Callingham BA, Crosbie AE, Rous BA. Some aspects of the pathophysiology of semicarbazide-sensitive amine oxidase enzymes.
PROGRESS IN BRAIN RESEARCH 1995;
106:305-21. [PMID:
8584667 DOI:
10.1016/s0079-6123(08)61227-3]
[Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The widespread distribution of enzymes classed as semicarbazide-sensitive amine oxidases (SSAO enzymes) throughout a very wide range of eukaryotic as well as prokaryotic organisms encourages the aspirations of those who wish to demonstrate physiological, pathological or pharmacological importance. Such enzymes are found in several tissues of mammals, both freely soluble, as in blood plasma, and membrane-bound, for example, in smooth muscle and adipose tissue. While they are capable of deaminating many amines with the production of an aldehyde and hydrogen peroxide, doubt still surrounds the identity of the most important endogenous substrates for these enzymes. At present, methylamine and aminoacetone appear to head the list of candidates. The possibility that SSAO enzymes can convert amine substrates to highly toxic metabolites is illustrated by the production of acrolein from the xenobiotic amine, allylamine and formaldehyde and methylglyoxal from methylamine and aminoacetone, respectively. Activities of SSAO enzymes may be influenced by physiological changes, such as pregnancy or pathologically by disease states, including diabetes, tumours and burns. Increased deamination of aminoacetone by tissue and plasma SSAO enzymes as a result of its increased production from L-threonine in conditions such as exhaustion, starvation and diabetes mellitus may be harmful. Such dangers could be mitigated either physiologically by a compensatory reduction in SSAO activity or pharmacologically by treatment with inhibitors of SSAO.
Collapse