1
|
Höring F, Biscontin A, Harms L, Sales G, Reiss CS, De Pittà C, Meyer B. Seasonal gene expression profiling of Antarctic krill in three different latitudinal regions. Mar Genomics 2020; 56:100806. [PMID: 32773253 DOI: 10.1016/j.margen.2020.100806] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
The Antarctic krill, Euphausia superba, has evolved seasonal rhythms of physiology and behaviour to survive under the extreme photoperiodic conditions in the Southern Ocean. However, the molecular mechanisms generating these rhythms remain far from understood. The aim of this study was to investigate seasonal differences in gene expression in three different latitudinal regions (South Georgia, South Orkneys/Bransfield Strait, Lazarev Sea) and to identify genes with potential regulatory roles in the seasonal life cycle of Antarctic krill. The RNA-seq data were analysed (a) for seasonal differences between summer and winter krill sampled from each region, and (b) for regional differences within each season. A large majority of genes showed an up-regulation in summer krill in all regions with respect to winter krill. However, seasonal differences in gene expression were less pronounced in Antarctic krill from South Georgia, most likely due to the milder seasonal conditions of the lower latitudes of this region, with a less extreme light regime and food availability between summer and winter. Our results suggest that in the South Orkneys/Bransfield Strait and Lazarev Sea region, Antarctic krill entered a state of metabolic depression and regressed development (winter quiescence) in winter. Moreover, seasonal gene expression signatures seem to be driven by a photoperiodic timing system that may adapt the flexible behaviour and physiology of Antarctic krill to the highly seasonal environment according to the latitudinal region. However, at the lower latitude South Georgia region, food availability might represent the main environmental cue influencing seasonal physiology.
Collapse
Affiliation(s)
- Flavia Höring
- Alfred Wegener Institute Helmholtz Centre for Polar und Marine Research, Am Handelshafen 12, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Alberto Biscontin
- Dipartimento di Biologia, Università degli Studi di Padova, via Ugo Bassi 58b, 35121 Padova, Italy
| | - Lars Harms
- Alfred Wegener Institute Helmholtz Centre for Polar und Marine Research, Am Handelshafen 12, Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstrasse 231, Oldenburg 26129, Germany
| | - Gabriele Sales
- Dipartimento di Biologia, Università degli Studi di Padova, via Ugo Bassi 58b, 35121 Padova, Italy
| | - Christian S Reiss
- National Oceanic and Atmospheric Administration, Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, La Jolla, CA 92037, USA
| | - Cristiano De Pittà
- Dipartimento di Biologia, Università degli Studi di Padova, via Ugo Bassi 58b, 35121 Padova, Italy.
| | - Bettina Meyer
- Alfred Wegener Institute Helmholtz Centre for Polar und Marine Research, Am Handelshafen 12, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstrasse 231, Oldenburg 26129, Germany.
| |
Collapse
|
2
|
Fan X, Wang G, English RD, Firoze Khan M. Proteomic identification of carbonylated proteins in the kidney of trichloroethene-exposed MRL+/+ mice. Toxicol Mech Methods 2013; 24:21-30. [PMID: 24024666 DOI: 10.3109/15376516.2013.843112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Trichloroethene (TCE), a common environmental and occupational pollutant, is associated with multiorgan toxicity. Kidney is one of major target organs affected as a result of TCE exposure. Our previous studies have shown that exposure to TCE causes increased protein oxidation (protein carbonylation) in the kidneys of autoimmune-prone MRL+/+ mice, and suggested a potential role of protein oxidation in TCE-mediated nephrotoxicity. To assess the impact of chronic TCE exposure on protein oxidation, particularly to identify the carbonylated proteins in kidneys, female MRL+/+ mice were treated with TCE at the dose of 2 mg/ml via drinking water for 36 weeks and kidney protein extracts were analyzed for protein carbonyls and carbonylated proteins identified using proteomic approaches (2D gel, Western blot, MALDI TOF/TOF MS/MS, etc.). TCE treatment led to significantly increased protein carbonyls in the kidney protein extracts (20 000 g pellet fraction). Interestingly, among 18 identified carbonylated proteins, 10 were found only in the kidneys of TCE-treated mice, whereas other 8 were present in the kidneys of both control and TCE-treated mice. The identified carbonylated proteins represent skeletal proteins, chaperones, stress proteins, enzymes, plasma protein and proteins involved in signaling pathways. The findings provide a map for further exploring the role of carbonylated proteins in TCE-mediated nephrotoxicity.
Collapse
|
3
|
Berger EM, Dubrovsky EB. Juvenile hormone molecular actions and interactions during development of Drosophila melanogaster. VITAMINS AND HORMONES 2005; 73:175-215. [PMID: 16399411 DOI: 10.1016/s0083-6729(05)73006-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edward M Berger
- Department Of Biology, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
4
|
Keiser KCL, Brandt KS, Silver GM, Wisnewski N. Cloning, partial purification and in vivo developmental profile of expression of the juvenile hormone epoxide hydrolase of Ctenocephalides felis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2002; 50:191-206. [PMID: 12125060 DOI: 10.1002/arch.10044] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
cDNAs encoding two different epoxide hydrolases (nCfEH1 and nCfEH2) were cloned from a cDNA library prepared from the wandering larval stage of the cat flea, Ctenocephalides felis. Predicted translations of the open reading frames indicated the clones encoded proteins of 464 (CfEH1) and 465 (CfEH2) amino acids. These proteins have a predicted molecular weight of 53 kDa and a putative 22 amino acid N-terminal hydrophobic membrane anchor. The amino acid sequences are 77% identical, and both are homologous to previously isolated epoxide hydrolases from Manduca sexta, Trichoplusia ni, and Rattus norvegicus. Purification of native juvenile hormone epoxide hydrolase (JHEH) from unfed adult cat fleas generated a partially pure protein that hydrolyzed juvenile hormone III to juvenile hormone III-diol. The amino terminal sequence of this;50-kDa protein is identical to the deduced amino terminus of the protein encoded by the nCfEH1 clone. Affinity-purified rabbit polyclonal antibodies raised against Escherichia coli-expressed HisCfEH1 recognized a approximately 50-kDa protein present in the partially purified fraction containing JHEH activity. Immunohistochemistry experiments using the same affinity-purified rabbit polyclonal antibodies localized the epoxide hydrolase in developing oocytes, fat body, and midgut epithelium of the adult flea. The presence of JHEH in various flea life stages and tissues was assessed by Northern blot and enzymatic activity assays. JHEH mRNA expression remained relatively constant throughout the different flea larval stages and was slightly elevated in the unfed adult flea. JHEH enzymatic activity was highest in the late larval, pupal, and adult stages. In all stages and tissues examined, JHEH activity was significantly lower than juvenile hormone esterase (JHE) activity, the other enzyme responsible for JH catalysis.
Collapse
|
5
|
Linderman RJ, Roe RM, Harris SV, Thompson DM. Inhibition of insect juvenile hormone epoxide hydrolase: asymmetric synthesis and assay of glycidol-ester and epoxy-ester inhibitors of trichoplusia ni epoxide hydrolase. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2000; 30:767-774. [PMID: 10876120 DOI: 10.1016/s0965-1748(00)00048-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Juvenile hormone (JH) undergoes metabolic degradation by two major pathways involving JH esterase and JH epoxide hydrolase (EH). While considerable effort has been focussed on the study of JH esterase and the development of inhibitors for this enzyme, much less has been reported on the study of JH-EH. In this work, the asymmetric synthesis of two classes of inhibitors of recombinant JH-EH from Trichoplusia ni, a glycidol-ester series and an epoxy-ester series is reported. The most effective glycidol-ester inhibitor, compound 1, exhibited an I(50) of 1.2x10(-8) M, and the most effective epoxy-ester inhibitor, compound 11, exhibited an I(50) of 9.4x10(-8) M. The potency of the inhibitors was found to be dependent on the absolute configuration of the epoxide. In both series of inhibitors, the C-10 R-configuration was found to be significantly more potent that the corresponding C-10 S-configuration. A mechanism for epoxide hydration catalyzed by insect EH is also presented.
Collapse
Affiliation(s)
- R J Linderman
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | |
Collapse
|
6
|
Harshman LG. Investigation of the endocrine system in extended longevity lines of Drosophila melanogaster. Exp Gerontol 1999; 34:997-1006. [PMID: 10673152 DOI: 10.1016/s0531-5565(99)00072-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is a complete absence of information about the endocrinology of Drosophila melanogaster in relation to genetic-based differential longevity in this model species. In the present study, aspects of the endocrine system of D. melanogaster were investigated in selected and control lines characterized by relative differences in life span. By using extracts from whole bodies, steroid hormone (ecdysteroid) titers were determined by radioimmunoassay in all replicate selected and control lines on the first and fourth day of adult life. The results suggest that ecdysteroid titers were relatively reduced on the first day post-eclosion in females from the long-lived lines, but this difference was not present on the fourth day posteclosion. The reduction in early-age ecdysteroid titers in long-lived females might be related to the decrease in early-age fecundity in the selected lines. There was no difference between line types in male ecdysteroid titers on either day post-eclosion. Two classes of enzymes that act on juvenile hormone were also investigated in the present study. Esterase and epoxide hydrolase activity on juvenile hormone was assessed in females in all replicate selected and control lines at approximately 12 h or 4 days post-eclosion. There was no difference between selected and control lines in the specific activity of either class of enzymes that metabolize juvenile hormone.
Collapse
Affiliation(s)
- L G Harshman
- School of Biological Sciences, University of Nebraska-Lincoln, 68588, USA.
| |
Collapse
|
7
|
Morisseau C, Ward BL, Gilchrist DG, Hammock BD. Multiple epoxide hydrolases in Alternaria alternata f. sp. lycopersici and their relationship to medium composition and host-specific toxin production. Appl Environ Microbiol 1999; 65:2388-95. [PMID: 10347018 PMCID: PMC91353 DOI: 10.1128/aem.65.6.2388-2395.1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of Alternaria alternata f. sp. lycopersici host-specific toxins (AAL toxins) and epoxide hydrolase (EH) activity were studied during the growth of this plant-pathogenic fungus in stationary liquid cultures. Media containing pectin as the primary carbon source displayed peaks of EH activity at day 4 and at day 12. When pectin was replaced by glucose, there was a single peak of EH activity at day 6. Partial characterization of the EH activities suggests the presence of three biochemically distinguishable EH activities. Two of them have a molecular mass of 25 kDa and a pI of 4.9, while the other has a molecular mass of 20 kDa and a pI of 4.7. Each of the EH activities can be distinguished by substrate preference and sensitivity to inhibitors. The EH activities present at day 6 (glucose) or day 12 (pectin) are concomitant with AAL toxin production.
Collapse
Affiliation(s)
- C Morisseau
- Department of Entomology, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
8
|
Campbell PM, Oakeshott JG, Healy MJ. Purification and kinetic characterisation of juvenile hormone esterase from Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1998; 28:501-515. [PMID: 9718682 DOI: 10.1016/s0965-1748(98)00037-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Juvenile hormone esterase (JHE) from the prepupal stage of Drosophila melanogaster was purified about 429-fold to near homogeneity by selective precipitations, isoelectric focussing, anion exchange and gel filtration chromatography. The KM and Vmax of the purified enzyme for juvenile hormone III (JHIII) hydrolysis are 89 nM and at least 590 nmol/min/mg, respectively. JHE also hydrolyses the artificial substrate alpha-naphthyl acetate with a KM of 120 micro M and a Vmax of at least 70 mumol/min/mg. Competition of JHIII hydrolysis by five juvenile hormones and twenty-four JH analogues showed JHE is highly selective for JHIII and JHIII bisepoxide (JHP3), and both may be in vivo substrates. Binding in the active site of JHE is promoted by structural features found in JHIII and JHB3 including the epoxide groups in their natural orientations, methyl (rather than ethyl) side-chains, and the 2E, 3 double bond that is conjugated with the ester group. Binding is reduced by almost any departure from these structural features of JH. Co-incubation of the haemolymph JH binding protein, lipophorin, with JHE indicates lipophorin might modulate JH hydrolysis by competition for binding of JH.
Collapse
Affiliation(s)
- P M Campbell
- CSIRO Division of Entomology, Canberra, ACT, Australia.
| | | | | |
Collapse
|
9
|
Couillaud F, Rossignol F, Darrouzet E. The Release of Isoprenoids by Locust Corpora Allata in vitro. JOURNAL OF INSECT PHYSIOLOGY 1998; 44:103-111. [PMID: 12769882 DOI: 10.1016/s0022-1910(97)00100-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Corpora allata of the African locust Locusta migratoria, incubated in vitro, biosynthesized together with juvenile hormone III (JH-III), several molecules labelled by both [2-(14)C] sodium acetate and L-[methyl-(3)H] methionine. By a combination of chromatographic procedures including reverse phase-high-performance liquid chromatography (HPLC), normal phase HPLC and thin layer chromatography (TLC), four labelled compounds were separated. They were isoprenoids, as revealed by inhibition of their synthesis by the hydroxy-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor fluvastatin and restoration by exogenous mevalonolactone. They could be produced by incubating corpora allata with JH-III, suggesting that they were JH-III metabolites. They were produced by the corpora allata from both males and females and released into the incubation medium. Their rate of synthesis changed considerably depending on the sample, and in some cases they were the major isoprenoic products of the corpora allata.
Collapse
Affiliation(s)
- F Couillaud
- Laboratoire de Neuroendocrinologie, Université Bordeaux I, URA CNRS 1138, Avenue des Facultés, 33405, Talence, France
| | | | | |
Collapse
|
10
|
Darrouzet E, Mauchamp B, Prestwich GD, Kerhoas L, Ujváry I, Couillaud F. Hydroxy juvenile hormones: new putative juvenile hormones biosynthesized by locust corpora allata in vitro. Biochem Biophys Res Commun 1997; 240:752-8. [PMID: 9398639 DOI: 10.1006/bbrc.1997.7739] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The in vitro production of sesquiterpenoids was investigated by using corpora allata (CA) of the African locust Locusta migratoria migratorioides. Labeled products from unstimulated biosynthesis were extracted, purified by normal phase HPLC, and derivatized to determine the functional groups present. An extra hydroxyl group was detected in each of two juvenile hormone (JH) biosynthetic products. One compound, NP-8, was found to co-migrate with a chemically-synthesized (Z)-hydroxymethyl isomer, 12'-OH JH-III, but not with the (E)-hydroxymethyl isomer, 12-OH JH III. Mass spectral analyses further supported the identity of the synthetic material with that biosynthesized by the corpora allata. A second compound was identified as the 8'-OH JH-III based on spectroscopic analyses. 12'-OH JH-III exhibited morphogenetic activity when tested on the heterospecific Tenebrio test. These data suggest that 12'-OH JH-III and 8'-OH JH-III are additional biosynthetically-produced and biologically-active juvenile hormones, and constitute the first known members of the class of hydroxy juvenile hormones (HJHs).
Collapse
Affiliation(s)
- E Darrouzet
- University of Bordeaux I, Laboratoire de Neuroendocrinologie, ER CNRS 629, Talence, France
| | | | | | | | | | | |
Collapse
|
11
|
Prestwich GD, Wojtasek H, Lentz AJ, Rabinovich JM. Biochemistry of proteins that bind and metabolize juvenile hormones. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1996; 32:407-419. [PMID: 8756303 DOI: 10.1002/(sici)1520-6327(1996)32:3/4<407::aid-arch13>3.0.co;2-g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A diverse group of proteins has evolved to bind and metabolize insect juvenile hormones (JHs). Synthetic radiolabeled JHs and their photoaffinity analogs have enabled us to isolate and characterize JH binding proteins (JHBPs), a putative nuclear JH receptor, JH esterases (JHEs), JH epoxide hydrolases (JHEHs), and methyl farnesoate binding proteins (MFBPs). Highlights of recent progress on structural characterization of JHBPs and JHEHs of two lepidopterans will be described. Efforts to identify MFBPs of penaeid shrimp will be discussed, and the discovery of a possible vertebrate JHBP will be presented.
Collapse
Affiliation(s)
- G D Prestwich
- Department of Chemistry, University at Stony Brook, NY 11794-3400, USA
| | | | | | | |
Collapse
|
12
|
Beetham JK, Grant D, Arand M, Garbarino J, Kiyosue T, Pinot F, Oesch F, Belknap WR, Shinozaki K, Hammock BD. Gene evolution of epoxide hydrolases and recommended nomenclature. DNA Cell Biol 1995; 14:61-71. [PMID: 7832993 DOI: 10.1089/dna.1995.14.61] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have analyzed amino acid sequence relationships among soluble and microsomal epoxide hydrolases, haloacid dehalogenases, and a haloalkane dehalogenase. The amino-terminal residues (1-229) of mammalian soluble epoxide hydrolase are homologous to a haloacid dehalogenase. The carboxy-terminal residues (230-554) of mammalian soluble epoxide hydrolase are homologous to haloalkane dehalogenase, to plant soluble epoxide hydrolase, and to microsomal epoxide hydrolase. The shared identity between the haloacid and haloalkane dehalogenases does not indicate relatedness between these two types of dehalogenases. The amino-terminal and carboxy-terminal homologies of mammalian soluble epoxide hydrolase to the respective dehalogenases suggests that this epoxide hydrolase, but not the soluble epoxide hydrolase of plant or the microsomal epoxide hydrolase, derives from a gene fusion. The homology of microsomal to soluble epoxide hydrolase suggests they derive from a gene duplication, probably of an ancestral bacterial (epoxide) hydrolase gene. Based on homology to haloalkane dehalogenase, the catalytic residues for the soluble and microsomal epoxide hydrolases are predicted. A nomenclature system based on divergent molecular evolution is proposed for these epoxide hydrolases.
Collapse
Affiliation(s)
- J K Beetham
- Department of Entomology and Environmental Toxicology, University of California, Davis 95616
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Prestwich GD, Touhara K, Riddiford LM, Hammock BD. Larva lights: a decade of photoaffinity labeling with juvenile hormone analogues. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1994; 24:747-761. [PMID: 7981725 DOI: 10.1016/0965-1748(94)90104-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The introduction of photoaffinity labeling into the mode of action of insect hormones and pheromones started 12 yr ago with the photoaffinity labeling of juvenile hormone binding proteins (JHBPs) from cockroaches in the laboratory of the late John K. Koeppe. Applying this technique to Manduca sexta led ultimately to a three-laboratory collaborative project that has begun to dissect the molecular basis for JH transport, metabolism, and nuclear binding and gene activation in Lepidoptera. This review provides (1) a history of the first experiments; (2) an idea of the breadth of the technique in the arthropod classes Insecta, Crustacea, and Arachnida; and (3) evidence for the depth of the technique in unearthing key details about three different types of the molecular action of JH in M. sexta.
Collapse
Affiliation(s)
- G D Prestwich
- Department of Chemistry, University at Stony Brook, NY 11794-3400
| | | | | | | |
Collapse
|
14
|
Touhara K, Prestwich G. Juvenile hormone epoxide hydrolase. Photoaffinity labeling, purification, and characterization from tobacco hornworm eggs. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36559-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Dietze EC, Casas J, Kuwano E, Hammock BD. Inhibition of epoxide hydrolase from human, monkey, bovine, rabbit and murine liver by trans-3-phenylglycidols. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1993; 104:309-14. [PMID: 8462281 DOI: 10.1016/0305-0491(93)90373-d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. trans-3-Phenylglycidols were potent inhibitors of cytosolic epoxide hydrolases in all species tested. 2. The order of inhibitor potency varied from species to species but trans-3-(4-nitrophenyl)glycidols were always the most potent inhibitors tested for cytosolic epoxide hydrolase. 3. The S,S-enantiomer was a more potent cytosolic epoxide hydrolase inhibitor than the R,R-enantiomer when a free hydroxyl group was present. However, (2R,3R)-1-benzoyloxy-2,3-epoxy-3-(4-nitrophenyl)propane was always a better inhibitor than the (2S,3S)-enantiomer. 4. All microsomal epoxide hydrolases were poorly inhibited by the trans-3-phenylglycidols, and related compounds, tested. The best new microsomal epoxide hydrolase inhibitor tested was (1S,2S)-1-phenylpropylene oxide which gave 18-63% inhibition, at 2 mM, depending on the species tested.
Collapse
Affiliation(s)
- E C Dietze
- Department of Entomology and Environmental Toxicology, University of California, Davis 95616
| | | | | | | |
Collapse
|
16
|
Casas J, Harshman L, Hammock B. Epoxide hydrolase activity on juvenile hormone in Manduca sexta. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0020-1790(91)90060-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|