions and the location within the GI tract that facilitate this process. Our data suggest that C. difficile germination occurs through a two-step biochemical process that is regulated by pH and bile salts, amino acids, and calcium present within the GI tract. Maximal germination occurs at a pH ranging from 6.5 to 8.5 in the terminal small intestine prior to bile salt and calcium reabsorption by the host. Germination can be initiated by lower concentrations of germinants when spores are incubated with a combination of bile salts, calcium, and amino acids, and this synergy is dependent on the availability of calcium. The synergy described here allows germination to proceed in the presence of inhibitory bile salts and at physiological concentrations of germinants, effectively decreasing the concentrations of nutrients required to initiate an essential step of pathogenesis. IMPORTANCEClostridium difficile is an anaerobic spore-forming human pathogen that is the leading cause of nosocomial infectious diarrhea worldwide. Germination of infectious spores is the first step in the development of a C. difficile infection (CDI) after ingestion and passage through the stomach. This study investigates the specific conditions that facilitate C. difficile spore germination, including the following: location within the gastrointestinal (GI) tract, pH, temperature, and germinant concentration. The germinants that have been identified in culture include combinations of bile salts and amino acids or bile salts and calcium, but in vitro, these function at concentrations that far exceed normal physiological ranges normally found in the mammalian GI tract. In this work, we describe and quantify a previously unreported synergy observed when bile salts, calcium, and amino acids are added together. These germinant cocktails improve germination efficiency by decreasing the required concentrations of germinants to physiologically relevant levels. Combinations of multiple germinant types are also able to overcome the effects of inhibitory bile salts. In addition, we propose that the acidic conditions within the GI tract regulate C. difficile spore germination and could provide a biological explanation for why patients taking proton pump inhibitors are associated with increased risk of developing a CDI.
Collapse
|
40
|
Rib-Schmidt C, Riedl P, Meisinger V, Schwaben L, Schulenborg T, Reuter A, Schiller D, Seutter von Loetzen C, Rösch P. pH and Heat Resistance of the Major Celery Allergen Api g 1. Mol Nutr Food Res 2018; 62:e1700886. [PMID: 29800504 DOI: 10.1002/mnfr.201700886] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/09/2018] [Indexed: 01/24/2023]
Abstract
SCOPE The major celery allergen Api g 1 is a member of the pathogenesis-related 10 class protein family. This study aims to investigate the impact of heat and pH on the native protein conformation required for Immunoglobulin E (IgE) recognition. METHODS AND RESULTS Spectroscopic methods, MS and IgE-binding analyses are used to study the effects of pH and thermal treatment on Api g 1.0101. Heat processing results in a loss of the native protein fold via denaturation, oligomerization, and precipitation along with a subsequent reduction of IgE recognition. The induced effects and timescales are strongly pH dependent. While Api g 1 refolds partially into an IgE-binding conformation at physiological pH, acidic pH treatment leads to the formation of structurally heat-resistant, IgE-reactive oligomers. Thermal processing in the presence of a celery matrix or at pH conditions close to the isoelectric point (pI = 4.63) of Api g 1.0101 results in almost instant precipitation. CONCLUSION This study demonstrates that Api g 1.0101 is not intrinsically susceptible to heat treatment in vitro. However, the pH and the celery matrix strongly influence the stability of Api g 1.0101 and might be the main reasons for the observed temperature lability of this important food allergen.
Collapse
Affiliation(s)
- Carina Rib-Schmidt
- Department of Biopolymers, University of Bayreuth, Bayreuth, 95447, Germany
| | - Philipp Riedl
- Department of Biopolymers, University of Bayreuth, Bayreuth, 95447, Germany
| | - Veronika Meisinger
- Department of Biopolymers, University of Bayreuth, Bayreuth, 95447, Germany
| | - Luisa Schwaben
- Division of Allergology, Paul-Ehrlich-Institut, Langen, 63225, Germany
| | | | - Andreas Reuter
- Division of Allergology, Paul-Ehrlich-Institut, Langen, 63225, Germany
| | - Dirk Schiller
- Division of Allergology, Paul-Ehrlich-Institut, Langen, 63225, Germany
| | | | - Paul Rösch
- Department of Biopolymers, University of Bayreuth, Bayreuth, 95447, Germany
| |
Collapse
|
41
|
Geerlings SY, Kostopoulos I, de Vos WM, Belzer C. Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How? Microorganisms 2018; 6:microorganisms6030075. [PMID: 30041463 PMCID: PMC6163243 DOI: 10.3390/microorganisms6030075] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023] Open
Abstract
Akkermansia muciniphila is a mucin-degrading bacterium of the phylum Verrucomicrobia. Its abundance in the human intestinal tract is inversely correlated to several disease states. A. muciniphila resides in the mucus layer of the large intestine, where it is involved in maintaining intestinal integrity. We explore the presence of Akkermansia-like spp. based on its 16S rRNA sequence and metagenomic signatures in the human body so as to understand its colonization pattern in time and space. A. muciniphila signatures were detected in colonic samples as early as a few weeks after birth and likely could be maintained throughout life. The sites where Akkermansia-like sequences (including Verrucomicrobia phylum and/or Akkermansia spp. sequences found in the literature) were detected apart from the colon included human milk, the oral cavity, the pancreas, the biliary system, the small intestine, and the appendix. The function of Akkermansia-like spp. in these sites may differ from that in the mucosal layer of the colon. A. muciniphila present in the appendix or in human milk could play a role in the re-colonization of the colon or breast-fed infants, respectively. In conclusion, even though A. muciniphila is most abundantly present in the colon, the presence of Akkermansia-like spp. along the digestive tract indicates that this bacterium might have more functions than those currently known.
Collapse
Affiliation(s)
- Sharon Y Geerlings
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands.
| | - Ioannis Kostopoulos
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands.
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands.
- Immunobiology Research Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, 00014 Helsinki, Finland.
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands.
| |
Collapse
|
42
|
Park D, Xu G, Barboza M, Shah IM, Wong M, Raybould H, Mills DA, Lebrilla CB. Enterocyte glycosylation is responsive to changes in extracellular conditions: implications for membrane functions. Glycobiology 2018; 27:847-860. [PMID: 28486580 DOI: 10.1093/glycob/cwx041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Epithelial cells in the lining of the intestines play critical roles in maintaining homeostasis while challenged by dynamic and sudden changes in luminal contents. Given the high density of glycosylation that encompasses their extracellular surface, environmental changes may lead to extensive reorganization of membrane-associated glycans. However, neither the molecular details nor the consequences of conditional glycan changes are well understood. Here we assessed the sensitivity of Caco-2 and HT-29 membrane N-glycosylation to variations in (i) dietary elements, (ii) microbial fermentation products and (iii) cell culture parameters relevant to intestinal epithelial cell growth and survival. Based on global LC-MS glycomic and statistical analyses, the resulting glycan expression changes were systematic, dependent upon the conditions of each controlled environment. Exposure to short chain fatty acids produced significant increases in fucosylation while further acidification promoted hypersialylation. Notably, among all conditions, increases of high mannose type glycans were identified as a major response when extracellular fructose, galactose and glutamine were independently elevated. To examine the functional consequences of this discrete shift in the displayed glycome, we applied a chemical inhibitor of the glycan processing mannosidase, globally intensifying high mannose expression. The data reveal that upregulation of high mannose glycosylation has detrimental effects on basic intestinal epithelium functions by altering permeability, host-microbe associations and membrane protein activities.
Collapse
Affiliation(s)
| | | | - Mariana Barboza
- Department of Chemistry.,Department of Anatomy, Physiology and Cell Biology
| | - Ishita M Shah
- Department of Food Science and Technology, University of California, 1 Shields Ave, Davis, CA 95616,USA
| | | | | | - David A Mills
- Department of Food Science and Technology, University of California, 1 Shields Ave, Davis, CA 95616,USA
| | | |
Collapse
|
43
|
Giarratano A, Green SE, Nicolau DP. Review of antimicrobial use and considerations in the elderly population. Clin Interv Aging 2018; 13:657-667. [PMID: 29713150 PMCID: PMC5909780 DOI: 10.2147/cia.s133640] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pharmacologic management of infections in elderly patients presents multiple challenges to health care professionals due to variable pharmacokinetics, pharmacodynamics, and immune function. Age is a well-established risk factor for infection, but furthermore is a risk factor for prolonged length of hospital stay, increased incidence of complications, and significant and sustained decline in baseline functional status. In 2014, 46.2 million Americans were aged ≥65 years, accounting for 14.5% of the total population. By 2033, for the first time, the population of persons aged ≥65 years is projected to outnumber the people <18 years of age. According to the National Ambulatory Medical Care Survey and the National Hospital Ambulatory Medical Care Survey, 154 million prescriptions for antimicrobials were estimated to have been written in doctors’ offices and emergency departments during a 1-year time period. In 2014, 266.1 million courses of antimicrobials were dispensed to outpatients by US community pharmacies. A study that evaluated 2007–2009 Medicare Part D data found that patients aged ≥65 years used more antimicrobials, at 1.10 per person per year, compared to 0.88 antimicrobials used per person per year in patients aged 0–64 years. With the abundance of antimicrobial prescriptions and the current growth in the number and proportion of older adults in the US, it is essential that health care providers understand appropriate antimicrobial pharmacotherapy in the elderly patient. This review focuses on the use and implications of antimicrobial agents in the elderly population.
Collapse
Affiliation(s)
| | | | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
44
|
Kuwahara A, Kuwahara Y, Inui T, Marunaka Y. Regulation of Ion Transport in the Intestine by Free Fatty Acid Receptor 2 and 3: Possible Involvement of the Diffuse Chemosensory System. Int J Mol Sci 2018; 19:ijms19030735. [PMID: 29510573 PMCID: PMC5877596 DOI: 10.3390/ijms19030735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/10/2018] [Accepted: 03/02/2018] [Indexed: 12/20/2022] Open
Abstract
The diffuse chemosensory system (DCS) is well developed in the apparatuses of endodermal origin like gastrointestinal (GI) tract. The primary function of the GI tract is the extraction of nutrients from the diet. Therefore, the GI tract must possess an efficient surveillance system that continuously monitors the luminal contents for beneficial or harmful compounds. Recent studies have shown that specialized cells in the intestinal lining can sense changes in the luminal content. The chemosensory cells in the GI tract belong to the DCS which consists of enteroendocrine and related cells. These cells initiate various important local and remote reflexes. Although neural and hormonal involvements in ion transport in the GI tract are well documented, involvement of the DCS in the regulation of intestinal ion transport is much less understood. Since activation of luminal chemosensory receptors is a primary signal that elicits changes in intestinal ion transport and motility and failure of the system causes dysfunctions in host homeostasis, as well as functional GI disorders, study of the regulation of GI function by the DCS has become increasingly important. This review discusses the role of the DCS in epithelial ion transport, with particular emphasis on the involvement of free fatty acid receptor 2 (FFA2) and free fatty acid receptor 3 (FFA3).
Collapse
Affiliation(s)
- Atsukazu Kuwahara
- Division of Molecular Cell Physiology, Kyoto prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yuko Kuwahara
- Division of Molecular Cell Physiology, Kyoto prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Toshio Inui
- Saisei Mirai medical corporation, 6-14-17 Kinda, Moriguchi, Osaka 570-0011, Japan.
| | - Yoshinori Marunaka
- Division of Molecular Cell Physiology, Kyoto prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan.
| |
Collapse
|
45
|
McGee EJT, Diosady LL. Prevention of iron-polyphenol complex formation by chelation in black tea. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.11.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Yska JP, Punter RJ, Woerdenbag HJ, Emous M, Frijlink HW, Wilffert B, van Roon EN. A gastrointestinal simulation system for dissolution of oral solid dosage forms before and after Roux-en-Y gastric bypass. Eur J Hosp Pharm 2018; 26:152-156. [PMID: 31428323 DOI: 10.1136/ejhpharm-2017-001360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 01/13/2018] [Accepted: 01/22/2018] [Indexed: 12/31/2022] Open
Abstract
Background The Roux-en-Y gastric bypass (RYGB) is a bariatric procedure, greatly reducing the stomach size and bypassing the duodenum and proximal jejunum. Hence, RYGB may reduce the absorption and bioavailability of oral medication. For clinical decisions on the use of medication, knowledge of altered modifications in drug disposition is a prerequisite. An in vitro dissolution method for solid oral medications, simulating conditions before and after RYGB, might be a valuable tool to predict the pharmaceutical availability of medicines frequently used by patients after RYGB. Objectives To develop a gastrointestinal simulation system (GISS), mimicking conditions before and after RYGB for investigating dissolution characteristics of solid oral medications, and to assess the pharmaceutical availability of metoprolol from immediate-release (IR) and controlled-release (CR) tablets under these conditions. Methods With an adjusted, pharmacopoeial paddle dissolution apparatus, the GISS enables variation in parameters which are relevant to drug release in vivo: pH, volume, residence time, osmolality and agitation. Metoprolol tartrate 100 mg IR tablets and metoprolol CR tablets were tested. Release profiles were determined by measuring the concentrations of metoprolol spectrophotometrically. Results From IR tablets, under all conditions applied, >85% of metoprolol was released within 25 min. From all tested CR tablets >90% of metoprolol was released after 22 hours. Conclusions This GISS is a suitable dissolution system to assess pharmaceutical availability before and after RYGB. In patients who have undergone RYGB, no problems in pharmaceutical availability of metoprolol IR and CR tablets are to be expected. Any changes in response to metoprolol in patients after RYGB should therefore be ascribed to changes in bioavailability.
Collapse
Affiliation(s)
- Jan Peter Yska
- Department of Clinical Pharmacy and Clinical Pharmacology, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Ronald J Punter
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Groningen, The Netherlands
| | - Herman J Woerdenbag
- Department of Surgery, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Marloes Emous
- Department of Surgery, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Groningen, The Netherlands
| | - Bob Wilffert
- University of Groningen, Groningen Research Institute of Pharmacy, PharmacoTherapy, Epidemiology and Economics, Groningen, The Netherlands.,Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eric N van Roon
- Department of Clinical Pharmacy and Clinical Pharmacology, Medical Centre Leeuwarden, Leeuwarden, The Netherlands.,University of Groningen, Groningen Research Institute of Pharmacy, PharmacoTherapy, Epidemiology and Economics, Groningen, The Netherlands
| |
Collapse
|
47
|
Guariglia-Oropeza V, Orsi RH, Guldimann C, Wiedmann M, Boor KJ. The Listeria monocytogenes Bile Stimulon under Acidic Conditions Is Characterized by Strain-Specific Patterns and the Upregulation of Motility, Cell Wall Modification Functions, and the PrfA Regulon. Front Microbiol 2018; 9:120. [PMID: 29467736 PMCID: PMC5808219 DOI: 10.3389/fmicb.2018.00120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/18/2018] [Indexed: 11/16/2022] Open
Abstract
Listeria monocytogenes uses a variety of transcriptional regulation strategies to adapt to the extra-host environment, the gastrointestinal tract, and the intracellular host environment. While the alternative sigma factor SigB has been proposed to be a key transcriptional regulator that facilitates L. monocytogenes adaptation to the gastrointestinal environment, the L. monocytogenes' transcriptional response to bile exposure is not well-understood. RNA-seq characterization of the bile stimulon was performed in two L. monocytogenes strains representing lineages I and II. Exposure to bile at pH 5.5 elicited a large transcriptomic response with ~16 and 23% of genes showing differential transcription in 10403S and H7858, respectively. The bile stimulon includes genes involved in motility and cell wall modification mechanisms, as well as genes in the PrfA regulon, which likely facilitate survival during the gastrointestinal stages of infection that follow bile exposure. The fact that bile exposure induced the PrfA regulon, but did not induce further upregulation of the SigB regulon (beyond that expected by exposure to pH 5.5), suggests a model where at the earlier stages of gastrointestinal infection (e.g., acid exposure in the stomach), SigB-dependent gene expression plays an important role. Subsequent exposure to bile induces the PrfA regulon, potentially priming L. monocytogenes for subsequent intracellular infection stages. Some members of the bile stimulon showed lineage- or strain-specific distribution when 27 Listeria genomes were analyzed. Even though sigB null mutants showed increased sensitivity to bile, the SigB regulon was not found to be upregulated in response to bile beyond levels expected by exposure to pH 5.5. Comparison of wildtype and corresponding ΔsigB strains newly identified 26 SigB-dependent genes, all with upstream putative SigB-dependent promoters.
Collapse
Affiliation(s)
| | - Renato H Orsi
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Claudia Guldimann
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Kathryn J Boor
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
48
|
Murgia X, Loretz B, Hartwig O, Hittinger M, Lehr CM. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv Drug Deliv Rev 2018; 124:82-97. [PMID: 29106910 DOI: 10.1016/j.addr.2017.10.009] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/29/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022]
Abstract
A layer of mucus covers the surface of all wet epithelia throughout the human body. Mucus is a hydrogel mainly composed of water, mucins (glycoproteins), DNA, proteins, lipids, and cell debris. This complex composition yields a tenacious viscoelastic hydrogel that lubricates and protects the exposed epithelia from external threats and enzymatic degradation. The natural protective role of mucus is nowadays acknowledged as a major barrier to be overcome in non-invasive drug delivery. The heterogeneity of mucus components offers a wide range of potential chemical interaction sites for macromolecules, while the mesh-like architecture given to mucus by the intermolecular cross-linking of mucin molecules results in a dense network that physically, and in a size-dependent manner, hinders the diffusion of nanoparticles through mucus. Consequently, drug diffusion, epithelial absorption, drug bioavailability, and ultimately therapeutic outcomes of mucosal drug delivery can be attenuated.
Collapse
Affiliation(s)
- Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Marius Hittinger
- PharmBioTec GmbH, Science Park 1 Campus D 1.1, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany; PharmBioTec GmbH, Science Park 1 Campus D 1.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
49
|
Cruz-Neves S, Shirosaki Y, Miyazaki T, Hayakawa S. Characterization and degradation study of chitosan-siloxane hybrid microspheres synthesized using a microfluidic approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:571-579. [DOI: 10.1016/j.msec.2017.08.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/20/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
|
50
|
Gonzalez Ballesteros LF, Ma NS, Gordon RJ, Ward L, Backeljauw P, Wasserman H, Weber DR, DiMeglio LA, Gagne J, Stein R, Cody D, Simmons K, Zimakas P, Topor LS, Agrawal S, Calabria A, Tebben P, Faircloth R, Imel EA, Casey L, Carpenter TO. Unexpected widespread hypophosphatemia and bone disease associated with elemental formula use in infants and children. Bone 2017; 97:287-292. [PMID: 28167344 PMCID: PMC5884631 DOI: 10.1016/j.bone.2017.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Hypophosphatemia occurs with inadequate dietary intake, malabsorption, increased renal excretion, or shifts between intracellular and extracellular compartments. We noticed the common finding of amino-acid based elemental formula [EF] use in an unexpected number of cases of idiopathic hypophosphatemia occurring in infants and children evaluated for skeletal disease. We aimed to fully characterize the clinical profiles in these cases. METHODS A retrospective chart review of children with unexplained hypophosphatemia was performed as cases accumulated from various centres in North America and Ireland. Data were analyzed to explore any relationships between feeding and biochemical or clinical features, effects of treatment, and to identify a potential mechanism. RESULTS Fifty-one children were identified at 17 institutions with EF-associated hypophosphatemia. Most children had complex illnesses and had been solely fed Neocate® formula products for variable periods of time prior to presentation. Feeding methods varied. Hypophosphatemia was detected during evaluation of fractures or rickets. Increased alkaline phosphatase activity and appropriate renal conservation of phosphate were documented in nearly all cases. Skeletal radiographs demonstrated fractures, undermineralization, or rickets in 94% of the cases. Although the skeletal disease had often been attributed to underlying disease, most all improved with addition of supplemental phosphate or change to a different formula product. CONCLUSION The observed biochemical profiles indicated a deficient dietary supply or severe malabsorption of phosphate, despite adequate formula composition. When transition to an alternate formula was possible, biochemical status improved shortly after introduction to the alternate formula, with eventual improvement of skeletal abnormalities. These observations strongly implicate that bioavailability of formula phosphorus may be impaired in certain clinical settings. The widespread nature of the findings lead us to strongly recommend careful monitoring of mineral metabolism in children fed EF. Transition to alternative formula use or implementation of phosphate supplementation should be performed cautiously with as severe hypocalcemia may develop.
Collapse
Affiliation(s)
| | - Nina S Ma
- Boston Children's Hospital, Boston, MA, United States
| | | | - Leanne Ward
- Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | | | | | - David R Weber
- University of Rochester, Rochester, NY, United States
| | - Linda A DiMeglio
- Riley Hospital for Children, Indiana University, Indianapolis, IN, United States
| | - Julie Gagne
- Centre Hospitalier de l'Université Laval, Quebec City, QC, Canada
| | - Robert Stein
- Children's Hospital of Western Ontario, London, ON, Canada
| | - Declan Cody
- Our Lady's Children's Hospital, Crumlin, Ireland
| | | | - Paul Zimakas
- University of Vermont Medical Center, Burlington, VT, United States
| | - Lisa Swartz Topor
- Alpert Medical School of Brown University, Providence, RI, United States; Hasbro Children's Hospital, Providence, RI, United States
| | - Sungeeta Agrawal
- Alpert Medical School of Brown University, Providence, RI, United States; Hasbro Children's Hospital, Providence, RI, United States
| | - Andrew Calabria
- Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Ruth Faircloth
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Erik A Imel
- Riley Hospital for Children, Indiana University, Indianapolis, IN, United States
| | - Linda Casey
- British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Thomas O Carpenter
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT, United States.
| |
Collapse
|