1
|
Bókony V, Kalina C, Ujhegyi N, Mikó Z, Lefler KK, Vili N, Gál Z, Gabor CR, Hoffmann OI. Does stress make males? An experiment on the role of glucocorticoids in anuran sex reversal. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:172-181. [PMID: 38155497 DOI: 10.1002/jez.2772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Environmentally sensitive sex determination may help organisms adapt to environmental change but also makes them vulnerable to anthropogenic stressors, with diverse consequences for population dynamics and evolution. The mechanisms translating environmental stimuli to sex are controversial: although several fish experiments supported the mediator role of glucocorticoid hormones, results on some reptiles challenged it. We tested this hypothesis in amphibians by investigating the effect of corticosterone on sex determination in agile frogs (Rana dalmatina). This species is liable to environmental sex reversal whereby genetic females develop into phenotypic males. After exposing tadpoles during sex determination to waterborne corticosterone, the proportion of genetic females with testes or ovotestes increased from 11% to up to 32% at 3 out of 4 concentrations. These differences were not statistically significant except for the group treated with 10 nM corticosterone, and there was no monotonous dose-effect relationship. These findings suggest that corticosterone is unlikely to mediate sex reversal in frogs. Unexpectedly, animals originating from urban habitats had higher sex-reversal and corticosterone-release rates, reduced body mass and development speed, and lower survival compared to individuals collected from woodland habitats. Thus, anthropogenic environments may affect both sex and fitness, and the underlying mechanisms may vary across ectothermic vertebrates.
Collapse
Affiliation(s)
- Veronika Bókony
- Department of Evolutionary Ecology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
- Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Csenge Kalina
- Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Nikolett Ujhegyi
- Department of Evolutionary Ecology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Zsanett Mikó
- Department of Evolutionary Ecology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Kinga Katalin Lefler
- Department of Aquaculture, Institute of Agricultural and Environmental Safety, Hungarian University of Agriculture and Life Science, Gödöllő, Hungary
| | - Nóra Vili
- Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Zoltán Gál
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Gödöllő, Hungary
| | - Caitlin R Gabor
- Department of Biology, Texas State University, San Marcos, Texas, USA
| | - Orsolya Ivett Hoffmann
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Gödöllő, Hungary
| |
Collapse
|
2
|
Yu Y, Chen M, Shen ZG. Molecular biological, physiological, cytological, and epigenetic mechanisms of environmental sex differentiation in teleosts: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115654. [PMID: 37918334 DOI: 10.1016/j.ecoenv.2023.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Human activities have been exerting widespread stress and environmental risks in aquatic ecosystems. Environmental stress, including temperature rise, acidification, hypoxia, light pollution, and crowding, had a considerable negative impact on the life histology of aquatic animals, especially on sex differentiation (SDi) and the resulting sex ratios. Understanding how the sex of fish responds to stressful environments is of great importance for understanding the origin and maintenance of sex, the dynamics of the natural population in the changing world, and the precise application of sex control in aquaculture. This review conducted an exhaustive search of the available literature on the influence of environmental stress (ES) on SDi. Evidence has shown that all types of ES can affect SDi and universally result in an increase in males or masculinization, which has been reported in 100 fish species and 121 cases. Then, this comprehensive review aimed to summarize the molecular biology, physiology, cytology, and epigenetic mechanisms through which ES contributes to male development or masculinization. The relationship between ES and fish SDi from multiple aspects was analyzed, and it was found that environmental sex differentiation (ESDi) is the result of the combined effects of genetic and epigenetic factors, self-physiological regulation, and response to environmental signals, which involves a sophisticated network of various hormones and numerous genes at multiple levels and multiple gradations in bipotential gonads. In both normal male differentiation and ES-induced masculinization, the stress pathway and epigenetic regulation play important roles; however, how they co-regulate SDi is unclear. Evidence suggests that the universal emergence or increase in males in aquatic animals is an adaptation to moderate ES. ES-induced sex reversal should be fully investigated in more fish species and extensively in the wild. The potential aquaculture applications and difficulties associated with ESDi have also been addressed. Finally, the knowledge gaps in the ESDi are presented, which will guide the priorities of future research.
Collapse
Affiliation(s)
- Yue Yu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Min Chen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zhi-Gang Shen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
3
|
Dynamics of sexual development in teleosts with a note on Mugil cephalus. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Villamayor PR, Arana ÁJ, Coppel C, Ortiz-Leal I, Torres MV, Sanchez-Quinteiro P, Sánchez L. A comprehensive structural, lectin and immunohistochemical characterization of the zebrafish olfactory system. Sci Rep 2021; 11:8865. [PMID: 33893372 PMCID: PMC8065131 DOI: 10.1038/s41598-021-88317-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
Fish chemosensory olfactory receptors allow them to detect a wide range of water-soluble chemicals, that mediate fundamental behaviours. Zebrafish possess a well-developed sense of smell which governs reproduction, appetite, and fear responses. The spatial organization of functional properties within the olfactory epithelium and bulb are comparable to those of mammals, making this species suitable for studies of olfactory differentiation and regeneration and neuronal representation of olfactory information. The advent of genomic techniques has been decisive for the discovery of specific olfactory cell types and the identification of cell populations expressing vomeronasal receptors. These advances have marched ahead of morphological and neurochemical studies. This study aims to fill the existing gap in specific histological, lectin-histochemical and immunohistochemical studies on the olfactory rosette and the olfactory bulb of the zebrafish. Tissue dissection and microdissection techniques were employed, followed by histological staining techniques, lectin-histochemical labelling (UEA, LEA, BSI-B4) and immunohistochemistry using antibodies against G proteins subunits αo and αi2, growth-associated protein-43, calbindin, calretinin, glial-fibrillary-acidic-protein and luteinizing-hormone-releasing-hormone. The results obtained enrich the available information on the neurochemical patterns of the zebrafish olfactory system, pointing to a greater complexity than the one currently considered, especially when taking into account the peculiarities of the nonsensory epithelium.
Collapse
Affiliation(s)
- Paula R Villamayor
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av Carballo Calero s/n, 27002, Lugo, Spain
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Álvaro J Arana
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Carlos Coppel
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Irene Ortiz-Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av Carballo Calero s/n, 27002, Lugo, Spain
| | - Mateo V Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av Carballo Calero s/n, 27002, Lugo, Spain
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av Carballo Calero s/n, 27002, Lugo, Spain.
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
5
|
Rousseau K, Prunet P, Dufour S. Special features of neuroendocrine interactions between stress and reproduction in teleosts. Gen Comp Endocrinol 2021; 300:113634. [PMID: 33045232 DOI: 10.1016/j.ygcen.2020.113634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 09/20/2020] [Indexed: 02/08/2023]
Abstract
Stress and reproduction are both essential functions for vertebrate survival, ensuring on one side adaptative responses to environmental changes and potential life threats, and on the other side production of progeny. With more than 25,000 species, teleosts constitute the largest group of extant vertebrates, and exhibit a large diversity of life cycles, environmental conditions and regulatory processes. Interactions between stress and reproduction are a growing concern both for conservation of fish biodiversity in the frame of global changes and for the development of sustainability of aquaculture including fish welfare. In teleosts, as in other vertebrates, adverse effects of stress on reproduction have been largely documented and will be shortly overviewed. Unexpectedly, stress notably via cortisol, may also facilitate reproductive function in some teleost species in relation to their peculiar life cyles and this review will provide some examples. Our review will then mainly address the neuroendocrine axes involved in the control of stress and reproduction, namely the corticotropic and gonadotropic axes, as well as their interactions. After reporting some anatomo-functional specificities of the neuroendocrine systems in teleosts, we will describe the major actors of the corticotropic and gonadotropic axes at the brain-pituitary-peripheral glands (interrenals and gonads) levels, with a special focus on the impact of teleost-specific whole genome duplication (3R) on the number of paralogs and their potential differential functions. We will finally review the current knowledge on the neuroendocrine mechanisms of the various interactions between stress and reproduction at different levels of the two axes in teleosts in a comparative and evolutionary perspective.
Collapse
Affiliation(s)
- Karine Rousseau
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - Patrick Prunet
- INRAE, UR1037, Laboratoire de Physiologie et de Génomique des Poissons (LPGP), Rennes, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France.
| |
Collapse
|
6
|
Geffroy B, Wedekind C. Effects of global warming on sex ratios in fishes. JOURNAL OF FISH BIOLOGY 2020; 97:596-606. [PMID: 32524610 DOI: 10.1111/jfb.14429] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/18/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
In fishes, sex is determined by genetics, the environment or an interaction of both. Temperature is among the most important environmental factors that can affect sex determination. As a consequence, changes in temperature at critical developmental stages can induce biases in primary sex ratios in some species. However, early sex ratios can also be biased by sex-specific tolerances to environmental stresses that may, in some cases, be amplified by changes in water temperature. Sex-specific reactions to environmental stress have been observed at early larval stages before gonad formation starts. It is therefore necessary to distinguish between temperature effects on sex determination, generally acting through the stress axis or epigenetic mechanisms, and temperature effects on sex-specific mortality. Both are likely to affect sex ratios and hence population dynamics. Moreover, in cases where temperature effects on sex determination lead to genotype-phenotype mismatches, long-term effects on population dynamics are possible, for example temperature-induced masculinization potentially leading to the loss of Y chromosomes or feminization to male-biased operational sex ratios in future generations. To date, most studies under controlled conditions conclude that if temperature affects sex ratios, elevated temperatures mostly lead to a male bias. The few studies that have been performed on wild populations seem to confirm this general trend. Recent findings suggest that transgenerational plasticity could mitigate the effects of warming on sex ratios in some populations.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC, University of Montpellier, Ifremer, IRD, CNRS, Palavas-les-Flots, France
| | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Straková B, Rovatsos M, Kubička L, Kratochvíl L. Evolution of Sex Determination in Amniotes: Did Stress and Sequential Hermaphroditism Produce Environmental Determination? Bioessays 2020; 42:e2000050. [DOI: 10.1002/bies.202000050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/15/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Barbora Straková
- Department of Ecology, Faculty of Science Charles University Viničná 7 Praha 2 12844 Czech Republic
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science Charles University Viničná 7 Praha 2 12844 Czech Republic
| | - Lukáš Kubička
- Department of Ecology, Faculty of Science Charles University Viničná 7 Praha 2 12844 Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science Charles University Viničná 7 Praha 2 12844 Czech Republic
| |
Collapse
|
8
|
Huynh TB, Fairgrieve WT, Hayman ES, Lee JSF, Luckenbach JA. Inhibition of ovarian development and instances of sex reversal in genotypic female sablefish (Anoplopoma fimbria) exposed to elevated water temperature. Gen Comp Endocrinol 2019; 279:88-98. [PMID: 30594588 DOI: 10.1016/j.ygcen.2018.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023]
Abstract
This study determined high temperature effects on ovarian development in a marine groundfish species, sablefish (Anoplopoma fimbria), with potential application in sex reversal or sterilization for aquaculture. Monosex female (XX-genotype) sablefish larvae (∼30 mm) were randomly divided into three groups and exposed to control (15.6 °C ± 0.8 °C), moderate (20.4 °C ± 0.5 °C), or high (21.7 °C ± 0.5 °C) temperatures for 19 weeks. Treated fish were then tagged and transferred to ambient seawater (11.2 °C ± 2.3 °C) for one year to determine whether temperature effects on reproductive development were maintained post-treatment. Fish were periodically sampled for gonadal histology, gene expression and plasma 17β-estradiol (E2) analyses to assess gonadal development. Short-term (4-week) exposure to elevated temperatures had only minor effects, whereas longer exposure (12-19 weeks) markedly inhibited ovarian development. Fish from the moderate and high treatment groups had significantly less developed ovaries relative to controls, and mRNA levels for germ cell (vasa, zpc) and apoptosis-associated genes (p53, casp8) generally indicated gonadal degeneration. The high treatment group also had significantly reduced plasma E2 levels and elevated gonadal amh gene expression. After one year at ambient temperatures, however, ovaries of moderate and high treatment fish exhibited compensatory recovery and were indistinguishable from controls. Two genotypic females possessing immature testes (neomales) were observed in the high treatment group, indicating sex reversal had occurred (6% rate). These results demonstrate that extreme elevated temperatures may inhibit ovarian development or trigger sex reversal. High temperature treatment is likely not an effective sterilization method but may be preferable for sablefish neomale broodstock production.
Collapse
Affiliation(s)
- Thao B Huynh
- School of Marine and Environmental Affairs, University of Washington, 3710 Brooklyn Ave NE, Seattle, WA 98105, USA
| | - William T Fairgrieve
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - Edward S Hayman
- Ocean Associates Inc., Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - Jonathan S F Lee
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - J Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
9
|
The Adaptive Sex in Stressful Environments. Trends Ecol Evol 2019; 34:628-640. [PMID: 30952545 DOI: 10.1016/j.tree.2019.02.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/10/2023]
Abstract
The impact of early stress on juvenile development has intrigued scientists for decades, but the adaptive significance of such effects remains an ongoing debate. This debate has largely ignored some characteristics of the offspring, such as their sex, despite strong evolutionary and demographic implications of sex-ratio variation. We review recent studies that examine associations between glucocorticoids (GCs), the main class of stress hormones, and offspring sex. Whereas exposure to GCs at around the time of sex determination in fish consistently produces males, the extent and direction of sex-ratio bias in response to stress vary in reptiles, birds, and mammals. We propose proximate and ultimate explanations for most of these trends.
Collapse
|
10
|
Miller KA, Kenter LW, Breton TS, Berlinsky DL. The effects of stress, cortisol administration and cortisol inhibition on black sea bass (Centropristis striata) sex differentiation. Comp Biochem Physiol A Mol Integr Physiol 2019; 227:154-160. [DOI: 10.1016/j.cbpa.2018.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022]
|
11
|
Total antioxidant capacity, catalase activity, and lipid peroxidation changes in seminal plasma of sex-reversed female and male rainbow trout (Oncorhynchus mykiss) during spawning season. Theriogenology 2016; 86:1975-82. [PMID: 27474236 DOI: 10.1016/j.theriogenology.2016.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 11/23/2022]
Abstract
The advantages of gender-related characteristics are used in aquaculture practice to improve production. For instance, all-female stock is preferable than mixed or all-male stock in salmonid culture. The most effective way to obtain all-female populations is the using of sex-reversed (SR) female trouts, genotypically female but phenotypically male, by masculinizing androgen hormones as breeders in artificial insemination. This study was conducted to evaluate changes in the total antioxidant capacity (TAC), protein concentration, catalase (CAT) activity, lipid peroxidation level (LPO; malondialdehyde), and Fourier transform infrared spectra of seminal plasma of SR female and normal (N) male trouts during the spawning season. Seminal plasma TAC values of N male and SR female trouts were determined as 0.015 ± 0.004 and 0.116 ± 0.033 mM of Trolox equivalents, respectively, in the middle of the spawning season. Some regions related to aromatic rings in seminal plasma Fourier transform infrared spectra of SR female trouts differed from N male trouts were indicated to the higher TAC values. At the middle of the spawning season, protein concentrations were determined as 569.5 ± 139.4 mg/dL in SR female trouts and 66.3 ± 22.7 mg/dL in N male trouts. LPO levels in seminal plasma of N male trouts varied from 46.33 ± 12.05 × 10(-3) to 270.02 ± 70.64 × 10(-3) nmol/mg protein, whereas from 13.87 ± 4.98 × 10(-3) to 48.49 ± 17.31 × 10(-3) nmol/mg protein in SR female trouts throughout the spawning. CAT activities of seminal plasma in N male trouts ranged from 0.38 ± 0.26 to 0.47 ± 0.32 kU/mg protein, whereas those values in SR female trouts varied between 0.21 ± 0.10 and 0.43 ± 0.15 kU/mg protein. Moreover, there were the pairwise significant correlations among all variables except between CAT and TAC (P > 0.05). Remarkable correlations were found between LPO-protein (r = -0.922, P < 0.05, n = 190), LPO-TAC (r = -0.859, P < 0.05, n = 98), and TAC protein (r = +0.879, P < 0.05, n = 98). Similar to seminal plasma of N male trouts, TAC values, protein concentrations, and CAT activities in seminal plasma of SR female trouts have shown decline, whereas LPO levels increased toward the end of the spawning seasons. Seminal plasmas of SR female trouts were characterized by higher protein concentrations and TAC values and lower LPO levels than that from N male trouts.
Collapse
|
12
|
Valdivia K, Jouanno E, Volff JN, Galiana-Arnoux D, Guyomard R, Helary L, Mourot B, Fostier A, Quillet E, Guiguen Y. High temperature increases the masculinization rate of the all-female (XX) rainbow trout "Mal" population. PLoS One 2014; 9:e113355. [PMID: 25501353 PMCID: PMC4264747 DOI: 10.1371/journal.pone.0113355] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Salmonids are generally considered to have a robust genetic sex determination system with a simple male heterogamety (XX/XY). However, spontaneous masculinization of XX females has been found in a rainbow trout population of gynogenetic doubled haploid individuals. The analysis of this masculinization phenotype transmission supported the hypothesis of the involvement of a recessive mutation (termed mal). As temperature effect on sex differentiation has been reported in some salmonid species, in this study we investigated in detail the potential implication of temperature on masculinization in this XX mal-carrying population. Seven families issued from XX mal-carrying parents were exposed from the time of hatching to different rearing water temperatures ((8, 12 and 18°C), and the resulting sex-ratios were confirmed by histological analysis of both gonads. Our results demonstrate that masculinization rates are strongly increased (up to nearly two fold) at the highest temperature treatment (18°C). Interestingly, we also found clear differences between temperatures on the masculinization of the left versus the right gonads with the right gonad consistently more often masculinized than the left one at lower temperatures (8 and 12°C). However, the masculinization rate is also strongly dependent on the genetic background of the XX mal-carrying families. Thus, masculinization in XX mal-carrying rainbow trout is potentially triggered by an interaction between the temperature treatment and a complex genetic background potentially involving some part of the genetic sex differentiation regulatory cascade along with some minor sex-influencing loci. These results indicate that despite its rather strict genetic sex determinism system, rainbow trout sex differentiation can be modulated by temperature, as described in many other fish species.
Collapse
Affiliation(s)
- Karina Valdivia
- INRA, UR1037 LPGP Fish Physiology and Genomics, F-35000, Rennes, France
| | - Elodie Jouanno
- INRA, UR1037 LPGP Fish Physiology and Genomics, F-35000, Rennes, France
| | - Jean-Nicolas Volff
- IGFL, UMR5242 CNRS/INRA/Université Claude Bernard Lyon I/ENS, Lyon, Cedex 07, France
| | | | - René Guyomard
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, Domaine de Vilvert, 78352, Jouy-en-Josas Cedex, France
| | - Louise Helary
- INRA, UR1037 LPGP Fish Physiology and Genomics, F-35000, Rennes, France
| | - Brigitte Mourot
- INRA, UR1037 LPGP Fish Physiology and Genomics, F-35000, Rennes, France
| | - Alexis Fostier
- INRA, UR1037 LPGP Fish Physiology and Genomics, F-35000, Rennes, France
| | - Edwige Quillet
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, Domaine de Vilvert, 78352, Jouy-en-Josas Cedex, France
| | - Yann Guiguen
- INRA, UR1037 LPGP Fish Physiology and Genomics, F-35000, Rennes, France
| |
Collapse
|
13
|
Shen ZG, Wang HP. Molecular players involved in temperature-dependent sex determination and sex differentiation in Teleost fish. Genet Sel Evol 2014; 46:26. [PMID: 24735220 PMCID: PMC4108122 DOI: 10.1186/1297-9686-46-26] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 03/24/2014] [Indexed: 12/11/2022] Open
Abstract
The molecular mechanisms that underlie sex determination and differentiation are conserved and diversified. In fish species, temperature-dependent sex determination and differentiation seem to be ubiquitous and molecular players involved in these mechanisms may be conserved. Although how the ambient temperature transduces signals to the undifferentiated gonads remains to be elucidated, the genes downstream in the sex differentiation pathway are shared between sex-determining mechanisms. In this paper, we review recent advances on the molecular players that participate in the sex determination and differentiation in fish species, by putting emphasis on temperature-dependent sex determination and differentiation, which include temperature-dependent sex determination and genetic sex determination plus temperature effects. Application of temperature-dependent sex differentiation in farmed fish and the consequences of temperature-induced sex reversal are discussed.
Collapse
Affiliation(s)
| | - Han-Ping Wang
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, Ohio 45661, USA.
| |
Collapse
|
14
|
Hayashi Y, Kobira H, Yamaguchi T, Shiraishi E, Yazawa T, Hirai T, Kamei Y, Kitano T. High temperature causes masculinization of genetically female medaka by elevation of cortisol. Mol Reprod Dev 2010; 77:679-86. [PMID: 20653000 DOI: 10.1002/mrd.21203] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In poikilothermic vertebrates, sex determination is sometimes influenced by environmental factors such as temperature. However, little is known about the molecular mechanisms underlying environmental sex determination. The medaka (Oryzias latipes) is a teleost fish with an XX/XY sex determination system. Recently, it was reported that XX medaka can be sex-reversed into phenotypic males by high water temperature (HT; 32-34 degrees C) treatment during the sex differentiation period. Here we report that cortisol caused female-to-male sex reversal and that metyrapone (an inhibitor of cortisol synthesis) inhibited HT-induced masculinization of XX medaka. HT treatment caused elevation of whole-body levels of cortisol, while metyrapone suppressed the elevation by HT treatment during sexual differentiation. Moreover, cortisol and 33 degrees C treatments inhibited female-type proliferation of germ cells as well as expression of follicle-stimulating hormone receptor (fshr) mRNA in XX medaka during sexual differentiation. These results strongly suggest that HT induces masculinization of XX medaka by elevation of cortisol level, which, in turn, causes suppression of germ cell proliferation and of fshr mRNA expression.
Collapse
Affiliation(s)
- Yuki Hayashi
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yamaguchi T, Yoshinaga N, Yazawa T, Gen K, Kitano T. Cortisol is involved in temperature-dependent sex determination in the Japanese flounder. Endocrinology 2010; 151:3900-8. [PMID: 20534725 DOI: 10.1210/en.2010-0228] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vertebrates, sex is normally determined by genotype. However, in poikilothermal vertebrates, including reptiles, amphibians, and fishes, sex determination is greatly influenced by environmental factors, such as temperature. Little is known about the molecular mechanisms underlying environmental sex determination in these species. The Japanese flounder (Paralichthys olivaceus) is a teleost fish with an XX/XY sex determination system. However, XX flounder can be induced to develop into predominantly either phenotypic females or males, by rearing at 18 or 27 C, respectively, during the sex differentiation period. Therefore, the flounder provides an excellent model to study the molecular mechanisms underlying temperature-dependent sex determination. We previously showed that an aromatase inhibitor, an antiestrogen, and 27 C treatments cause masculinization of XX flounder, as well as suppression of mRNA expression of ovary-type aromatase (cyp19a1), a steroidogenic enzyme responsible for the conversion of androgens to estrogens in the gonads. Furthermore, estrogen administration completely inhibits masculinization by these treatments, suggesting suppression of cyp19a1 mRNA expression, and the resultant estrogen biosynthesis may trigger masculinization of the XX flounder induced by high water temperature. Here, we demonstrated that cortisol causes female-to-male sex reversal by directly suppressing cyp19a1 mRNA expression via interference with cAMP-mediated activation and that metyrapone (an inhibitor of cortisol synthesis) inhibits 27 C-induced masculinization of XX flounder. Moreover, cortisol concentrations in 27 C-reared juveniles were significantly higher than in 18 C-reared fishes during sexual differentiation. These results strongly suggest that masculinization by high water temperature is ascribable to elevation of cortisol concentration during gonadal sex differentiation in the flounder.
Collapse
Affiliation(s)
- Toshiya Yamaguchi
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | | | | | | | | |
Collapse
|
16
|
Blasco M, Fernandino JI, Guilgur LG, Strüssmann CA, Somoza GM, Vizziano-Cantonnet D. Molecular characterization of cyp11a1 and cyp11b1 and their gene expression profile in pejerrey (Odontesthes bonariensis) during early gonadal development. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:110-8. [PMID: 20079453 DOI: 10.1016/j.cbpa.2010.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/07/2010] [Accepted: 01/07/2010] [Indexed: 11/19/2022]
Abstract
Sex steroids are known to be involved in gonadal differentiation in fish, but whether androgens are early mediators of testis differentiation remains unclear. We studied the sex-related developmental variations in the gene expression of two key enzymes involved in steroids and androgen synthesis (cyp11a1 and cyp11b1) in trunks and isolated gonads of pejerrey (Odontesthes bonariensis) larvae during and after the sex determination period. Also, and in order to have a better characterization of this process we studied the expression of Sertoli (dmrt1, amh, sox9) and Leydig (nr5a1 or sf-1) cell markers as well as a gene with higher expression in females (cyp19a1a). No clear differences were observed in the expression of cyp11a1 and cyp11b1 during the temperature-sensitive window in the trunk of pejerrey larvae. Nevertheless, a clear increase of cyp11b1 was observed in isolated gonads taken from fish reared at the male producing temperature. In these gonads we also confirmed the trends of genes with higher expression in males (dmrt1, amh) and females (cyp19a1a) as previously described in larval trunks of pejerrey. Our results showed that the expression of cyp11b1 was positively associated with the morphological differentiation of the testis. Nevertheless the involvement of 11-oxygenated androgens during the temperature-sensitive window could not be clearly established.
Collapse
Affiliation(s)
- Martín Blasco
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), Camino de Circunvalación, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
17
|
Hattori RS, Fernandino JI, Kishii A, Kimura H, Kinno T, Oura M, Somoza GM, Yokota M, Strüssmann CA, Watanabe S. Cortisol-induced masculinization: does thermal stress affect gonadal fate in pejerrey, a teleost fish with temperature-dependent sex determination? PLoS One 2009; 4:e6548. [PMID: 19662094 PMCID: PMC2717333 DOI: 10.1371/journal.pone.0006548] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 06/29/2009] [Indexed: 11/19/2022] Open
Abstract
Background Gonadal fate in many reptiles, fish, and amphibians is modulated by the temperature experienced during a critical period early in life (temperature-dependent sex determination; TSD). Several molecular processes involved in TSD have been described but how the animals “sense” environmental temperature remains unknown. We examined whether the stress-related hormone cortisol mediates between temperature and sex differentiation of pejerrey, a gonochoristic teleost fish with marked TSD, and the possibility that it involves glucocorticoid receptor- and/or steroid biosynthesis-modulation. Methodology/Principal Findings Larvae maintained during the period of gonadal sex differentiation at a masculinizing temperature (29°C; 100% males) consistently had higher cortisol, 11-ketotestoterone (11-KT), and testosterone (T) titres than those at a feminizing temperature (17°C; 100% females). Cortisol-treated animals had elevated 11-KT and T, and showed a typical molecular signature of masculinization including amh upregulation, cyp19a1a downregulation, and higher incidence of gonadal apoptosis during sex differentiation. Administration of cortisol and a non-metabolizable glucocorticoid receptor (GR) agonist (Dexamethasone) to larvae at a “sexually neutral” temperature (24°C) caused significant increases in the proportion of males. Conclusions/Significance Our results suggest a role of cortisol in the masculinization of pejerrey and provide a possible link between stress and testicular differentiation in this gonochoristic TSD species. Cortisol role or roles during TSD of pejerrey seem(s) to involve both androgen biosynthesis- and GR-mediated processes. These findings and recent reports of cortisol effects on sex determination of sequential hermaphroditic fishes, TSD reptiles, and birds provide support to the notion that stress responses might be involved in various forms of environmental sex determination.
Collapse
Affiliation(s)
- Ricardo S. Hattori
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Juan I. Fernandino
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Chascomús, Argentina
| | - Ai Kishii
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hiroyuki Kimura
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Tomomi Kinno
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Miho Oura
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Gustavo M. Somoza
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Chascomús, Argentina
| | - Masashi Yokota
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Carlos A. Strüssmann
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
- * E-mail: .
| | - Seiichi Watanabe
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
18
|
Vizziano D, Baron D, Randuineau G, Mahè S, Cauty C, Guiguen Y. Rainbow Trout Gonadal Masculinization Induced by Inhibition of Estrogen Synthesis Is More Physiological Than Masculinization Induced by Androgen Supplementation1. Biol Reprod 2008; 78:939-46. [DOI: 10.1095/biolreprod.107.065961] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
19
|
Baron D, Houlgatte R, Fostier A, Guiguen Y. Expression profiling of candidate genes during ovary-to-testis trans-differentiation in rainbow trout masculinized by androgens. Gen Comp Endocrinol 2008; 156:369-78. [PMID: 18299129 DOI: 10.1016/j.ygcen.2008.01.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 01/14/2008] [Accepted: 01/15/2008] [Indexed: 11/25/2022]
Abstract
Fish gonadal phenotype is very sensitive to sex steroid and functional masculinizations can be obtained in most species using androgen treatments. To gain insight into the molecular effects of androgen-induced masculinization we characterized, in the rainbow trout, the gonadal expression profiles of 103 candidate genes involved in sex differentiation and early gametogenesis. The androgen treatment (11beta-hydroxyandrostenedione, 10 mg/kg of food for 3 months) was administered in a genetic all-female population. Gonads were sampled at different time points in genetic all-male and all-female control populations and in the androgen-treated group. Gene expression profiles were recorded by real-time RT-PCR and biological samples and gene expressions were compared using a global clustering analysis. This analysis revealed that masculinization with androgens acts firstly by repressing granulosa cell related genes, including genes involved in ovarian differentiation (foxl2a, fst, cyp19a1a), and subsequently by repressing genes important for early oogenesis (gdf9, bcl2lb, fancl, gcl, fshb, lhb, sox23, sox24, nup62 and vtgr). However, this masculinizing treatment did not induce a testicular differentiation similar to what was observed in the control male population. This was especially noticeable for many Leydig cell genes encoding proteins involved in steroidogenesis or its control (hsd3b1, star, cyp17a1, cyp11b2.1 and nr5a1b) that were down-regulated in the androgen-treated group. Concomitantly some Sertoli cells marker genes were up-regulated by the androgen treatment (sox9a.1, nr0b1, cldn11, dmrt1) whereas others were down-regulated (amh, sox9a.2), suggesting a partial differentiation of the Sertoli cell lineage. Overall, this suggests that the crucial step of this masculinization process is the de-differentiation of the granulosa cells.
Collapse
Affiliation(s)
- Daniel Baron
- INRA, UR1037 SCRIBE, IFR140, Ouest-Genopole, Rennes, France
| | | | | | | |
Collapse
|
20
|
Rougeot C, Krim A, Mandiki SNM, Kestemont P, Mélard C. Sex steroid dynamics during embryogenesis and sexual differentiation in Eurasian perch, Perca fluviatilis. Theriogenology 2007; 67:1046-52. [PMID: 17270265 DOI: 10.1016/j.theriogenology.2006.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 11/08/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Abstract
It is widely accepted that sex steroid hormones play an important and a specific role during the process of sex differentiation in fish. In order to describe the role of the three main sex steroid hormones (testosterone--T, 17beta-estradiol--E2 and 11keto-testosterone--11KT) during embryogenesis and sex differentiation in Eurasian perch, Perca fluviatilis, eggs, larvae and juveniles originating from two mixed-sex and two all-female progenies were regularly sampled from fertilization to hatching (D0) and from hatching to day 70 post-hatching (D70). Just after spawning, a significant amount of sex steroids [T (1634.2pgg(-1)), E2 (554.4pgg(-1)) and 11KT (1513.2pgg(-1))] was measured in non-fertilised eggs suggesting a maternal transmission of these steroids. From D2 to D70 post-hatching, E2 levels were significantly higher in mixed-sex progenies (median: 725.7pgg(-1)) than in all-female progenies (156.2pgg(-1)) and significantly increased after the onset of the histological differentiation of the gonad in both progenies (D35). Levels of 11KT were significantly higher in mixed-sex (median: 431.5pgg(-1)) than in all-female progenies (below the limit of assay detection) and significantly increased at D35 in all-female progenies (median value: 343.2pgg(-1)). Mean 11KT to E2 ratio was six-fold higher in mixed-sex progenies (1.35) than in all-female progenies (0.24). The data suggest that the 11-oxygenated androgen (11KT) plays a major role in the male differentiation process, and that sex differentiation in Eurasian perch is probably determined by the 11KT to E2 ratio.
Collapse
Affiliation(s)
- C Rougeot
- Aquaculture Research and Education Center (CEFRA), The University of Liège, Chemin de la Justice 10, B-4500 Tihange, Belgium.
| | | | | | | | | |
Collapse
|
21
|
Yokota H, Abe T, Nakai M, Murakami H, Eto C, Yakabe Y. Effects of 4-tert-pentylphenol on the gene expression of P450 11beta-hydroxylase in the gonad of medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2005; 71:121-132. [PMID: 15642637 DOI: 10.1016/j.aquatox.2004.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 09/30/2004] [Accepted: 10/23/2004] [Indexed: 05/24/2023]
Abstract
Alkylphenols including 4-tert-pentylphenol (4-PP) have been shown to alter sexual differentiation in fish due to their estrogenic properties. Medaka (Oryzias latipes) is so sensitive to these substances because morphological sex reversal and testis-ova induction are well developed in the exposed males. However, little work has been done to characterize the molecular effects of estrogenic substances on the morphological and gonadal feminization in male fish. Cytochrome P450 11beta-hydroxylase (P450(11beta)) is a key steroidogenic enzyme in production of 11-ketotestosterone which is the predominant androgen in male fish. In this study, we cloned a cDNA encoding medaka testicular P450(11beta), and then investigated the gene expression of P450(11beta) in the testes of genetically male medaka exposed to 4-PP. The cDNA contains 1740 nucleotides that encode a protein of 543 amino acids, which shares 68.9% and 73.4% homology with testicular P450(11beta)s from Japanese eel (Anguilla japonica) and rainbow trout (Oncorhynchus mykiss), respectively. HeLa cells transfected with an expression vector containing the open reading frame of medaka P450(11beta) cDNA showed 11beta-hydroxylating activity in the presence of exogenous testosterone. Analysis of tissue distribution by RT-PCR showed great abundance of P450(11beta) mRNA in testis. In the partial life-cycle exposure with 4-PP, morphologically sex-reversal was observed in XY medaka exposed to 4-PP concentrations of > or =238 microg/L. Furthermore, exposure to 4-PP completely inhibited P450(11beta) mRNA expression in the gonads of sex-reversed XY fish at 60-day posthatch. These results suggest that xeno-estrogen 4-PP may have inhibitory effects on the synthesis of testicular 11-oxygenated androgens through downregulation of P450(11beta) expression in the genetically male fish.
Collapse
Affiliation(s)
- Hirofumi Yokota
- Chemical Assessment Center, Chemicals Evaluation and Research Institute, Kitakatsushika-gun, Saitama 345-0043, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Chardard D, Kuntz S, Chesnel A, Flament S. Effects of androgens on sex differentiation of the urodele Pleurodeles waltl. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 296:46-55. [PMID: 12589690 DOI: 10.1002/jez.a.10240] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In nonmammalian vertebrates, steroids have been hypothesized to induce somatic sex differentiation, since manipulations of the steroidal environment of gonads have led to various degrees of sex reversal. Whereas the critical role of estrogens in ovarian differentiation is well documented, studies on androgens have produced a perplexing variety of results depending upon species variations and nature of androgens used. In this way, testosterone induces masculinization of females in some species but provokes paradoxical feminization of males in many other species such as the urodelan Pleurodeles waltl. In reptiles this phenomenon could be interpreted by conversion of exogenous testosterone to estradiol by aromatase. Treatments of Pleurodeles larvae with nonaromatizable androgens bring support to this hypothesis and suggest a role of androgens in sex differentiation. Dihydrotestosterone (DHT) could not induce the paradoxical feminization of ZZ larvae. In addition, DHT as well as 11beta-hydroxy-androstenedione could drive a functional male differentiation of ZW larvae. Moreover, other 5alpha reduced androgens also induced sex reversal of female larvae. Yet, the 5alpha reductase inhibitor CGP 53133 and antiandrogens such as flutamide or cyproterone acetate did not exert any effect on male sex differentiation of ZZ larvae. Though the precise role of androgens is still unknown, especially for 11-oxygenated androgens, our results suggest an implication in male sex differentiation. In this way, testosterone could play a pivotal role in being metabolized either into other androgens during testis differentiation or into estradiol during ovarian differentiation.
Collapse
Affiliation(s)
- D Chardard
- EA 3443 Génétique Signalisation Différenciation, Faculté des Sciences, Université Henri Poincaré Nancy I, Vandoeuvre-lès-Nancy, France.
| | | | | | | |
Collapse
|
23
|
Abstract
The adrenal homolog of teleosts is not a compact organ as the adrenal glands of most vertebrates but is composed by aminergic chromaffin and interrenal steroidogenic cells located mostly inside the head kidney that, in this taxon, generally has a hematopoietic function. The two tissues can be mixed, adjacent, or completely separated and line the endothelium of the venous vessels or are located in close proximity. The chromaffin cells in some species are also present in the posterior kidney. Histological and ultrastructural work revealed cytological peculiarities of both types of cells as compared to those of other vertebrate species. In particular, the interrenal ones can show some variations in ultrastructure depending on sex, time of the year, and relation to stress events. A periodic renewal of the whole gland tissue is also sustained by some studies. Research regarding development is scanty as compared to mammals and most studies go back to the early years of the past century. The adrenal homolog of teleosts is under hormonal and neuronal control. Moreover, local paracrine interactions may play an important role in modulating a system involved in stress response and osmoregulation. Most previous studies involved a few species with the object of intensive rearing for commercial purposes; in fact cortisol, the main hormone secreted by the interrenal cells, can also influence reproduction and growth. This review summarizes data from morphocytological work and refers to other excellent reviews regarding physiology. Some of the results are compared to data available from other fishes and vertebrate classes with the aim of including them in an evolutionary and environmental framework.
Collapse
|
24
|
D'Cotta H, Fostier A, Guiguen Y, Govoroun M, Baroiller JF. Search for genes involved in the temperature-induced gonadal sex differentiation in the tilapia, Oreochromis niloticus. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 290:574-85. [PMID: 11748606 DOI: 10.1002/jez.1108] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the tilapia, Oreochromis niloticus, sex is determined by genetic factors (XX/XY) but temperature can also influence the gonadal sex differentiation. Elevated temperatures of 35 degrees C can generate functional male phenotypes if applied before and during sexual differentiation. The genes and mechanisms by which temperature acts on the cascade leading to sex differentiation have been investigated. Two strategies have been followed: 1) Search for novel genes by differential display, and 2) Expression studies of candidate genes. Genetically all-female and all-male progenies were reared at 27 degrees C (natural temperature) and at 35 degrees C (masculinizing treatment) and gonads dissected. Using differential display, we isolated a 300 bp cDNA (MM20C) from temperature-masculinized females. Virtual northern analysis revealed a 1.2 kb transcript in 35 degrees C treated females and males, but hardly any expression in natural females (27 degrees C). Semi-quantitative RT-PCR established a several-fold increase in MM20C expression in 35 degrees C masculinized fry. Elevated expression was observed in natural males (27 degrees C) with higher levels detected in those reared at 35 degrees C. Furthermore, we have analyzed as a candidate gene the P450 11beta-hydroxylase, an important androgen steroidogenic enzyme. Low levels of expression were found in natural males. This coincides with low concentrations of 11 ketotestosterone in the gonads before and during gonadal sex differentiation. Higher expression levels of 11beta-hydroxylase were detected in male gonads at 35 degrees C but levels in phenotypic males were similar to those found for natural females. Previous results reported that expression of aromatase is repressed by masculinizing treatments. Our study demonstrated that masculinizing-temperature can also stimulate the expression of other gene(s).
Collapse
Affiliation(s)
- H D'Cotta
- CIRAD-EMVT, SCRIBE, Campus de Beaulieu, 35042 Rennes-Cedex, France
| | | | | | | | | |
Collapse
|
25
|
Baroiller JF, Guiguen Y. Endocrine and environmental aspects of sex differentiation in gonochoristic fish. EXS 2001:177-201. [PMID: 11301598 DOI: 10.1007/978-3-0348-7781-7_9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This paper reviews current knowledge concerning the endocrine and environmental regulation of gonadal sex differentiation in gonochoristic fish. In gonochoristic fish, although potentially active around this period, the hypothalamo-pituitary axis is probably not involved in triggering sex differentiation. Although steroids and steroidogenic enzymes are probably not the initial triggers of sex differentiation, new data, including molecular approaches, have confirmed that they are key physiological steps in the regulation of this process. Environmental factors can strongly influence sex differentiation in gonochoristic fish. The most important environmental determinant of sex would appear to be temperature. Interactions between environmental factors and genotype have been suggested for gonochoristic fish.
Collapse
Affiliation(s)
- J F Baroiller
- CIRAD-EMVT (Centre International en Recherche Agronomique pour le Développement), Campus de Beaulieu, 35042 Rennes, France
| | | |
Collapse
|
26
|
Govoroun M, McMeel OM, Mecherouki H, Smith TJ, Guiguen Y. 17beta-estradiol treatment decreases steroidogenic enzyme messenger ribonucleic acid levels in the rainbow trout testis. Endocrinology 2001; 142:1841-8. [PMID: 11316749 DOI: 10.1210/endo.142.5.8142] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In fish, estrogens are well known for their involvement in ovarian differentiation and have been shown to be very potent feminizing agents when administrated in vivo during early development. However, the mechanism of action of exogenous estrogens is poorly understood. We report here on the feminizing effects of estrogen treatment on the testicular levels of some steroidogenic enzyme messenger RNAs [mRNAs; cholesterol side-chain cleavage (P450scc), 17-hydroxylase/lyase (P450c17), 3beta-hydroxysteroid dehydrogenase (3betaHSD), 11beta-hydroxylase (P45011beta), and aromatase (P450aro)] in the rainbow trout, Oncorhynchus mykiss. Treatment was carried out by dietary administration of 17beta-estradiol (E(2); dosage of 20 mg/kg diet) to a genetically all male population. Steroidogenesis in the differentiating testis was demonstrated to be strongly altered by E(2), as this treatment resulted in considerable decrease in P450c17, 3betaHSD, and P45011beta mRNAs after only 10 days of treatment. In contrast, P450scc and P450aro mRNA levels were unaffected by E(2), with P450scc mRNA levels remaining unaltered and P450aro not stimulated by this feminizing estrogen treatment. To better characterize this E(2) effect, the same treatment was applied on postdifferentiating males, and roughly the same expression pattern was detected with a considerable decrease in testicular P450c17, 3betaHSD, and P45011beta mRNAs and a significant, but reduced, decrease in P450scc mRNA. In the interrenal, these steroidogenic enzyme mRNAs were not significantly affected by this E(2) treatment, except for a slight, but significant, decrease in P450scc mRNA. These results clearly demonstrate that estrogens have profound effects on testicular steroidogenesis and that they are acting specifically on the testis by decreasing mRNA steady state levels of many steroidogenic enzyme genes. The decrease in P45011beta mRNA, and thus inhibition of the synthesis of testicular 11-oxygenated androgens, may be an important step required for the active feminization of these genetic males.
Collapse
Affiliation(s)
- M Govoroun
- Institut National de la Recherche Agronomique, Laboratoire Institut National de la Recherche Agronomique-Station Commune de Recherches en Ichtyophysiologie, Biodiversité et Environement, Campus de Beaulieu, 35042 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
27
|
Liu S, Govoroun M, D'Cotta H, Ricordel MJ, Lareyre JJ, McMeel OM, Smith T, Nagahama Y, Guiguen Y. Expression of cytochrome P450(11beta) (11beta-hydroxylase) gene during gonadal sex differentiation and spermatogenesis in rainbow trout, Oncorhynchus mykiss. J Steroid Biochem Mol Biol 2000; 75:291-8. [PMID: 11282285 DOI: 10.1016/s0960-0760(00)00186-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Androgens and especially 11-oxygenated androgens are known to be potent masculinizing steroids in fish. As a first step to study their physiological implication in gonadal sex differentiation in fish, we cloned a testicular cytochrome P450(11beta) (11beta-hydroxylase) cDNA in the rainbow trout, Oncorhynchus mykiss. We isolated a 1882 bp P450(11beta) cDNA (rt11betaH2, AF217273) which contains an open reading frame encoding a 552 putative amino acids protein. This sequence was highly homologous (98% in nucleotides and 96.5% in amino acids) to another rainbow trout P450(11beta) sequence (AF179894) and also to a Japanese eel P450(11beta) (68% in amino acids). Northern blot analysis detected a single transcript of 2 kb which was highly expressed in the testis (stage II) and to a lesser degree in the anterior kidney (containing the interrenal tissue). No signal was detected in the posterior kidney, brain, liver, skin, intestine and heart. In the testis this transcript was highly expressed at the beginning of spermatogenesis (stages I and II), followed by a decrease during late spermatogenesis (stages III to V). By semi-quantitative reverse transcription polymerase chain reaction, P450(11beta) expression during gonadal differentiation was estimated to be at least 100 times higher in male than in female gonads. This difference was first detected at 55 days post-fertilization (dpf), i.e. 3 weeks before the first sign of histological sex differentiation, and was sustained long after differentiation (127 dpf). Specific P450(11beta) gene expression was also demonstrated before testis differentiation (around 50 dpf) using virtual Northern blot, with no expression detected in female differentiating gonads. From these results, and also based on the already known actions of 11-oxygenated androgens in testicular differentiation in fish, it is now suggested that P450(11beta) gene expression is a key factor for the testicular differentiation in rainbow trout.
Collapse
Affiliation(s)
- S Liu
- Station INRA SCRIBE, Equipe Sexualite et Reproduction, Campus de Beaulieu, 35042 Cedex, Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chardard D, Dournon C. Sex reversal by aromatase inhibitor treatment in the newt Pleurodeles waltl. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1999; 283:43-50. [PMID: 9990736 DOI: 10.1002/(sici)1097-010x(19990101)283:1<43::aid-jez6>3.0.co;2-g] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pleurodeles waltl is a newt with a ZZ male-ZW female sex determination mechanism, and a temperature-sensitive gonadal sex differentiation. Raising larvae at 32 degrees C from stage 42 to stage 54 (thermosensitive period) drives genetic females to differentiate into functional males. Estrogens are intimately linked with temperature action in this species, as well as in other vertebrates with temperature-dependent sex determination. We report here the masculinization of female ZW larvae and one WW larva by aromatase inhibitor treatment. Larvae were treated from stage 52 (before the onset of histological differentiation of the gonads) to stage 56 (metamorphosis), with the non-steroidal inhibitors fadrozole or miconazole. Miconazole proved to be very toxic, but not fadrozole. Fadrozole at a concentration of 300 micrograms/l in the rearing water resulted in complete sex reversal of 9 out of 30 ZW larvae and 1 out 9 WW larvae. Only one individual (ZW) was intersex, all the remainder being typical females. Gonadal aromatase activity was measured in several individuals at different developmental stages during treatment. The activity was low in all individuals at the beginning of the treatment, but varied strongly and was well correlated with gonadal structure at the end of the treatment. Despite these differences in individual responses to treatment inhibiting aromatase, results confirm the important role of estrogens in ovary differentiation in Pleurodeles waltl.
Collapse
Affiliation(s)
- D Chardard
- UPRES EA 2401: Génétique et Interactions cellulaires en Reproduction Laboratoire de Biologie Expérimentale-Immunologie Université Henri Poincaré Nancy I Faculte des Sciences, France.
| | | |
Collapse
|
29
|
|
30
|
Chih-Yun H, Nai-Wen Y, Hung-Hai K, Li-Tze C, Hwan-Wun L. Estradiol Secretion by Tadpole Ovaries Masculinized by Implanted Capsules of Cyanoketone. (cyanoketone/estradiol secretion/Delta5-3beta-HSD activity/masculinized ovary/Rana tadpole). Dev Growth Differ 1991. [DOI: 10.1111/j.1440-169x.1991.00201.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Feist G, Schreck CB, Fitzpatrick MS, Redding JM. Sex steroid profiles of coho salmon (Oncorhynchus kisutch) during early development and sexual differentiation. Gen Comp Endocrinol 1990; 80:299-313. [PMID: 2074005 DOI: 10.1016/0016-6480(90)90174-k] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sex steroids were measured by radioimmunoassay in whole-body extracts of coho salmon, Oncorhynchus kisutch, during early development and sexual differentiation. Profiles were developed for fish from the time of fertilization until 87 days postfertilization (dpf) for six steroids: testosterone (T), 11-ketotestosterone (KT), androstenedione (A), progesterone (P4), 17 alpha-hydroxy-20 beta-dihydroprogesterone (DHP), and 17 beta-estradiol (E2). Ovarian fluid was also examined for steroid content. Steroid profiles of unfertilized eggs essentially paralleled those of ovarian fluid. In one experiment, steroids in developing embryos declined precipitously after fertilization until 30 dpf; at hatching, all steroids increased slightly and then declined during yolk sac absorption. Results from a second experiment basically supported those of the first except that only testosterone increased at the time of hatching. Bimodality was evident in the data on steroid levels for fish collected between 42 and 56 dpf and again after 87 dpf. The hormone levels generally decreased or remained constant after the onset of exogenous feeding. Histological analyses during the first experiment showed the presence of undifferentiated gonads between hatching and 70 dpf, but by 77 dpf ovarian development was evident. In the second experiment, in which fish were more frequently sampled for histological analysis, undifferentiated gonads were present from hatching to 59 dpf. Development of oogonia was observed between 66 and 73 dpf and by 75 dpf ovarian development could be easily discerned. The sex of fish sampled at 101 dpf was determined by examining gonadal morphology, and steroid levels of those fish were determined. A sexual dimorphism was apparent in levels of T, KT, and A, but not of DHP or E2. The dynamics of steroid content of developing coho salmon at hatch, coupled with their bimodal distributions during yolk sac absorption, may suggest a role of sex steroids in the process of sexual differentiation apparent later in development. Changes in whole-body steroid levels at hatch may also be indicative of the onset of sexual differentiation even though no signs of gondal differentiation were histologically discernible at that time.
Collapse
Affiliation(s)
- G Feist
- Oregon Cooperative Fishery Research Unit, Oregon State University, Corvallis 97331
| | | | | | | |
Collapse
|
32
|
Summers CH. Chronic low humidity-stress in the lizardAnolis carolinensis: Effects on ovarian and oviductal recrudescence. ACTA ACUST UNITED AC 1988. [DOI: 10.1002/jez.1402480210] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|