1
|
Lemieux H, Blier PU. Exploring Thermal Sensitivities and Adaptations of Oxidative Phosphorylation Pathways. Metabolites 2022; 12:metabo12040360. [PMID: 35448547 PMCID: PMC9025460 DOI: 10.3390/metabo12040360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Temperature shifts are a major challenge to animals; they drive adaptations in organisms and species, and affect all physiological functions in ectothermic organisms. Understanding the origin and mechanisms of these adaptations is critical for determining whether ectothermic organisms will be able to survive when faced with global climate change. Mitochondrial oxidative phosphorylation is thought to be an important metabolic player in this regard, since the capacity of the mitochondria to produce energy greatly varies according to temperature. However, organism survival and fitness depend not only on how much energy is produced, but, more precisely, on how oxidative phosphorylation is affected and which step of the process dictates thermal sensitivity. These questions need to be addressed from a new perspective involving a complex view of mitochondrial oxidative phosphorylation and its related pathways. In this review, we examine the effect of temperature on the commonly measured pathways, but mainly focus on the potential impact of lesser-studied pathways and related steps, including the electron-transferring flavoprotein pathway, glycerophosphate dehydrogenase, dihydroorotate dehydrogenase, choline dehydrogenase, proline dehydrogenase, and sulfide:quinone oxidoreductase. Our objective is to reveal new avenues of research that can address the impact of temperature on oxidative phosphorylation in all its complexity to better portray the limitations and the potential adaptations of aerobic metabolism.
Collapse
Affiliation(s)
- Hélène Lemieux
- Faculty Saint-Jean, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6C 4G9, Canada
- Correspondence: (H.L.); (P.U.B.)
| | - Pierre U. Blier
- Department Biologie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
- Correspondence: (H.L.); (P.U.B.)
| |
Collapse
|
2
|
Jørgensen LB, Overgaard J, Hunter-Manseau F, Pichaud N. Dramatic changes in mitochondrial substrate use at critically high temperatures: a comparative study using Drosophila. J Exp Biol 2021; 224:jeb.240960. [PMID: 33563650 DOI: 10.1242/jeb.240960] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022]
Abstract
Ectotherm thermal tolerance is critical to species distribution, but at present the physiological underpinnings of heat tolerance remain poorly understood. Mitochondrial function is perturbed at critically high temperatures in some ectotherms, including insects, suggesting that heat tolerance of these animals is linked to failure of oxidative phosphorylation (OXPHOS) and/or ATP production. To test this hypothesis, we measured mitochondrial oxygen consumption rate in six Drosophila species with different heat tolerance using high-resolution respirometry. Using a substrate-uncoupler-inhibitor titration protocol, we examined specific steps of the electron transport system to study how temperatures below, bracketing and above organismal heat limits affect mitochondrial function and substrate oxidation. At benign temperatures (19 and 30°C), complex I-supported respiration (CI-OXPHOS) was the most significant contributor to maximal OXPHOS. At higher temperatures (34, 38, 42 and 46°C), CI-OXPHOS decreased considerably, ultimately to very low levels at 42 and 46°C. The enzymatic catalytic capacity of complex I was intact across all temperatures and accordingly the decreased CI-OXPHOS is unlikely to be caused directly by hyperthermic denaturation/inactivation of complex I. Despite the reduction in CI-OXPHOS, maximal OXPHOS capacity was maintained in all species, through oxidation of alternative substrates - proline, succinate and, particularly, glycerol-3-phosphate - suggesting important mitochondrial flexibility at temperatures exceeding the organismal heat limit. Interestingly, this failure of CI-OXPHOS and compensatory oxidation of alternative substrates occurred at temperatures that correlated with species heat tolerance, such that heat-tolerant species could defend 'normal' mitochondrial function at higher temperatures than sensitive species. Future studies should investigate why CI-OXPHOS is perturbed and how this potentially affects ATP production rates.
Collapse
Affiliation(s)
| | - Johannes Overgaard
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Florence Hunter-Manseau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| |
Collapse
|
3
|
Simard C, Lebel A, Allain EP, Touaibia M, Hebert-Chatelain E, Pichaud N. Metabolic Characterization and Consequences of Mitochondrial Pyruvate Carrier Deficiency in Drosophila melanogaster. Metabolites 2020; 10:metabo10090363. [PMID: 32899962 PMCID: PMC7570025 DOI: 10.3390/metabo10090363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 01/31/2023] Open
Abstract
In insect, pyruvate is generally the predominant oxidative substrate for mitochondria. This metabolite is transported inside mitochondria via the mitochondrial pyruvate carrier (MPC), but whether and how this transporter controls mitochondrial oxidative capacities in insects is still relatively unknown. Here, we characterize the importance of pyruvate transport as a metabolic control point for mitochondrial substrate oxidation in two genotypes of an insect model, Drosophila melanogaster, differently expressing MPC1, an essential protein for the MPC function. We evaluated the kinetics of pyruvate oxidation, mitochondrial oxygen consumption, metabolic profile, activities of metabolic enzymes, and climbing abilities of wild-type (WT) flies and flies harboring a deficiency in MPC1 (MPC1def). We hypothesized that MPC1 deficiency would cause a metabolic reprogramming that would favor the oxidation of alternative substrates. Our results show that the MPC1def flies display significantly reduced climbing capacity, pyruvate-induced oxygen consumption, and enzymatic activities of pyruvate kinase, alanine aminotransferase, and citrate synthase. Moreover, increased proline oxidation capacity was detected in MPC1def flies, which was associated with generally lower levels of several metabolites, and particularly those involved in amino acid catabolism such as ornithine, citrulline, and arginosuccinate. This study therefore reveals the flexibility of mitochondrial substrate oxidation allowing Drosophila to maintain cellular homeostasis.
Collapse
Affiliation(s)
- Chloé Simard
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (C.S.); (A.L.); (M.T.)
| | - Andréa Lebel
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (C.S.); (A.L.); (M.T.)
| | | | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (C.S.); (A.L.); (M.T.)
| | - Etienne Hebert-Chatelain
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada;
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB E1A 3E9, Canada
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (C.S.); (A.L.); (M.T.)
- Correspondence:
| |
Collapse
|
4
|
Teulier L, Weber JM, Crevier J, Darveau CA. Proline as a fuel for insect flight: enhancing carbohydrate oxidation in hymenopterans. Proc Biol Sci 2017; 283:rspb.2016.0333. [PMID: 27412285 DOI: 10.1098/rspb.2016.0333] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/17/2016] [Indexed: 12/27/2022] Open
Abstract
Bees are thought to be strict users of carbohydrates as metabolic fuel for flight. Many insects, however, have the ability to oxidize the amino acid proline at a high rate, which is a unique feature of this group of animals. The presence of proline in the haemolymph of bees and in the nectar of plants led to the hypothesis that plants may produce proline as a metabolic reward for pollinators. We investigated flight muscle metabolism of hymenopteran species using high-resolution respirometry performed on permeabilized muscle fibres. The muscle fibres of the honeybee, Apis mellifera, do not have a detectable capacity to oxidize proline, as those from the migratory locust, Locusta migratoria, used here as an outgroup representative. The closely related bumblebee, Bombus impatiens, can oxidize proline alone and more than doubles its respiratory capacity when proline is combined with carbohydrate-derived substrates. A distant wasp species, Vespula vulgaris, exhibits the same metabolic phenotype as the bumblebee, suggesting that proline oxidation is common in hymenopterans. Using a combination of mitochondrial substrates and inhibitors, we further show that in B. impatiens, proline oxidation provides reducing equivalents and electrons directly to the electron transport system. Together, these findings demonstrate that some bee and wasp species can greatly enhance the oxidation of carbohydrates using proline as fuel for flight.
Collapse
Affiliation(s)
- Loïc Teulier
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5 Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023, CNRS, Université Claude Bernard Lyon 1, Villeurbanne 69622, France
| | - Jean-Michel Weber
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Julie Crevier
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Charles-A Darveau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
5
|
Abstract
Animals must regulate the fluxes of multiple fuels to support changing metabolic rates that result from variation in physiological circumstances. The aim of fuel selection strategies is to exploit the advantages of individual substrates while minimizing the impact of disadvantages. All exercising mammals share a general pattern of fuel selection: at the same %V(O(2,max)) they oxidize the same ratio of lipids to carbohydrates. However, highly aerobic species rely more on intramuscular fuels because energy supply from the circulation is constrained by trans-sarcolemmal transfer. Fuel selection is performed by recruiting different muscles, different fibers within the same muscles or different pathways within the same fibers. Electromyographic analyses show that shivering humans can modulate carbohydrate oxidation either through the selective recruitment of type II fibers within the same muscles or by regulating pathway recruitment within type I fibers. The selection patterns of shivering and exercise are different: at the same %V(O(2,max)), a muscle producing only heat (shivering) or significant movement (exercise) strikes a different balance between lipid and carbohydrate oxidation. Long-distance migrants provide an excellent model to characterize how to increase maximal substrate fluxes. High lipid fluxes are achieved through the coordinated upregulation of mobilization, transport and oxidation by activating enzymes, lipid-solubilizing proteins and membrane transporters. These endurance athletes support record lipolytic rates in adipocytes, use lipoprotein shuttles to accelerate transport and show increased capacity for lipid oxidation in muscle mitochondria. Some migrant birds use dietary omega-3 fatty acids as performance-enhancing agents to boost their ability to process lipids. These dietary fatty acids become incorporated in membrane phospholipids and bind to peroxisome proliferator-activated receptors to activate membrane proteins and modify gene expression.
Collapse
Affiliation(s)
- Jean-Michel Weber
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
6
|
Thomas P, Kurahashi H. Three New Species of Sarcophaga (Insecta: Diptera: Sarcophagidae) from Timor, with a Lectotype Designation for Myophora peronii. ACTA ACUST UNITED AC 2004. [DOI: 10.12782/specdiv.9.165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Pape Thomas
- Department of Entomology, Swedish Museum of Natural History
| | - Hiromu Kurahashi
- Reference Museum, Department of Medical Entomology, National Institute of Infectious Diseases
| |
Collapse
|
7
|
Scaraffia PY, Wells MA. Proline can be utilized as an energy substrate during flight of Aedes aegypti females. JOURNAL OF INSECT PHYSIOLOGY 2003; 49:591-601. [PMID: 12804719 DOI: 10.1016/s0022-1910(03)00031-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to determine whether proline can be utilized as fuel during flight of Aedes aegypti, proline, alanine, and glutamine concentrations were monitored at 0, 30 and 60 min after flight using sugar-fed males and females, and blood meal-fed females. In sugar-fed and blood meal-fed females, flight lead to a significant decrease in proline and a significant increase in glutamine concentration in both hemolymph and thorax. Only during flight after a blood meal was a significant increase in the alanine concentration observed in hemolymph. After flight, the proline alanine and glutamine levels in the hemolymph and thorax from males did not change significantly. In addition, activities of enzymes related to amino acid metabolism were assayed in homogenates of cephalothorax and thorax from both sexes, and in fat body and midgut from females. In both sexes, the activities of all the enzymes studied were significantly higher in thorax than in cephalothorax. The levels of the enzymes involved in proline oxidation were higher in thorax than in fat body and midgut. These results suggest that proline can be used as an energy substrate for flight muscle of Ae. aegypti females. However, the elevation in glutamine levels observed in hemolymph and thorax after flight has not been reported in other insects that fuel flight using proline and may suggest an additional mechanism for shuttling ammonia between flight muscle and fat body is present in mosquitoes.
Collapse
Affiliation(s)
- P Y Scaraffia
- Department of Biochemistry and Molecular Biophysics and Center for Insect Science, University of Arizona, Tucson, Arizona, 85721, USA
| | | |
Collapse
|
8
|
Wallage HR, Niven DF, Rau ME. Effects of Plagiorchis elegans (Trematoda: Plagiorchiidae) infection on the carbohydrate metabolism of fourth instar Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2001; 38:312-317. [PMID: 11296841 DOI: 10.1603/0022-2585-38.2.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Infection of fourth-instar Aedes aegypti (L.) with the entomopathogenic digenean Plagiorchis elegans (Rudolphi) alters the carbohydrate metabolism of the insect. Within 24 h of cercarial penetration, total body extracts of infected fourth instars exhibited decreased trehalase activity, increased trehalose-6-phosphatase activity, and a concomitant accumulation of trehalose when compared with uninfected larvae. The amounts of glucose, glycogen and lipids, and the activity of glycogen phosphorylase a were similar in extracts of infected and control larvae. The predominant fatty acids, in both control and infected larvae, were C 18:0, C 18:1, and C 18:3. There were no significant differences in the types or proportions of fatty acids found in control and infected larvae. Parasitic infection is discussed in terms of impaired trehalose metabolism.
Collapse
Affiliation(s)
- H R Wallage
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | | | | |
Collapse
|
9
|
|
10
|
Goldring JP, Read JS. Insect acetyl-CoA carboxylase: activity during the larval, pupal and adult stages of insect development. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1993; 106:855-8. [PMID: 7905374 DOI: 10.1016/0305-0491(93)90041-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
1. The activity of the lipogenic enzyme, acetyl-CoA carboxylase, was investigated in four insect species; Bombyx mori (Lepidoptera), Tenebrio molitor (Coleoptera), Glossina morsitans and Sarcophaga nodosa (Diptera). 2. Acetyl-CoA carboxylase activity in larval, pupal and adult forms was compared with the saponifiable lipid mass at each stage of the life-cycle, and found to follow similar patterns except for Tenebrio molitor. 3. The results are examined in relation to known metabolic requirements for each insect.
Collapse
Affiliation(s)
- J P Goldring
- Department of Biochemistry, University of Zimbabwe, Harare
| | | |
Collapse
|
11
|
Njagi EN, Olembo NK, Pearson DJ. Proline transport by tsetse fly Glossina morsitans flight muscle mitochondria. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1992; 102:579-84. [PMID: 1499295 DOI: 10.1016/0305-0491(92)90050-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. Proline accumulation by tsetse fly Glossina morsitans flight muscle mitochondria was studied in vitro by the swelling technique and direct measurement of (U-14C) proline. 2. Proline transport was inhibited by the uncharged liposoluble -SH reagent, N-ethylmaleimide but not by ionic reagent, mersalyl, suggesting that the -SH groups involved in the transport of proline are located in a hydrophobic part of the membrane or on the matrix side of the membrane. 3. The kinetic study of proline accumulation revealed saturation kinetics and a high temperature dependence. It gave a Km of 85 microM and a Vmax of 962 pmol/min/mg protein and an activation energy (Ea) of 11 kcal/mol. 4. Certain other amino acids (L-valine, L-alanine, L-methionine, L-phenylalanine, L-tryptophan and L-hydroxyproline) significantly stimulated proline uptake. 5. These observations indicate that tsetse fly Glossina morsitans flight muscle mitochondria contain a proline transport mechanism.
Collapse
Affiliation(s)
- E N Njagi
- Department of Biochemistry, College of Health Sciences, University of Nairobi, Kenya, Africa
| | | | | |
Collapse
|
12
|
Osanai M, Yonezawa Y. Changes in amino acid pools in the silkworm, Bombyx mori during embryonic life. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0020-1790(86)90050-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
|
14
|
Konji VN, Olembo NK, Pearson DJ. Enzyme activities in the fat body of the tsetse fly Glossina morsitans and the fleshfly Sarcophaga tibialis in relation to proline metabolism. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/0020-1790(84)90047-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
|