1
|
Su M, Zhang X, Yuan J, Zhang X, Li F. The Role of Insulin-like Peptide in Maintaining Hemolymph Glucose Homeostasis in the Pacific White Shrimp Litopenaeus vannamei. Int J Mol Sci 2022; 23:ijms23063268. [PMID: 35328689 PMCID: PMC8948857 DOI: 10.3390/ijms23063268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Insulin-like peptide (ILP) has been identified in various crustaceans, but whether it has a similar function in regulating hemolymph glucose as vertebrate insulin is unclear. We analyzed the components of hemolymph sugar in the Pacific white shrimp, Litopenaeus vannamei, and investigated the changes of hemolymph glucose concentration and the expressions of ILP and glucose metabolism genes under different treatments. We found glucose was a major component of hemolymph sugar in shrimp. Starvation caused hemolymph glucose to rise first and then decline, and the raised hemolymph glucose after exogenous glucose injection returned to basal levels within a short time, indicating that shrimp have a regulatory mechanism to maintain hemolymph glucose homeostasis. In addition, injections of bovine insulin and recombinant LvILP protein both resulted in a fast decline in hemolymph glucose. Notably, RNA interference of LvILP did not significantly affect hemolymph glucose levels, but it inhibited exogenous glucose clearance. Based on the detection of glucose metabolism genes, we found LvILP might maintain hemolymph glucose stability by regulating the expression of these genes. These results suggest that ILP has a conserved function in shrimp similar to insulin in vertebrates and plays an important role in maintaining hemolymph glucose homeostasis.
Collapse
Affiliation(s)
- Manwen Su
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.S.); (J.Y.); (X.Z.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.S.); (J.Y.); (X.Z.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| | - Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.S.); (J.Y.); (X.Z.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.S.); (J.Y.); (X.Z.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.S.); (J.Y.); (X.Z.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Trapp M, Valle SC, Pöppl AG, Chittó ALF, Kucharski LC, Da Silva RSM. Insulin-like receptors and carbohydrate metabolism in gills of the euryhaline crab Neohelice granulata: Effects of osmotic stress. Gen Comp Endocrinol 2018; 262:81-89. [PMID: 29548758 DOI: 10.1016/j.ygcen.2018.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 11/16/2022]
Abstract
The present study determined the effect of osmotic stress on the insulin-like receptor binding characteristics and on glucose metabolism in the anterior (AG) and posterior (PG) gills of the crab Neohelice granulata. Bovine insulin increased the capacity of the PG cell membrane to phosphorylate exogenous substrate poly (Glu:Tyr 4:1) and the glucose uptake in the control crab group. The crabs were submitted to three periods of hyperosmotic (HR) and hyposmotic (HO) stress, for 24, 72 and 144 h, to investigate the insulin-like receptor phosphorylation capacity of gills. Acclimation to HO for 24 h or HR for 144 h of stress inhibited the effects of insulin in the PG, decreasing the capacity of insulin to phosphorylate exogenous substrate poly (Glu:Tyr 4:1) and decreasing the glucose uptake. Hyperosmotic stress for the same period of 144 h significantly affected 125I-insulin binding in the AG and PG. However, HO stress for 24 h significantly reduced 125I-insulin-specific uptake only in the PG. Therefore, osmotic stress induces alterations in the gill insulin-like receptors that decrease insulin binding in the PG. These findings indicate that osmotic stress induced a pattern of insulin resistance in the PG. The free-glucose concentration in the PG decreased during acclimation to 144 h of HR stress and 24 h of HO stress. This decrease in the cell free-glucose concentration was not accompanied by a significant change in hemolymph glucose levels. In AG from the control group, neither the capacity of bovine insulin to phosphorylate exogenous substrate poly (Glu:Tyr 4:1) nor the glucose uptake changed; however, genistein decreased tyrosine-kinase activity, confirming that this receptor belongs to the tyrosine-kinase family. Acclimation to HO (24 h) or HR (144 h) stress decreased tyrosine-kinase activity in the AG. This study provided new information on the mechanisms involved in the osmoregulation process in crustaceans, demonstrating for the first time in an estuarine crab that osmotic challenge inhibited insulin-like signaling and the effect of insulin on glucose uptake in the PG.
Collapse
Affiliation(s)
- Márcia Trapp
- Laboratório de Metabolismo e Endocrinologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Sarmento Leite, 500, ICBS - Campus Centro, Porto Alegre CEP 90050-170, RS, Brazil.
| | - Sandra Costa Valle
- Laboratório de Metabolismo e Endocrinologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Sarmento Leite, 500, ICBS - Campus Centro, Porto Alegre CEP 90050-170, RS, Brazil; Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas CEP 96010-610, RS, Brazil
| | - Alan Gomes Pöppl
- Laboratório de Metabolismo e Endocrinologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Sarmento Leite, 500, ICBS - Campus Centro, Porto Alegre CEP 90050-170, RS, Brazil; Setor de Clínica de Pequenos Animais, Hospital de Clínicas Veterinárias, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9090, Agronomia, Porto Alegre CEP 91540-000, RS, Brazil
| | - Ana Lúcia Fernandes Chittó
- Laboratório de Metabolismo e Endocrinologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Sarmento Leite, 500, ICBS - Campus Centro, Porto Alegre CEP 90050-170, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681 Partenon, Porto Alegre CEP 90619-900, RS, Brazil
| | - Luiz Carlos Kucharski
- Laboratório de Metabolismo e Endocrinologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Sarmento Leite, 500, ICBS - Campus Centro, Porto Alegre CEP 90050-170, RS, Brazil
| | - Roselis Silveira Martins Da Silva
- Laboratório de Metabolismo e Endocrinologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Sarmento Leite, 500, ICBS - Campus Centro, Porto Alegre CEP 90050-170, RS, Brazil
| |
Collapse
|
3
|
Chandler JC, Aizen J, Elizur A, Hollander-Cohen L, Battaglene SC, Ventura T. Discovery of a novel insulin-like peptide and insulin binding proteins in the Eastern rock lobster Sagmariasus verreauxi. Gen Comp Endocrinol 2015; 215:76-87. [PMID: 25218129 DOI: 10.1016/j.ygcen.2014.08.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 01/06/2023]
Abstract
This study reports, for the first time in any of the commercially important decapod species, the identification of an insulin-like peptide (ILP), distinct from the androgenic gland hormone. Bioinformatics analysis of the de novo assembled spiny lobster, (Sagmariasus verreauxi) transcriptome, allowed identification of Sv-ILP1 as well as eight binding proteins. Binding proteins were termed as Sv-IGFBP, due to homology with the vertebrate insulin-like growth-factor binding protein and Sv-SIBD1-7, single insulin-binding domain protein (SIBD), similar to those identified in other invertebrate species. Sv-ILP1 was found to be expressed in the eyestalk, gonads and antennal gland of both sexes and to a lesser extent in male muscle, androgenic gland and hepatopancreas. The expression profiles of each binding protein were found to vary across tissues, with Sv-SIBD5, 6 and 7 showing higher expression in the gonad, demonstrated by PCR and digital gene expression. Further spatial investigations, using in-situ hybridisation, found Sv-ILP1 to be expressed in the neurosecretory cells of the thoracic ganglia, in keeping with the tissue expression of Drosophila ILP7 (DILP7). This correlative tissue expression, considered with the phylogenetic clustering of Sv-ILP1 and DILP7, suggests Sv-ILP1 to be a DILP7 orthologue. The broad expression of Sv-ILP1 strongly suggests that ILPs have a role beyond that of masculinisation in decapods. The function of these novel peptides may have application in enhancing aquaculture practices in the commercially important decapod species.
Collapse
Affiliation(s)
- Jennifer C Chandler
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia
| | - Joseph Aizen
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia
| | - Abigail Elizur
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia
| | - Lian Hollander-Cohen
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Stephen C Battaglene
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Tomer Ventura
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia.
| |
Collapse
|
4
|
Piñero-González J, González-Pérez A. The ubiquity of the insulin superfamily across the eukaryotes detected using a bioinformatics approach. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:439-47. [PMID: 21410328 DOI: 10.1089/omi.2010.0141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The insulin superfamily is composed of a diverse group of proteins that share a common structural design whose most notable feature is a set of disulfide bonds. There is now sufficient experimental and bioinformatics evidence that it is represented in at least a number of well-investigated invertebrates, where they have been found to intervene mainly in complex processes such as mitosis, cell growth, castes differentiation, and fertility. In this article we automated a methodology first proposed elsewhere-that combines sequence similarity with assessing membership to the superfamily by conservation of structuraly key residues-to identify putative insulin-like peptides (ILPs) in completely sequenced genomes, and applied it as a pipeline to a group of 46 organisms both vertebrates and invertebrates. As a result, we were able to identify 1,653 putative members of the insulin superfamily, from 17 putative members in C. savigny to 58 in X. tropicalis. Moreover, we found that structural distinctions-such as peptides length-between functionally diverse members of the superfamily found in vertebrates, that is, insulins, IGFs, and relaxins, are not equally represented in invertebrates genomes, suggesting that such divergence has occurred only recently in the evolutionary history of vertebrates.
Collapse
|
5
|
Castellanos M, Jiménez-Vega F, Vargas-Albores F. Single IB domain (SIBD) protein from Litopenaeus vannamei, a novel member for the IGFBP family. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 3:270-4. [PMID: 20494846 DOI: 10.1016/j.cbd.2008.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 11/30/2022]
Abstract
Several clones encoding for a peptide similar to insulin-like growth factor protein binding (IGFBP) were found in a Litopenaeus vannamei hemocytes cDNA library. Although IGFBP is constituted by two well defined domains (IB and tyroglobulin) joint by a flexible region; the shrimp transcript encoding only for the IB domain as confirmed by Northern analysis. The expression of this, single IB domain (SIBD)-containing protein is modified by bacteria inoculation suggesting a role in immune response. In addition, shrimp SIBD protein seems to be the common ancestor for the IGFBP superfamily.
Collapse
Affiliation(s)
- Mónica Castellanos
- Centro de Investigación en Alimentación y Desarrollo (CIAD). Marine Biotechnology Lab. PO Box 1735, Hermosillo, Son, 83000, Mexico
| | | | | |
Collapse
|
6
|
Gutiérrez A, Nieto J, Pozo F, Stern S, Schoofs L. Effect of insulin/IGF-I like peptides on glucose metabolism in the white shrimp Penaeus vannamei. Gen Comp Endocrinol 2007; 153:170-5. [PMID: 17574553 DOI: 10.1016/j.ygcen.2007.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 03/02/2007] [Accepted: 04/19/2007] [Indexed: 11/20/2022]
Abstract
The insulin-like hormone superfamily encompasses insulin, relaxin, and insulin-like growth factors I (IGF1) and II (IGF2). Insulin hormones regulate cell growth, metabolism, and tissue-specific functions. The presence of insulin has been demonstrated in various invertebrates, and their function as growth promoting or controlling factors has been established in molluscs and insects. In crustaceans, the presence of insulin/insulin-like growth factor (IGF)-like peptides has also been suggested and functional studies have been associated with metabolic control. The general aim of the current study was to elucidate the functional significance of insulin-like peptides in the white shrimp Penaeus vannamei. Because the primary structure of Penaeus insulin is yet unknown, we examined the effect of mammalian insulin/IGF-I on glucose metabolism in P. vannamei. Juvenile shrimps were injected with a single dose of recombinant human (rh) IGF-I or bovine insulin in intermolt stage. Glucose/glycogen levels in shrimp hemolymph and tissues (muscle, hepatopancreas and gills) were determined over a 5h period by means of an enzymatic analysis. We showed that an injection of rhIGF-I induced a significant (P<0.01) increase in glucose levels in hemolymph, 1h after injection and followed by a decrease (P<0.05) 5h post-injection. In the hepatopancreas, an increase (P<0.05) in the glycogen content was observed 3h after insulin treatment. Finally, a significant elevation (P<0.01) of glycogen content in the gills throughout the entire sampling period was detected. Our study suggests the presence of endogenous Penaeus insulin(s) that, just like its vertebrate counterparts, is likely to be involved in the regulation of carbohydrate metabolism in crustaceans.
Collapse
Affiliation(s)
- Ana Gutiérrez
- Laboratory for Developmental Physiology, Genomics and Proteomics, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
7
|
Gallardo N, Carrillo O, Moltó E, Deás M, González-Suárez R, Carrascosa JM, Ros M, Andrés A. Isolation and biological characterization of a 6-kDa protein from hepatopancreas of lobster Panulirus argus with insulin-like effects. Gen Comp Endocrinol 2003; 131:284-90. [PMID: 12714010 DOI: 10.1016/s0016-6480(03)00014-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A protein with insulin-like effects was isolated from the hepatopancreas of the lobster Panulirus argus following a classic method for mammalian insulin purification from the pancreas. After acid-alcoholic extraction and ethanol-ether precipitation followed by molecular filtration chromatography, a protein with an apparent molecular weight of 6 kDa was isolated. This protein is characterized by its ability to interact with anti-insulin antibodies and by mimicking insulin actions as the stimulation of glucose oxidation to CO(2) and lipogenesis in isolated rat adipocytes. In addition, this insulin immunoreactive protein (IIP) was able to stimulate the autophosphorylation of the insulin receptor present in rat adipocyte plasma membranes, in a dose-dependent manner. The immunological and biochemical results obtained are consistent with the hypothesis that protein(s) with insulin-like effects occur in the digestive gland of the lobster P. argus and may be of significance to control metabolic and growth related processes in crustaceans.
Collapse
Affiliation(s)
- Nilda Gallardo
- Area de Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kucharski LC, Schein V, Capp E, da Silva RSM. In vitro insulin stimulatory effect on glucose uptake and glycogen synthesis in the gills of the estuarine crab Chasmagnathus granulata. Gen Comp Endocrinol 2002; 125:256-63. [PMID: 11884071 DOI: 10.1006/gcen.2001.7748] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to examine the effects of insulin on glucose uptake and glycogen synthesis in crab Chasmagnathus granulata gills. We observed an increased glucose uptake and incorporation of d-[(14)C]glucose into glycogen when posterior C. granulata gills were incubated in the presence of insulin; however, this was not observed in anterior gills, despite the presence of similar insulin receptors. In posterior gills, basal glucose uptake in the summer was significantly higher than in the winter. Moreover, in the summer, the insulin dose required to stimulate glucose uptake was twice as high as in the winter. However, there was no significant difference in terms of basal glycogen synthesis in summer and winter. In crustaceans, the endogenous insulin/IGFI substance might be involved in the rapid restoration of glycogen levels in the gills, increasing glucose uptake and glycogen synthesis. Bovine insulin seems to have a stimulatory effect on glycogen metabolism only in posterior gills.
Collapse
Affiliation(s)
- Luiz Carlos Kucharski
- Department of Physiology, Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, 90050-170, Brazil
| | | | | | | |
Collapse
|
9
|
Kucharski LC, Ribeiro MF, Schein V, Da Silva RSM, Marques M. Insulin binding sites in gills of the estuarine crabChasmagnathus granulata. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1097-010x(19971001)279:2<118::aid-jez2>3.0.co;2-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Gadenne C, Trabelsi M, Lavenseau L. Existence and possible role of a substance immunologically related to insulin in the midgut of the european corn borer, Ostrinia nubilalis (Hbn.). ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0300-9629(89)90051-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
|