1
|
Wang Z, Zhao F, Xu C, Zhang Q, Ren H, Huang X, He C, Ma J, Wang Z. Metabolic reprogramming in skin wound healing. BURNS & TRAUMA 2024; 12:tkad047. [PMID: 38179472 PMCID: PMC10762507 DOI: 10.1093/burnst/tkad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 01/06/2024]
Abstract
Metabolic reprogramming refers to the ability of a cell to alter its metabolism in response to different stimuli and forms of pressure. It helps cells resist external stress and provides them with new functions. Skin wound healing involves the metabolic reprogramming of nutrients, such as glucose, lipids, and amino acids, which play vital roles in the proliferation, differentiation, and migration of multiple cell types. During the glucose metabolic process in wounds, glucose transporters and key enzymes cause elevated metabolite levels. Glucose-mediated oxidative stress drives the proinflammatory response and promotes wound healing. Reprogramming lipid metabolism increases the number of fibroblasts and decreases the number of macrophages. It enhances local neovascularization and improves fibrin stability to promote extracellular matrix remodelling, accelerates wound healing, and reduces scar formation. Reprogramming amino acid metabolism affects wound re-epithelialization, collagen deposition, and angiogenesis. However, comprehensive reviews on the role of metabolic reprogramming in skin wound healing are lacking. Therefore, we have systematically reviewed the metabolic reprogramming of glucose, lipids, and amino acids during skin wound healing. Notably, we identified their targets with potential therapeutic value and elucidated their mechanisms of action.
Collapse
Affiliation(s)
- Zitong Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang, 110013, China
| | - Chengcheng Xu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Qiqi Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Haiyue Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Xing Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Cai He
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Jiajie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| |
Collapse
|
2
|
Kim E, Hwang Y, Kim H, Kim GU, Ryu YC, Yoon M, Choi KY. Pyruvate Kinase M2 Accelerates Cutaneous Wound Healing via Glycolysis and Wnt/β-Catenin Signaling. Pharmaceutics 2023; 15:2028. [PMID: 37631242 PMCID: PMC10458512 DOI: 10.3390/pharmaceutics15082028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Cutaneous wound healing is a complex and dynamic process with high energy demand. The activation of glycolysis is essential for restoring the structure and function of injured tissues in wounds. Pyruvate kinase M2 (PKM2) is an enzyme that plays a crucial role in the last step of glycolysis. PKM2-mediated glycolysis is known to play an important role in diseases related to regeneration and inflammation. However, the role of PKM2 in wound healing has not been fully elucidated. In this study, we found that PKM2 expression and pyruvate kinase (PK) activity were increased with the activation of Wnt/β-catenin signaling during wound healing in mice. TEPP-46, an allosteric activator of PKM2, enhanced HaCaT human keratinocyte migration and cutaneous wound healing with an increment of PK activity. Moreover, we confirmed the effect of co-treatment with TEPP-46 and KY19382, a Wnt/β-catenin signaling activator through the interference with the CXXC-type zinc finger protein 5 (CXXC5) Dishevelled interaction, on wound healing. The combination treatment significantly accelerated wound healing, which was confirmed by the expression level of PCNA, keratin 14, and α-SMA. Furthermore, co-treatment induced angiogenesis in the wound beds. Overall, activation of both glycolysis and Wnt/β-catenin signaling has the potential to be used as a therapeutic approach for wound healing.
Collapse
Affiliation(s)
- Eunhwan Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (E.K.); (Y.H.); (H.K.); (G.-U.K.); (Y.C.R.); (M.Y.)
| | - Yumi Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (E.K.); (Y.H.); (H.K.); (G.-U.K.); (Y.C.R.); (M.Y.)
| | - Heejene Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (E.K.); (Y.H.); (H.K.); (G.-U.K.); (Y.C.R.); (M.Y.)
| | - Geon-Uk Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (E.K.); (Y.H.); (H.K.); (G.-U.K.); (Y.C.R.); (M.Y.)
| | - Yeong Chan Ryu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (E.K.); (Y.H.); (H.K.); (G.-U.K.); (Y.C.R.); (M.Y.)
| | - Minguen Yoon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (E.K.); (Y.H.); (H.K.); (G.-U.K.); (Y.C.R.); (M.Y.)
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (E.K.); (Y.H.); (H.K.); (G.-U.K.); (Y.C.R.); (M.Y.)
- CK Regeon Inc., Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Figueiredo A, Leal EC, Carvalho E. Protein tyrosine phosphatase 1B inhibition as a potential therapeutic target for chronic wounds in diabetes. Pharmacol Res 2020; 159:104977. [PMID: 32504834 DOI: 10.1016/j.phrs.2020.104977] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Non-healing diabetic foot ulcers (DFUs) are a serious complication in diabetic patients. Their incidence has increased in recent years. Although there are several treatments for DFUs, they are often not effective enough to avoid amputation. Protein tyrosine phosphatase 1B (PTP1B) is expressed in most tissues and is a negative regulator of important metabolic pathways. PTP1B is overexpressed in tissues under diabetic conditions. Recently, PTP1B inhibition has been found to enhance wound healing. PTP1B inhibition decreases inflammation and bacterial infection at the wound site and promotes angiogenesis and tissue regeneration, thereby facilitating diabetic wound healing. In summary, the pharmacological modulation of PTP1B activity may help treat DFUs, suggesting that PTP1B inhibition is an outstanding therapeutic target.
Collapse
Affiliation(s)
- Ana Figueiredo
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Portugal
| | - Ermelindo C Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Portugal.
| | - Eugénia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Portugal; Department of Geriatrics, and Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA
| |
Collapse
|
4
|
Kim DJ, Mustoe T, Clark RAF. Cutaneous wound healing in aging small mammals: a systematic review. Wound Repair Regen 2016; 23:318-39. [PMID: 25817246 DOI: 10.1111/wrr.12290] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/27/2015] [Accepted: 03/27/2015] [Indexed: 12/31/2022]
Abstract
As the elderly population grows, so do the clinical and socioeconomic burdens of nonhealing cutaneous wounds, the majority of which are seen among persons over 60 years of age. Human studies on how aging effects wound healing will always be the gold standard, but studies have ethical and practical hurdles. Choosing an animal model is dictated by costs and animal lifespan that preclude large animal use. Here, we review the current literature on how aging effects cutaneous wound healing in small animal models and, when possible, compare healing across studies. Using a literature search of MEDLINE/PubMed databases, studies were limited to those that utilized full-thickness wounds and compared the wound-healing parameters of wound closure, reepithelialization, granulation tissue fill, and tensile strength between young and aged cohorts. Overall, wound closure, reepithelialization, and granulation tissue fill were delayed or decreased with aging across different strains of mice and rats. Aging in mice was associated with lower tensile strength early in the wound healing process, but greater tensile strength later in the wound healing process. Similarly, aging in rats was associated with lower tensile strength early in the wound healing process, but no significant tensile strength difference between young and old rats later in healing wounds. From studies in New Zealand White rabbits, we found that reepithelialization and granulation tissue fill were delayed or decreased overall with aging. While similarities and differences in key wound healing parameters were noted between different strains and species, the comparability across the studies was highly questionable, highlighted by wide variability in experimental design and reporting. In future studies, standardized experimental design and reporting would help to establish comparable study groups, and advance the overall knowledge base, facilitating the translatability of animal data to the human clinical condition.
Collapse
Affiliation(s)
- Dong Joo Kim
- School of Medicine, Department of Dermatology, Stony Brook University, Stony Brook, New York
| | - Thomas Mustoe
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard A F Clark
- Department of Dermatology, Stony Brook University, Stony Brook, New York, and.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| |
Collapse
|
5
|
Hirokawa S, Shimanuki T, Kitajima H, Nishimori Y, Shimosaka M. Identification of ETFB as a candidate protein that participates in the mechanoregulation of fibroblast cell number in collagen gel culture. J Dermatol Sci 2011; 64:119-26. [DOI: 10.1016/j.jdermsci.2011.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 08/02/2011] [Accepted: 08/09/2011] [Indexed: 01/13/2023]
|
6
|
Hoffman EM, Miller KE. Peripheral inhibition of glutaminase reduces carrageenan-induced Fos expression in the superficial dorsal horn of the rat. Neurosci Lett 2010; 472:157-60. [PMID: 20132864 DOI: 10.1016/j.neulet.2010.01.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/23/2010] [Accepted: 01/27/2010] [Indexed: 11/15/2022]
Abstract
In inflamed tissue, the levels of the excitatory amino acid glutamate are increased. Glutamate sensitizes peripheral axons of primary afferent neurons during inflammation leading to decreased firing threshold and hyperexcitability. One proposed source of glutamate is the primary afferent. Antagonizing glutamate receptors on peripheral axons of primary afferents during inflammation provides analgesia in animals and humans. The enzyme glutaminase is used by primary sensory neurons to convert glutamine to glutamate, and peripheral inhibition of glutaminase with 6-diazo-5-oxo-l-norleucine (DON) provides long-lasting analgesia during inflammation. In this study, we measured the effects of glutaminase inhibition on carrageenan-induced spinal Fos expression. Rats were given intraplantar injections of carrageenan and treated locally with either vehicle or DON. After 3h of inflammation, hind paw swelling and spinal expression of Fos were examined. CellProfiler was used to automate Fos nuclei counting in five laminar groupings in the spinal cord (I-II, III-IV, V-VI, VII-IX, X). Carrageenan increased hind paw thickness by approximately 70% and spinal Fos expression in superficial (I-II) and deep (V-VI) laminae by 10-fold and 5-fold, respectively. Treatment with DON reduced hind paw swelling by approximately 13% and suppressed Fos expression in the laminae I-II by approximately 54%, but not the deep laminae. Our results further support the notion of glutamate as a peripheral inflammatory mediator and indicate that glutaminase should be considered as a novel therapeutic target for treatment of inflammatory pain.
Collapse
Affiliation(s)
- Ernest M Hoffman
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | | |
Collapse
|
7
|
Gupta A, Raghubir R. Energy metabolism in the granulation tissue of diabetic rats during cutaneous wound healing. Mol Cell Biochem 2005; 270:71-7. [PMID: 15792355 DOI: 10.1007/s11010-005-5258-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The skin cells chiefly depend on carbohydrate metabolism for their energy requirement during cutaneous wound healing. Since the glucose metabolism is greatly hampered in diabetes and this might affect wound repair process. This prompted us to investigate the intermediate steps of energy metabolism by measuring enzyme activities in the wound tissues of normal and streptozotocin-induced diabetic rats following excision-type of cutaneous injury. The activities of key regulatory enzymes namely hexokinase (HK), phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and glucose-6 phosphate dehydrogenase (G6PD) have been monitored in the granulation tissues of normal and diabetic rats at different time points (2, 7, 14 and 21 days) of postwounding. Interestingly, a significant alteration in all these enzyme activities was observed in diabetic rats. The activity of PFK was increased but HK, LDH and CS showed a decreased activity in the wound tissue of diabetics as compared to normal rats. However G6PD exhibited an elevated activity only at early stage of healing in diabetic rats. Thus, the results suggest that significant alterations in the activities of energy metabolizing enzymes in the wound tissue of diabetic rats may affect the energy availability for cellular activity needed for repair process and this may perhaps be one of the factor responsible for impaired healing in these subjects.
Collapse
Affiliation(s)
- Asheesh Gupta
- Division of Pharmacology, Central Drug Research Institute, Lucknow, India
| | | |
Collapse
|
8
|
Gupta A, Manhas N, Raghubir R. Energy metabolism during cutaneous wound healing in immunocompromised and aged rats. Mol Cell Biochem 2005; 259:9-14. [PMID: 15124902 DOI: 10.1023/b:mcbi.0000021339.34784.81] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cutaneous cells primarily depend upon carbohydrate metabolism for their energy requirement during healing process. But, it may be greatly hampered during various pathological and altered physiological conditions. The present study was therefore undertaken to investigate the intermediate steps of energy metabolism by measuring enzyme activities in the granulation tissues of immunocompromised and aged rats following excision-type of cutaneous injury. The activities of key regulatory enzymes hexokinase (HK), phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and glucose-6 phosphate dehydrogenase (G6PD) have been monitored in the wound tissues of immunocompromised and aged rats at different time intervals (2, 7, 14 and 21 days) of postwounding. The activities of HK and CS were found significantly decreased both in immunocompromised and aged rats as compared to control subjects. However G6PD exhibited an elevated activity at early stage followed by a decreased activity at later phase of healing both in immunocompromised and aged rats. The PFK and LDH demonstrated an upward trend in immunocompromised rats but a decreasing trend in aged rats. Thus, the results suggest that significant alterations in the activities of energy metabolizing enzymes in the granulation tissues in both immunocompromised as well as in aged rats may overall affect the energy availability for cellular activity needed for repair process. Hence, this may perhaps be one of the factor responsible for impaired healing in these subjects.
Collapse
Affiliation(s)
- Asheesh Gupta
- Division of Pharmacology, Central Drug Research Institute, PO Box No. 173, Lucknow, India
| | | | | |
Collapse
|
9
|
Mazurek S, Boschek CB, Eigenbrodt E. The role of phosphometabolites in cell proliferation, energy metabolism, and tumor therapy. J Bioenerg Biomembr 1998. [PMID: 9387092 DOI: 10.1023/a: 1022490512705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A common characteristic of tumor cells is the constant overexpression of glycolytic and glutaminolytic enzymes. In tumor cells the hyperactive hexokinase and the partly inactive pyruvate kinase lead to an expansion of all phosphometabolites from glucose 6-phosphate to phosphoenolpyruvate. In addition to the glycolytic phosphometabolites, synthesis of their metabolic derivatives such as P-ribose-PP, NADH, NADPH, UTP, CTP, and UDP-N-acetyl glucosamine is also enhanced during cell proliferation. Another phosphometabolite derived from P-ribose-PP, AMP, inhibits cell proliferation. The accumulation of AMP inhibits both P-ribose-PP-synthetase and the increase in concentration of phosphometabolites derived from P-ribose-PP. In cells with low glycerol 3-phosphate and malate-aspartate shuttle capacities the inhibition of the lactate dehydrogenase by low NADH levels leads to an inhibition of glycolytic ATP production. Several tumor-therapeutic drugs reduce NAD and NADH levels, thereby inhibiting glycolytic energy production. The role of AMP, NADH, and NADPH levels in the success of chemotherapeutic treatment is discussed.
Collapse
Affiliation(s)
- S Mazurek
- Institute for Biochemistry and Endocrinology, Veterinary Faculty, University of Giessen, Germany
| | | | | |
Collapse
|
10
|
Mazurek S, Boschek CB, Eigenbrodt E. The role of phosphometabolites in cell proliferation, energy metabolism, and tumor therapy. J Bioenerg Biomembr 1997; 29:315-30. [PMID: 9387092 DOI: 10.1023/a:1022490512705] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A common characteristic of tumor cells is the constant overexpression of glycolytic and glutaminolytic enzymes. In tumor cells the hyperactive hexokinase and the partly inactive pyruvate kinase lead to an expansion of all phosphometabolites from glucose 6-phosphate to phosphoenolpyruvate. In addition to the glycolytic phosphometabolites, synthesis of their metabolic derivatives such as P-ribose-PP, NADH, NADPH, UTP, CTP, and UDP-N-acetyl glucosamine is also enhanced during cell proliferation. Another phosphometabolite derived from P-ribose-PP, AMP, inhibits cell proliferation. The accumulation of AMP inhibits both P-ribose-PP-synthetase and the increase in concentration of phosphometabolites derived from P-ribose-PP. In cells with low glycerol 3-phosphate and malate-aspartate shuttle capacities the inhibition of the lactate dehydrogenase by low NADH levels leads to an inhibition of glycolytic ATP production. Several tumor-therapeutic drugs reduce NAD and NADH levels, thereby inhibiting glycolytic energy production. The role of AMP, NADH, and NADPH levels in the success of chemotherapeutic treatment is discussed.
Collapse
Affiliation(s)
- S Mazurek
- Institute for Biochemistry and Endocrinology, Veterinary Faculty, University of Giessen, Germany
| | | | | |
Collapse
|
11
|
Nguyen DT, Keast D. Energy metabolism and the skin. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1991; 23:1175-83. [PMID: 1794442 DOI: 10.1016/0020-711x(91)90213-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D T Nguyen
- Department of Microbiology, University of Western Australia, Nedlands
| | | |
Collapse
|