1
|
Liu J, Tian R, Sun C, Guo Y, Dong L, Li Y, Song X. Microbial metabolites are involved in tumorigenesis and development by regulating immune responses. Front Immunol 2023; 14:1290414. [PMID: 38169949 PMCID: PMC10758836 DOI: 10.3389/fimmu.2023.1290414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The human microbiota is symbiotic with the host and can create a variety of metabolites. Under normal conditions, microbial metabolites can regulate host immune function and eliminate abnormal cells in a timely manner. However, when metabolite production is abnormal, the host immune system might be unable to identify and get rid of tumor cells at the early stage of carcinogenesis, which results in tumor development. The mechanisms by which intestinal microbial metabolites, including short-chain fatty acids (SCFAs), microbial tryptophan catabolites (MTCs), polyamines (PAs), hydrogen sulfide, and secondary bile acids, are involved in tumorigenesis and development by regulating immune responses are summarized in this review. SCFAs and MTCs can prevent cancer by altering the expression of enzymes and epigenetic modifications in both immune cells and intestinal epithelial cells. MTCs can also stimulate immune cell receptors to inhibit the growth and metastasis of the host cancer. SCFAs, MTCs, bacterial hydrogen sulfide and secondary bile acids can control mucosal immunity to influence the occurrence and growth of tumors. Additionally, SCFAs, MTCs, PAs and bacterial hydrogen sulfide can also affect the anti-tumor immune response in tumor therapy by regulating the function of immune cells. Microbial metabolites have a good application prospect in the clinical diagnosis and treatment of tumors, and our review provides a good basis for related research.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ruxian Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Caiyu Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ying Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Lei Dong
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
2
|
Polyamine-Based Nanostructures Share Polyamine Transport Mechanisms with Native Polyamines and Their Analogues: Significance for Polyamine-Targeted Therapy. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2022; 10:medsci10030044. [PMID: 35997336 PMCID: PMC9397040 DOI: 10.3390/medsci10030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
Polyamines are small polycationic alkylamines involved in many fundamental cellular processes, including cell proliferation, survival, and protection from oxidative stress. Polyamine homeostasis is tightly regulated through coordinated biosynthesis, catabolism, and transport. Due to their continual proliferation, cancer cells maintain elevated intracellular polyamine pools. Both polyamine metabolism and transport are commonly dysregulated in cancer, and as such, polyamine analogues are a promising strategy for exploiting the increased polyamine requirement of cancer cells. One potential polyamine analogue resistance mechanism is the downregulation of the poorly defined polyamine transport system. Recent advances in nanomedicine have produced nanostructures with polyamine analogue-based backbones (nanopolyamines). Similar nanostructures with non-polyamine backbones have been shown to be transported by endocytosis. As these polyamine-based nanoparticles could be a method for polyamine analogue delivery that bypasses polyamine transport, we designed the current studies to determine the efficacy of polyamine-based nanoparticles in cells lacking intact polyamine transport. Utilizing polyamine transport-deficient derivatives of lung adenocarcinoma lines, we demonstrated that cells unable to transport natural polyamines were also resistant to nanopolyamine-induced cytotoxicity. This resistance was a result of transport-deficient cells being incapable of importing and accumulating nanopolyamines. Pharmacological modulation of polyamine transport confirmed these results in polyamine transport competent cells. These studies provide additional insight into the polyamine transport pathway and suggest that receptor-mediated endocytosis is a likely mechanism of transport for higher-order polyamines, polyamine analogues and the nanopolyamines.
Collapse
|
3
|
Allmeroth K, Kim CS, Annibal A, Pouikli A, Koester J, Derisbourg MJ, Andrés Chacón-Martínez C, Latza C, Antebi A, Tessarz P, Wickström SA, Denzel MS. N1-acetylspermidine is a determinant of hair follicle stem cell fate. J Cell Sci 2021; 134:261953. [PMID: 33973637 PMCID: PMC8182411 DOI: 10.1242/jcs.252767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
Stem cell differentiation is accompanied by increased mRNA translation. The rate of protein biosynthesis is influenced by the polyamines putrescine, spermidine and spermine, which are essential for cell growth and stem cell maintenance. However, the role of polyamines as endogenous effectors of stem cell fate and whether they act through translational control remains obscure. Here, we investigate the function of polyamines in stem cell fate decisions using hair follicle stem cell (HFSC) organoids. Compared to progenitor cells, HFSCs showed lower translation rates, correlating with reduced polyamine levels. Surprisingly, overall polyamine depletion decreased translation but did not affect cell fate. In contrast, specific depletion of natural polyamines mediated by spermidine/spermine N1-acetyltransferase (SSAT; also known as SAT1) activation did not reduce translation but enhanced stemness. These results suggest a translation-independent role of polyamines in cell fate regulation. Indeed, we identified N1-acetylspermidine as a determinant of cell fate that acted through increasing self-renewal, and observed elevated N1-acetylspermidine levels upon depilation-mediated HFSC proliferation and differentiation in vivo. Overall, this study delineates the diverse routes of polyamine metabolism-mediated regulation of stem cell fate decisions. This article has an associated First Person interview with the first author of the paper. Summary: Reduced protein synthesis is required for stem cell functions. Here, we delineate a complex interplay of polyamines and mRNA translation that determines hair follicle stem cell fate decisions.
Collapse
Affiliation(s)
- Kira Allmeroth
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany
| | - Christine S Kim
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany
| | - Andrea Annibal
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany
| | - Andromachi Pouikli
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany
| | - Janis Koester
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany.,CECAD - Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Str. 26, D-50931 Cologne, Germany
| | - Maxime J Derisbourg
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany
| | | | - Christian Latza
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany.,CECAD - Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Str. 26, D-50931 Cologne, Germany
| | - Peter Tessarz
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany.,CECAD - Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Str. 26, D-50931 Cologne, Germany
| | - Sara A Wickström
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany.,CECAD - Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Str. 26, D-50931 Cologne, Germany.,Helsinki Institute for Life Science, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland.,Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Martin S Denzel
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany.,CECAD - Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Str. 26, D-50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, D-50931 Cologne, Germany
| |
Collapse
|
4
|
Khan A, Gamble LD, Upton DH, Ung C, Yu DMT, Ehteda A, Pandher R, Mayoh C, Hébert S, Jabado N, Kleinman CL, Burns MR, Norris MD, Haber M, Tsoli M, Ziegler DS. Dual targeting of polyamine synthesis and uptake in diffuse intrinsic pontine gliomas. Nat Commun 2021; 12:971. [PMID: 33579942 PMCID: PMC7881014 DOI: 10.1038/s41467-021-20896-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an incurable malignant childhood brain tumor, with no active systemic therapies and a 5-year survival of less than 1%. Polyamines are small organic polycations that are essential for DNA replication, translation and cell proliferation. Ornithine decarboxylase 1 (ODC1), the rate-limiting enzyme in polyamine synthesis, is irreversibly inhibited by difluoromethylornithine (DFMO). Herein we show that polyamine synthesis is upregulated in DIPG, leading to sensitivity to DFMO. DIPG cells compensate for ODC1 inhibition by upregulation of the polyamine transporter SLC3A2. Treatment with the polyamine transporter inhibitor AMXT 1501 reduces uptake of polyamines in DIPG cells, and co-administration of AMXT 1501 and DFMO leads to potent in vitro activity, and significant extension of survival in three aggressive DIPG orthotopic animal models. Collectively, these results demonstrate the potential of dual targeting of polyamine synthesis and uptake as a therapeutic strategy for incurable DIPG.
Collapse
Affiliation(s)
- Aaminah Khan
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Laura D. Gamble
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Dannielle H. Upton
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Caitlin Ung
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Denise M. T. Yu
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Anahid Ehteda
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Ruby Pandher
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Chelsea Mayoh
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Steven Hébert
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Human Genetics, McGill University, 3999 Côte Ste-Catherine Road, Montreal, QC H4A 3J1 Canada
| | - Nada Jabado
- grid.63984.300000 0000 9064 4811Department of Pediatrics, McGill University Health Center, 1001 Decarie Boulevard, Montreal, QC H4A 3J1 Canada
| | - Claudia L. Kleinman
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Human Genetics, McGill University, 3999 Côte Ste-Catherine Road, Montreal, QC H4A 3J1 Canada
| | - Mark R. Burns
- Aminex Therapeutics Inc., Suite #364, 6947 Coal Creek Parkway SE, Newcastle, WA 98059 USA
| | - Murray D. Norris
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Michelle Haber
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Maria Tsoli
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia
| | - David S. Ziegler
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.414009.80000 0001 1282 788XKids Cancer Centre, Sydney Children’s Hospital, High St, Randwick, 2031 Australia
| |
Collapse
|
5
|
Manickam M, Boggu PR, Pillaiyar T, Nam YJ, Abdullah M, Lee SJ, Kang JS, Jung SH. Design, synthesis and anticancer activity of 2-amidomethoxy-1,4-naphthoquinones and its conjugates with Biotin/polyamine. Bioorg Med Chem Lett 2021; 31:127685. [DOI: 10.1016/j.bmcl.2020.127685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
|
6
|
Madeo F, Hofer SJ, Pendl T, Bauer MA, Eisenberg T, Carmona-Gutierrez D, Kroemer G. Nutritional Aspects of Spermidine. Annu Rev Nutr 2020; 40:135-159. [DOI: 10.1146/annurev-nutr-120419-015419] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural polyamines (spermidine and spermine) are small, positively charged molecules that are ubiquitously found within organisms and cells. They exert numerous (intra)cellular functions and have been implicated to protect against several age-related diseases. Although polyamine levels decline in a complex age-dependent, tissue-, and cell type–specific manner, they are maintained in healthy nonagenarians and centenarians. Increased polyamine levels, including through enhanced dietary intake, have been consistently linked to improved health and reduced overall mortality. In preclinical models, dietary supplementation with spermidine prolongs life span and health span. In this review, we highlight salient aspects of nutritional polyamine intake and summarize the current knowledge of organismal and cellular uptake and distribution of dietary (and gastrointestinal) polyamines and their impact on human health. We further summarize clinical and epidemiological studies of dietary polyamines.
Collapse
Affiliation(s)
- Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Maria A. Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- Central Lab Graz Cell Informatics and Analyses (GRACIA), NAWI Graz, University of Graz, 8010 Graz, Austria
| | | | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, F-94805 Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Jiangsu 215163, Suzhou, China
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University, S-17177 Solna, Sweden
| |
Collapse
|
7
|
Houen G. Mammalian Cu-containing amine oxidases (CAOs): New methods of analysis, structural relationships, and possible functions. APMIS 2017; 107:5-46. [DOI: 10.1111/apm.1999.107.s96.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Apigenin Inhibits Human SW620 Cell Growth by Targeting Polyamine Catabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3684581. [PMID: 28572828 PMCID: PMC5442336 DOI: 10.1155/2017/3684581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 01/05/2023]
Abstract
Apigenin is a nonmutagenic flavonoid that has antitumor properties. Polyamines are ubiquitous cellular polycations, which play an important role in the proliferation and differentiation of cancer cells. Highly regulated pathways control the biosynthesis and degradation of polyamines. Ornithine decarboxylase (ODC) is the rate-limiting enzyme in the metabolism, and spermidine/spermine-N1-Acetyl transferase (SSAT) is the rate-limiting enzyme in the catabolism of polyamines. In the current study, the effect of increasing concentrations of apigenin on polyamine levels, ODC and SSAT protein expression, mRNA expression, cell proliferation and apoptosis, and the production of reactive oxygen species (ROS) was investigated in SW620 colon cancer cells. The results showed that apigenin significantly reduced cell proliferation, decreased the levels of spermidine and spermine, and increased previously downregulated putrescine contents. Apigenin also enhanced SSAT protein and mRNA levels and the production of reactive oxygen species in SW620 cells, though it had no significant effect on the levels of ODC protein or mRNA. Apigenin appears to decrease the proliferation rate of human SW620 cells by facilitating SSAT expression to induce polyamine catabolism and increasing ROS levels to induce cell apoptosis.
Collapse
|
9
|
Polyamines regulate phosphorylation–dephosphorylation kinetics in a crustacean gill (Na+, K+)-ATPase. Mol Cell Biochem 2017; 429:187-198. [DOI: 10.1007/s11010-017-2946-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/17/2017] [Indexed: 12/15/2022]
|
10
|
Ramos-Molina B, López-Contreras AJ, Lambertos A, Dardonville C, Cremades A, Peñafiel R. Influence of ornithine decarboxylase antizymes and antizyme inhibitors on agmatine uptake by mammalian cells. Amino Acids 2015; 47:1025-34. [PMID: 25655388 DOI: 10.1007/s00726-015-1931-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/24/2015] [Indexed: 10/24/2022]
Abstract
Agmatine (4-aminobutylguanidine), a dicationic molecule at physiological pH, exerts relevant modulatory actions at many different molecular target sites in mammalian cells, having been suggested that the administration of this compound may have therapeutic interest. Several plasma membrane transporters have been implicated in agmatine uptake by mammalian cells. Here we report that in kidney-derived COS-7 cell line, at physiological agmatine levels, the general polyamine transporter participates in the plasma membrane translocation of agmatine, with an apparent Km of 44 ± 7 µM and Vmax of 17.3 ± 3.3 nmol h(-1) mg(-1) protein, but that at elevated concentrations, agmatine can be also taken up by other transport systems. In the first case, the physiological polyamines (putrescine, spermidine and spermine), several diguanidines and bis(2-aminoimidazolines) and the polyamine transport inhibitor AMXT-1501 markedly decreased agmatine uptake. In cells transfected with any of the three ornithine decarboxylase antizymes (AZ1, AZ2 and AZ3), agmatine uptake was dramatically reduced. On the contrary, transfection with antizyme inhibitors (AZIN1 and AZIN2) markedly increased the transport of agmatine. Furthermore, whereas putrescine uptake was significantly decreased in cells transfected with ornithine decarboxylase (ODC), the accumulation of agmatine was stimulated, suggesting a trans-activating effect of intracellular putrescine on agmatine uptake. All these results indicate that ODC and its regulatory proteins (antizymes and antizyme inhibitors) may influence agmatine homeostasis in mammalian tissues.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Hadrévi J, Ghafouri B, Sjörs A, Antti H, Larsson B, Crenshaw AG, Gerdle B, Hellström F. Comparative metabolomics of muscle interstitium fluid in human trapezius myalgia: an in vivo microdialysis study. Eur J Appl Physiol 2014; 113:2977-89. [PMID: 24078209 PMCID: PMC3828502 DOI: 10.1007/s00421-013-2716-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 08/23/2013] [Indexed: 02/02/2023]
Abstract
Purpose The mechanisms behind trapezius myalgia are unclear. Many hypotheses have been presented suggesting an altered metabolism in the muscle. Here, muscle microdialysate from healthy and myalgic muscle is analysed using metabolomics. Metabolomics analyse a vast number of metabolites, enabling a comprehensive explorative screening of the cellular processes in the muscle. Methods Microdialysate samples were obtained from the shoulder muscle of healthy and myalgic subjects that performed a work and stress test. Samples from the baseline period and from the recovery period were analysed using gas chromatography—mass spectrometry (GC–MS) together with multivariate analysis to detect differences in extracellular content of metabolites between groups. Systematic differences in metabolites between groups were identified using multivariate analysis and orthogonal partial least square discriminate analysis (OPLS-DA). A complementary Mann–Whitney U test of group difference in individual metabolites was also performed. Results A large number of metabolites were detected and identified in this screening study. At baseline, no systematic differences between groups were observed according to the OPLS-DA. However, two metabolites, l-leucine and pyroglutamic acid, were significantly more abundant in the myalgic muscle compared to the healthy muscle. In the recovery period, systematic difference in metabolites between the groups was observed according to the OPLS-DA. The groups differed in amino acids, fatty acids and carbohydrates. Myristic acid and putrescine were significantly more abundant and beta-d-glucopyranose was significantly less abundant in the myalgic muscle. Conclusion This study provides important information regarding the metabolite content, thereby presenting new clues regarding the pathophysiology of the myalgic muscle.
Collapse
Affiliation(s)
- J. Hadrévi
- Section for Anatomy, Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Department of Occupational and Public Health Sciences, Faculty of Health and Occupational Studies, Centre for Musculoskeletal Research, University of Gävle, 907 12 Umeå, Sweden
| | - B. Ghafouri
- Rehabilitation Medicine, Department of Medicine and Health Sciences (IMH), Faculty of Health Sciences, Pain and Rehabilitation Centre, Linköping University, County Council of Östergötland, 581 85 Linköping, Sweden
- Occupational and Environmental Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Centre of Occupational and Environmental Medicine, Linköping University, County Council of Östergötland, 581 85 Linköping, Sweden
| | - A. Sjörs
- Rehabilitation Medicine, Department of Medicine and Health Sciences (IMH), Faculty of Health Sciences, Pain and Rehabilitation Centre, Linköping University, County Council of Östergötland, 581 85 Linköping, Sweden
- Institute of Stress Medicine, Carl Skottsbergs Gata 22B, 413 19 Gothenburg, Sweden
| | - H. Antti
- Department of Chemistry, Faculty of Science and Technology, Umeå University, 901 85 Umeå, Sweden
| | - B. Larsson
- Rehabilitation Medicine, Department of Medicine and Health Sciences (IMH), Faculty of Health Sciences, Pain and Rehabilitation Centre, Linköping University, County Council of Östergötland, 581 85 Linköping, Sweden
| | - A. G. Crenshaw
- Department of Occupational and Public Health Sciences, Faculty of Health and Occupational Studies, Centre for Musculoskeletal Research, University of Gävle, 907 12 Umeå, Sweden
| | - B. Gerdle
- Rehabilitation Medicine, Department of Medicine and Health Sciences (IMH), Faculty of Health Sciences, Pain and Rehabilitation Centre, Linköping University, County Council of Östergötland, 581 85 Linköping, Sweden
| | - F. Hellström
- Department of Occupational and Public Health Sciences, Faculty of Health and Occupational Studies, Centre for Musculoskeletal Research, University of Gävle, 907 12 Umeå, Sweden
| |
Collapse
|
12
|
Fujita M, Shinozaki K. Identification of polyamine transporters in plants: paraquat transport provides crucial clues. PLANT & CELL PHYSIOLOGY 2014; 55:855-61. [PMID: 24590488 DOI: 10.1093/pcp/pcu032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polyamine (PA) transport as well as PA biosynthesis, degradation and conjugation plays a vital role in the regulation of intracellular PA levels, which are essential for cell growth. Generally, PA uptake activity is elevated in rapidly proliferating cells. Previous studies showed that PA uptake in plant cells occurred via energy-dependent, protein-mediated transport systems. Numerous lines of evidence suggest that paraquat (PQ), one of the most widely used herbicides, is transported by the PA transport system in diverse organisms including plants. The PA/PQ transport interactions are proposed to be due to specific structural similarities between PA and PQ. The understanding of PA transport mechanisms has progressed in parallel with that of PQ transport, but the molecular identity of the plant PA/PQ transporter has remained an enigma. Recently, independent studies identified the L-type amino acid transporter (LAT) family transmembrane proteins as transporters of both PA and PQ. Arabidopsis LAT family proteins showed different subcellular localization properties, which suggested that these transporters were involved in intracellular PA trafficking and PA uptake across the plasma membrane. The identification of plant PA transporters is an important step in understanding the mechanism of PA homeostasis in plant cells. In this review, we highlight recent advances in the study of PA transport systems that are linked to the understanding of PQ translocation.
Collapse
Affiliation(s)
- Miki Fujita
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074 Japan
| | | |
Collapse
|
13
|
Muth A, Madan M, Archer JJ, Ocampo N, Rodriguez L, Phanstiel O. Polyamine transport inhibitors: design, synthesis, and combination therapies with difluoromethylornithine. J Med Chem 2014; 57:348-63. [PMID: 24405276 DOI: 10.1021/jm401174a] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development of polyamine transport inhibitors (PTIs), in combination with the polyamine biosynthesis inhibitor difluoromethylornithine (DFMO), provides a method to target cancers with high polyamine requirements. The DFMO+PTI combination therapy results in sustained intracellular polyamine depletion and cell death. A series of substituted benzene derivatives were evaluated for their ability to inhibit the import of spermidine in DFMO-treated Chinese hamster ovary (CHO) and L3.6pl human pancreatic cancer cells. Several design features were discovered which strongly influenced PTI potency, sensitivity to amine oxidases, and cytotoxicity. These included changes in (a) the number of polyamine chains appended to the ring system, (b) the polyamine sequence, (c) the attachment linkage of the polyamine to the aryl core, and (d) the presence of a terminal N-methyl group. Of the series tested, the optimal design was N(1),N(1'),N(1″)-(benzene-1,3,5-triyltris(methylene))tris(N(4)-(4-(methylamino)butyl)butane-1,4-diamine, 6b, which contained three N-methylhomospermidine motifs. This PTI exhibited decreased sensitivity to amine oxidases and low toxicity as well as high potency (EC50 = 1.4 μM) in inhibiting the uptake of spermidine (1 μM) in DFMO-treated L3.6pl human pancreatic cancer cells.
Collapse
Affiliation(s)
- Aaron Muth
- Department of Chemistry, University of Central Florida , 4000 Central Florida Boulevard, Orlando, Florida 32816-2366, United States
| | | | | | | | | | | |
Collapse
|
14
|
Cipolla BG, Miglianico L, Bligny D, Artignan X, Moulinoux JP. Effect of combination of a polyamine-free oral nutritional supplement and docetaxel in symptomatic, metastatic castration-resistant prostate cancer patients. Biomedicine (Taipei) 2013. [DOI: 10.1016/j.biomed.2013.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
15
|
A polyamine-deficient diet prevents oxaliplatin-induced acute cold and mechanical hypersensitivity in rats. PLoS One 2013; 8:e77828. [PMID: 24204988 PMCID: PMC3813736 DOI: 10.1371/journal.pone.0077828] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/06/2013] [Indexed: 11/19/2022] Open
Abstract
Background Oxaliplatin is an anticancer drug used for the treatment of advanced colorectal cancer, but it can also cause painful peripheral neuropathies. The pathophysiology of these neuropathies has not been yet fully elucidated, but may involve spinal N-methyl-D-aspartate (NMDA) receptors, particularly the NR2B subunit. As polyamines are positive modulators of NMDA-NR2B receptors and mainly originate from dietary intake, the modulation of polyamines intake could represent an interesting way to prevent/modulate neuropathic pain symptoms by opposing glutamate neurotransmission. Methods The effect of a polyamine deficient diet was investigated in an animal model of oxaliplatin-induced acute pain hypersensitivity using behavioral tests (mechanical and cold hypersensitivity). The involvement of spinal glutamate neurotransmission was monitored by using a proton nuclear magnetic resonance spectroscopy based metabolomic approach and by assessing the expression and phosphorylation of the NR2B subunit of the NMDA receptor. Results A 7-day polyamine deficient diet totally prevented oxaliplatin-induced acute cold hypersensitivity and mechanical allodynia. Oxaliplatin-induced pain hypersensitivity was not associated with an increase in NR2B subunit expression or phosphorylation, but with an increase of glutamate level in the spinal dorsal horn which was completely prevented by a polyamine deficient diet. As a validation that the oxaliplatin-induced hypersensitivity could be due to an increased activity of the spinal glutamate system, an intrathecal administration of the specific NR2B antagonist, ifenprodil, totally reversed oxaliplatin-induced mechanical and cold hypersensitivity. Conclusion A polyamine deficient diet could represent a promising and valuable nutritional therapy to prevent oxaliplatin-induced acute pain hypersensitivity.
Collapse
|
16
|
Gaboriau F, Vaultier M, Moulinoux JP, Delcros JG. Antioxidative properties of natural polyamines and dimethylsilane analogues. Redox Rep 2013; 10:9-18. [PMID: 15829106 DOI: 10.1179/135100005x21561] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Structural analogues of natural polyamines, which contain a -Si(CH3)2 group in the central carbon chain, have previously been found to be cytotoxic to various tumor cell lines in vitro and to inhibit tumor cell growth in experimentally grafted animals. In the present study, the antioxidative properties of dimethylsilane polyamine analogues were analyzed in comparison with the natural polyamines. Reactivities of these various polyamines against superoxide anions (generated from the hypoxanthine/xanthine oxidase reaction) and peroxyl radicals (produced from the thermal decomposition of water-soluble 2,2'-azo-bis-[2-amidinopropane] hydrochloride) were investigated. The dimethysilane analogues, and more particularly the hexamine derivative, exhibited the highest scavenging efficiency towards these two reactive oxygen species (ROS). Furthermore, analysis of their ability to prevent hydroxyl radical formation and to trap this ROS showed that the efficiency of the hexamine as a metal chelator and hydroxyl radical scavenger is similar to that of spermine. The higher antioxidant efficiency of the dimethylsilane polyamine analogues with respect to spermidine, together with their ability to displace this polyamine, essential for the promotion of cell growth, from its cellular anionic binding sites that are particularly prone to oxidation, could be biologically relevant and contribute to their in vivo cytotoxic effect and anti-tumor activity. Further experiments will be necessary to demonstrate clearly the relationship between their antioxidant properties and their antiproliferative effects.
Collapse
Affiliation(s)
- François Gaboriau
- Inserm U522, CHRU Pontchaillou, Université de Rennes 1, Rennes, France.
| | | | | | | |
Collapse
|
17
|
Muth A, Kamel J, Kaur N, Shicora AC, Ayene IS, Gilmour SK, Phanstiel O. Development of Polyamine Transport Ligands with Improved Metabolic Stability and Selectivity against Specific Human Cancers. J Med Chem 2013; 56:5819-28. [DOI: 10.1021/jm400496a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Aaron Muth
- Department of Medical Education, University of Central Florida College of Medicine,
12722 Research Parkway, Orlando, Florida 32826-3227, United States
- Department of Chemistry, 4000
Central Florida Boulevard, University of Central Florida, Orlando, Florida 32816, United States
| | - Joseph Kamel
- Department of Medical Education, University of Central Florida College of Medicine,
12722 Research Parkway, Orlando, Florida 32826-3227, United States
| | - Navneet Kaur
- Department of Chemistry, 4000
Central Florida Boulevard, University of Central Florida, Orlando, Florida 32816, United States
| | - Allyson C. Shicora
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood,
Pennsylvania 19096, United States
| | - Iraimoudi S. Ayene
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood,
Pennsylvania 19096, United States
| | - Susan K. Gilmour
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood,
Pennsylvania 19096, United States
| | - Otto Phanstiel
- Department of Medical Education, University of Central Florida College of Medicine,
12722 Research Parkway, Orlando, Florida 32826-3227, United States
| |
Collapse
|
18
|
Silva TM, Andersson S, Sukumaran SK, Marques MP, Persson L, Oredsson S. Norspermidine and novel Pd(II) and Pt(II) polynuclear complexes of norspermidine as potential antineoplastic agents against breast cancer. PLoS One 2013; 8:e55651. [PMID: 23418450 PMCID: PMC3572109 DOI: 10.1371/journal.pone.0055651] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/28/2012] [Indexed: 12/19/2022] Open
Abstract
Background New strategies are needed for breast cancer treatment and one initial step is to test new chemotherapeutic drugs in breast cancer cell lines, to choose candidates for further studies towards clinical use. Methodology and Findings The cytotoxic effects of a biogenic polyamine analogue – norspermidine – and its trinuclear Pd(II) and Pt(II) complexes – Pd3NSpd2 and Pt3NSpd2, respectively – were investigated in one immortalized normal-like and three breast cancer cell lines. The normal-like MCF-10A cells were least sensitive to the compounds, while growth inhibition and cell death was observed in the cancer cell lines. Norspermidine and its Pd(II) complex were generally shown to have stronger antiproliferative effects than the corresponding Pt(II) complex. Moreover, both norspermidine and the Pd(II) complex reduced the cellular activity of the growth-related enzyme, ornithine decarboxylase (ODC) to a lower level than the Pt(II) complex in most of the cell lines examined. Treatment with norspermidine or the Pd(II) complex reduced the number of colonies formed in a soft agar assay performed with the breast cancer cell lines, indicating that these compounds reduced the malignancy of the breast cancer cells. The effect of norspermidine or the Pd(II) complex on colony formation was much stronger than that observed for the Pt(II) complex. The results from a new mammalian genotoxicity screen together with those of a single cell gel electrophoresis assay indicated that none of the drugs were genotoxic at a 25 µM concentration. Main Conclusions Overall, norspermidine and its Pd(II) complex were shown to have strong antiproliferative effects. In comparison, the effects obtained with the Pd(II) complex were much stronger than that of the Pt(II) complex. The results obtained in the present study demonstrate that the trinuclear Pd(II) complex of norspermidine (Pd3NSpd2) may be regarded as a potential new metal-based drug against breast cancer, coupling a significant efficiency to a low toxicity.
Collapse
Affiliation(s)
- Tânia Magalhães Silva
- Research Unit “Molecular Physical-Chemistry”, University of Coimbra, Portugal
- Department of Biology, University of Lund, Sweden
- Department of Experimental Medical Science, University of Lund, Sweden
| | | | | | - Maria Paula Marques
- Research Unit “Molecular Physical-Chemistry”, University of Coimbra, Portugal
- Departament of Life Sciences, Faculty of Science and Technology, University of Coimbra, Portugal
| | - Lo Persson
- Department of Experimental Medical Science, University of Lund, Sweden
| | - Stina Oredsson
- Department of Biology, University of Lund, Sweden
- * E-mail:
| |
Collapse
|
19
|
de Tezanos Pinto F, Corradi GR, de la Hera DP, Adamo HP. CHO cells expressing the human P5-ATPase ATP13A2 are more sensitive to the toxic effects of herbicide Paraquat. Neurochem Int 2012; 60:243-8. [DOI: 10.1016/j.neuint.2012.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/30/2011] [Accepted: 01/03/2012] [Indexed: 11/15/2022]
|
20
|
Sharma SK, Hazeldine S, Crowley ML, Hanson A, Beattie R, Varghese S, Senanayake TMD, Hirata A, Hirata F, Huang Y, Wu Y, Steinbergs N, Murray-Stewart T, Bytheway I, Casero RA, Woster PM. Polyamine-based small molecule epigenetic modulators. MEDCHEMCOMM 2011; 3:14-21. [PMID: 23293738 PMCID: PMC3535317 DOI: 10.1039/c1md00220a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chromatin remodelling enzymes such as the histone deacetylases (HDACs) and histone demethylases such as lysine-specific demethylase 1 (LSD1) have been validated as targets for cancer drug discovery. Although a number of HDAC inhibitors have been marketed or are in human clinical trials, the search for isoform-specific HDAC inhibitors is an ongoing effort. In addition, the discovery and development of compounds targeting histone demethylases are in their early stages. Epigenetic modulators used in combination with traditional antitumor agents such as 5-azacytidine represent an exciting new approach to cancer chemotherapy. We have developed multiple series of HDAC inhibitors and LSD1 inhibitors that promote the re-expression of aberrantly silenced genes that are important in human cancer. The design, synthesis and biological activity of these analogues is described herein.
Collapse
Affiliation(s)
- Shiv K. Sharma
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Stuart Hazeldine
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Michael L. Crowley
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Allison Hanson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Ross Beattie
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Sheeba Varghese
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | | | - Aiko Hirata
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Fusao Hirata
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Yi Huang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231, USA
| | - Yu Wu
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231, USA
| | - Nora Steinbergs
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231, USA
| | - Tracey Murray-Stewart
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231, USA
| | - Ian Bytheway
- Progen Pharmaceuticals, Ltd., Darra, Queensland, Australia
| | - Robert A. Casero
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231, USA
| | - Patrick M. Woster
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, SC, 29425, USA
| |
Collapse
|
21
|
Poulin R, Casero RA, Soulet D. Recent advances in the molecular biology of metazoan polyamine transport. Amino Acids 2011; 42:711-23. [PMID: 21814785 DOI: 10.1007/s00726-011-0987-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/02/2011] [Indexed: 01/11/2023]
Abstract
Very limited molecular knowledge exists about the identity and protein components of the ubiquitous polyamine transporters found in animal cells. However, a number of reports have been published over the last 5 years on potential candidates for metazoan polyamine permeases. We review the available evidence on these putative polyamine permeases, as well as establish a useful "identikit picture" of the general polyamine transport system, based on its properties as found in a wide spectrum of mammalian cells. Any molecular candidate encoding a putative "general" polyamine permease should fit that provided portrait. The current models proposed for the mechanism of polyamine internalization in mammalian cells are also briefly reviewed.
Collapse
Affiliation(s)
- R Poulin
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada.
| | | | | |
Collapse
|
22
|
Smith T, Ghandour MS, Wood PL. Detection of N-acetyl methionine in human and murine brain and neuronal and glial derived cell lines. J Neurochem 2011; 118:187-94. [DOI: 10.1111/j.1471-4159.2011.07305.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Sarrazy V, Garcia G, MBakidi JP, Morvan CL, Bégaud-Grimaud G, Granet R, Sol V, Krausz P. Photodynamic effects of porphyrin–polyamine conjugates in human breast cancer and keratinocyte cell lines. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 103:201-6. [DOI: 10.1016/j.jphotobiol.2011.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/21/2011] [Accepted: 03/07/2011] [Indexed: 11/16/2022]
|
24
|
Abstract
The most widely used methods for measuring polyamine enzyme activities are radioisotope methods that measure the radioactivity of compounds produced from radiolabeled substrate by the enzyme reaction. Several fluorescent polyamines have been developed for the measurement of the polyamine transport system (PTS) or transglutaminase. Although fluorophores in the fluorescent polyamines may affect the affinity of the polyamine moiety to the enzyme protein, the assays that use fluorescent substrate are sensitive and simple for common laboratory usage.In this chapter, the uses of dansyl polyamines with a simple high-performance liquid chromatography system for the measurement of the PTS and polyamine catabolic enzymes including spermidine/spermine N¹-acetyltransferase and N¹-acetylpolyamine oxidase are described.
Collapse
Affiliation(s)
- Koichi Takao
- Laboratory of Cellular Physiology, Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | | |
Collapse
|
25
|
Wang JH, Zhou JJ, Xie SQ, Li Q, Zhao J, Wang CJ. Synthesis and biological evaluation of hydrazino-containing polyamine skeletons as drug delivery system. CHINESE CHEM LETT 2011. [DOI: 10.1016/j.cclet.2010.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Polyamines are present in mast cell secretory granules and are important for granule homeostasis. PLoS One 2010; 5:e15071. [PMID: 21151498 PMCID: PMC2994821 DOI: 10.1371/journal.pone.0015071] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 10/19/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mast cell secretory granules accommodate a large number of components, many of which interact with highly sulfated serglycin proteoglycan (PG) present within the granules. Polyamines (putrescine, spermidine and spermine) are absolutely required for the survival of the vast majority of living cells. Given the reported ability of polyamines to interact with PGs, we investigated the possibility that polyamines may be components of mast cell secretory granules. METHODOLOGY/PRINCIPAL FINDINGS Spermidine was released by mouse bone marrow derived mast cells (BMMCs) after degranulation induced by IgE/anti-IgE or calcium ionophore A23187. Additionally, both spermidine and spermine were detected in isolated mouse mast cell granules. Further, depletion of polyamines by culturing BMMCs with α-difluoromethylornithine (DFMO) caused aberrant secretory granule ultrastructure, impaired histamine storage, reduced serotonin levels and increased β-hexosaminidase content. A proteomic approach revealed that DFMO-induced polyamine depletion caused an alteration in the levels of a number of proteins, many of which are connected either with the regulated exocytosis or with the endocytic system. CONCLUSIONS/SIGNIFICANCE Taken together, our results show evidence that polyamines are present in mast cell secretory granules and, furthermore, indicate an essential role of these polycations during the biogenesis and homeostasis of these organelles.
Collapse
|
27
|
Tomasi S, Renault J, Martin B, Duhieu S, Cerec V, Le Roch M, Uriac P, Delcros JG. Targeting the Polyamine Transport System with Benzazepine- and Azepine-Polyamine Conjugates. J Med Chem 2010; 53:7647-63. [DOI: 10.1021/jm1007648] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sophie Tomasi
- Produits Naturels−Synthèses−Chimie Médicinale, Sciences Chimiques de Rennes, CNRS UMR 6226, Faculté de Pharmacie, Université Rennes 1, Université Européenne de Bretagne, Rennes Cedex, France
| | - Jacques Renault
- Produits Naturels−Synthèses−Chimie Médicinale, Sciences Chimiques de Rennes, CNRS UMR 6226, Faculté de Pharmacie, Université Rennes 1, Université Européenne de Bretagne, Rennes Cedex, France
| | - Bénédicte Martin
- Groupe de Recherche en Thérapeutique Anticancéreuse, Faculté de Médecine, Université Rennes 1, Université Européenne de Bretagne, Rennes Cedex, France
| | - Stephane Duhieu
- Groupe de Recherche en Thérapeutique Anticancéreuse, Faculté de Médecine, Université Rennes 1, Université Européenne de Bretagne, Rennes Cedex, France
| | - Virginie Cerec
- Groupe de Recherche en Thérapeutique Anticancéreuse, Faculté de Médecine, Université Rennes 1, Université Européenne de Bretagne, Rennes Cedex, France
| | - Myriam Le Roch
- Produits Naturels−Synthèses−Chimie Médicinale, Sciences Chimiques de Rennes, CNRS UMR 6226, Faculté de Pharmacie, Université Rennes 1, Université Européenne de Bretagne, Rennes Cedex, France
| | - Philippe Uriac
- Produits Naturels−Synthèses−Chimie Médicinale, Sciences Chimiques de Rennes, CNRS UMR 6226, Faculté de Pharmacie, Université Rennes 1, Université Européenne de Bretagne, Rennes Cedex, France
| | - Jean-Guy Delcros
- Groupe de Recherche en Thérapeutique Anticancéreuse, Faculté de Médecine, Université Rennes 1, Université Européenne de Bretagne, Rennes Cedex, France
| |
Collapse
|
28
|
Xie S, Wang J, Zhang Y, Wang C. Antitumor conjugates with polyamine vectors and their molecular mechanisms. Expert Opin Drug Deliv 2010; 7:1049-61. [DOI: 10.1517/17425247.2010.504205] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
García-Faroldi G, Correa-Fiz F, Abrighach H, Berdasco M, Fraga MF, Esteller M, Urdiales JL, Sánchez-Jiménez F, Fajardo I. Polyamines affect histamine synthesis during early stages of IL-3-induced bone marrow cell differentiation. J Cell Biochem 2010; 108:261-71. [PMID: 19562674 DOI: 10.1002/jcb.22246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mast cells synthesize and store histamine, a key immunomodulatory mediator. Polyamines are essential for every living cell. Previously, we detected an antagonistic relationship between the metabolisms of these amines in established mast cell and basophilic cell lines. Here, we used the IL-3-driven mouse bone marrow-derived mast cell (BMMC) culture system to further investigate this antagonism in a mast cell model of deeper physiological significance. Polyamines and histamine levels followed opposite profiles along the bone marrow cell cultures leading to BMMCs. alpha-Difluoromethylornithine (DFMO)-induced polyamine depletion resulted in an upregulation of histidine decarboxylase (HDC, the histamine-synthesizing enzyme) expression and activity, accompanied by increased histamine levels, specifically during early stages of these cell cultures, where an active histamine synthesis process occurs. In contrast, DFMO did not induce any effect in either HDC activity or histamine levels of differentiated BMMCs or C57.1 mast cells, that exhibit a nearly inactive histamine synthesis rate. Sequence-specific DNA methylation analysis revealed that the DFMO-induced HDC mRNA upregulation observed in early bone marrow cell cultures is not attributable to a demethylation of the gene promoter caused by the pharmacological polyamine depletion. Taken together, the results support an inverse relationship between histamine and polyamine metabolisms during the bone marrow cell cultures leading to BMMCs and, moreover, suggest that the regulation of the histamine synthesis occurring during the early stages of these cultures depends on the concentrations of polyamines.
Collapse
Affiliation(s)
- Gianni García-Faroldi
- Faculty of Sciences, Department of Molecular Biology, University of Málaga, CIBER de Enfermedades Raras (CIBER-ER), Campus de Teatinos s/n, 29071 Málaga, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Aouida M, Poulin R, Ramotar D. The human carnitine transporter SLC22A16 mediates high affinity uptake of the anticancer polyamine analogue bleomycin-A5. J Biol Chem 2009; 285:6275-84. [PMID: 20037140 DOI: 10.1074/jbc.m109.046151] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bleomycin is used in combination with other antineoplastic agents to effectively treat lymphomas, testicular carcinomas, and squamous cell carcinomas of the cervix, head, and neck. However, resistance to bleomycin remains a persistent limitation in exploiting the full therapeutic benefit of the drug with other types of cancers. Previously, we documented that the Saccharomyces cerevisiae L-carnitine transporter Agp2 is responsible for the high affinity uptake of polyamines and of the polyamine analogue bleomycin-A5. Herein, we document that the human L-carnitine transporter hCT2 encoded by the SLC22A16 gene is involved in bleomycin-A5 uptake, as well as polyamines. We show that NT2/D1 human testicular cancer cells, which highly express hCT2, are extremely sensitive to bleomycin-A5, whereas HCT116 human colon carcinoma cells devoid of detectable hCT2 expression or MCF-7 human breast cancer cells that only weakly express the permease showed striking resistance to the drug. NT2/D1 cells accumulated fluorescein-labeled bleomycin-A5 to substantially higher levels than HCT116 cells. Moreover, L-carnitine protected NT2/D1 cells from the lethal effects of bleomycin-A5 by preventing its influx, and siRNA targeted to hCT2 induced resistance to bleomycin-A5-dependent genotoxicity. Furthermore, hCT2 overexpression induced by transient transfection of a functional hCT2-GFP fusion protein sensitized HCT116 cells to bleomycin-A5. Collectively, our data strongly suggest that hCT2 can mediate bleomycin-A5 and polyamine uptake, and that the rate of bleomycin-A5 accumulation may account for the differential response to the drug in patients.
Collapse
Affiliation(s)
- Mustapha Aouida
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Quebec H1T 2M4, Canada.
| | | | | |
Collapse
|
31
|
Abstract
Increased polyamine concentrations play an important role in the development of cancer at all stages, from initiation through to maintenance of the transformed phenotype. One way cancer cells accumulate increased concentrations of polyamines is by increased uptake of preformed polyamines via their PTS (polyamine transport system). The PTS is promiscuous and will transport a range of polyamine-based molecules. Therefore it may be that cytotoxic drugs could be attached to polyamine vectors and targeted selectively to cancer cells by utilizing the PTS. The aim of the present study was to investigate the potential of Ant 4, a putrescine-anthracene conjugate, to target cytotoxic agents to human cancer cells as a paradigm for a novel method of selective drug delivery. Ant 4 induced cytotoxicity after only 24 h exposure. Apoptosis was the predominant type of cell death, with mechanistic studies revealing that oxidative stress and DNA damage may have a part to play. For the first time, uptake of Ant 4 via the PTS was demonstrated both directly and indirectly in human cell lines. In addition, Ant 4 significantly reduced putrescine uptake, demonstrating that this conjugate not only used the PTS, but also could successfully compete with its native polyamine for uptake. However, the most interesting finding was the intracellular depletion of the polyamine pools, providing an additional mode of toxicity for Ant 4 and the possibility that this molecule may act as a 'double-edged sword': preventing cell growth by delivery of the toxic moiety and by depletion of intracellular polyamine content.
Collapse
|
32
|
The polyamine transport system as a target for anticancer drug development. Amino Acids 2009; 38:415-22. [DOI: 10.1007/s00726-009-0400-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 10/28/2009] [Indexed: 10/20/2022]
|
33
|
Preclinical activity of F14512, designed to target tumors expressing an active polyamine transport system. Invest New Drugs 2009; 29:9-21. [PMID: 19777159 DOI: 10.1007/s10637-009-9328-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
We have exploited the polyamine transport system (PTS) to deliver selectively a spermine-drug conjugate, F14512 to cancer cells. This study was aimed to define F14512 anticancer efficacy against tumor models and to investigate whether fluorophor-labeled polyamine probes could be used to identify tumors expressing a highly active PTS and that might be sensitive to F14512 treatments. Eighteen tumor models were used to assess F14512 antitumor activity. Cellular uptake of spermine-based fluorescent probes was measured by flow cytometry in cells sampled from tumor xenografts by needle biopsy. The accumulation of the fluorescent probe within B16 tumors in vivo was assessed using infrared fluorescence imaging. This study has provided evidence of a major antitumor activity for F14512. Significant responses were obtained in 67% of the tumor models evaluated, with a high level of activity recorded in 33% of the responsive models. Complete tumor regressions were observed after i.v., i.p. or oral administrations of F14512 and its antitumor activity was demonstrated over a range of 2-5 dose levels, providing evidence of its good tolerance. The level of cellular fluorescence emitted by the fluorescent probes was higher in cells sampled from tumors sensitive to F14512 treatments than from F14512-refractory tumors. We suggest that these probes could be used to identify tumors expressing a highly active PTS and guide the selection of patients that might be treated with F14512. These results emphasize the preclinical interest of this novel molecule and support its further clinical development.
Collapse
|
34
|
Ma L, Wu X, Ling-Ling E, Wang DS, Liu HC. The transmembrane transport of metformin by osteoblasts from rat mandible. Arch Oral Biol 2009; 54:951-62. [PMID: 19700143 DOI: 10.1016/j.archoralbio.2009.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 07/22/2009] [Accepted: 07/31/2009] [Indexed: 11/26/2022]
Abstract
Previous studies have demonstrated that metformin, one of systemic antihyperglycemic drugs, can slow bone loss caused by diabetes mellitus and has an osteogenic action on osteoblasts in vitro. It is tempting to speculate that metformin would be transported into bone tissues around dental implant by topical administration to improve the bone-implant contact in diabetic patients. In this study, the osteoblasts from rat mandible were cultured with 5.5 mM (control) or 16.5 mM d-glucose, then the uptake of metformin by osteoblasts was detected with high performance liquid chromatography (HPLC). Rat organic cation transporter (rOct) expression was characterized by immunocytochemistry, RT-PCR and Western blotting. It was found that, the uptake of metformin was saturable, Na(+)-dependent, affected by extracellular pH and inhibited by both phenformin and cimetidine (an inhibitor of Octs). rOct1 but no rOct2 was expressed extensively in osteoblasts and the protein level of rOct1 could be up-regulated by metformin. The uptake of metformin and phosphorylated-rOct1 at hyperglycaemic cell culture (16.5 mM d-glucose) significantly increased versus 5.5 mM control (p < 0.05). In conclusion, rat osteoblasts have the ability to transport the metformin intra-cellularly, the uptake of metformin by osteoblasts is a secondary active transportation mediated by rOct1 and high-glucose can improve the uptake of metformin by osteoblasts through phosphorylation of rOct1. The current results suggest that metformin could be used for dental implant topically in type 2 diabetic patients to increase the bone formation, therefore, to enhance the success rate of dental implants clinically.
Collapse
Affiliation(s)
- Long Ma
- Department of Stomatology, China PLA General Hospital, Beijing 100853, China
| | | | | | | | | |
Collapse
|
35
|
Dalla Via L, Salvi M, Di Noto V, Stefanelli C, Toninello A. Membrane binding and transport of N-aminoethyl-1,2-diamino ethane (dien) and N-aminopropyl-1,3-diamino propane (propen) by rat liver mitochondria and their effects on membrane permeability transition. Mol Membr Biol 2009; 21:109-18. [PMID: 15204440 DOI: 10.1080/09687680310001654916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This investigation is aimed at defining the structural requirements for aliphatic polyamines to interact with mitochondrial binding sites, which are relevant for the regulation of the permeability transition and for mitochondrial polyamine uptake. The triamines N-aminoethyl-1,2-diaminoethane (dien) and N-aminopropyl-1,3-diaminopropane (propen), both symmetric polyamines, are accumulated to differing extents by an energy-dependent mechanism in liver mitochondria. Propen is also able completely to inhibit the permeability transition of mitochondria, induced by Ca2+ plus phosphate, with the same efficacy as the asymmetric ubiquitary triamine spermidine, whereas dien fails to exhibit this effect. The competitive inhibition of both triamines on spermidine transport demonstrates that they bind to the same site(s) of this polyamine and exploit its transport system. The binding of dien and propen to mitochondrial membrane was studied by applying a thermodynamic model of ligand-receptor interactions developed both for equilibrium and far-from-equilibrium binding processes. Results show the presence of two mono-coordinated binding sites, S1 and S2, for propen, and one monocoordinated binding site for dien, all exhibiting high capacity and low affinity. Comparisons of the binding parameters of these polyamines with those of other natural polyamines reveal that, besides flexibility and hydrophilicity, as previously suggested, protonation of the imino group and the symmetry of the molecules for S1, and the presence of an aminobutyl group for S2, also contribute to the polyamine interactions observed in the two sites.
Collapse
Affiliation(s)
- Lisa Dalla Via
- Dipartimento di Scienze Farmaceutiche, Università di Padova, Via Marzolo 5, 35121 Padova, Italy
| | | | | | | | | |
Collapse
|
36
|
Burns MR, Graminski GF, Weeks RS, Chen Y, O'Brien TG. Lipophilic lysine-spermine conjugates are potent polyamine transport inhibitors for use in combination with a polyamine biosynthesis inhibitor. J Med Chem 2009; 52:1983-93. [PMID: 19281226 DOI: 10.1021/jm801580w] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer cells can overcome the ability of polyamine biosynthesis inhibitors to completely deplete their internal polyamines by the importation of polyamines from external sources. This paper discusses the development of a group of lipophilic polyamine analogues that potently inhibit the cellular polyamine uptake system and greatly increase the effectiveness of polyamine depletion when used in combination with DFMO, a well-studied polyamine biosynthesis inhibitor. The attachment of a length-optimized C(16) lipophilic substituent to the epsilon-nitrogen atom of an earlier lead compound, D-Lys-Spm (5), has produced an analogue, D-Lys(C(16)acyl)-Spm (11) with several orders of magnitude more potent cell growth inhibition on a variety of cultured cancer cell types including breast (MDA-MB-231), prostate (PC-3), melanoma (A375), and ovarian (SK-OV-3), among others. These results are discussed in the context of a possible membrane-catalyzed interaction with the extracellular polyamine transport apparatus. The resulting novel two-drug combination therapy targeting cellular polyamine metabolism has shown exceptional efficacy against cutaneous squamous cell carcinomas (SCC) in a transgenic ornithine decarboxylase (ODC) mouse model of skin cancer. A majority (88%) of large, aggressive SCCs exhibited complete or nearly complete remission to this combination therapy, whereas responses to each agent alone were poor. The availability of a potent polyamine transport inhibitor allows, for the first time, for a real test of the hypothesis that starving cells of polyamines will lead to objective clinical response.
Collapse
Affiliation(s)
- Mark R Burns
- MediQuest Therapeutics, Inc, Bothell, Washington 98021, USA.
| | | | | | | | | |
Collapse
|
37
|
Wang J, Xie S, Li Y, Guo Y, Ma Y, Zhao J, Phanstiel O, Wang C. Synthesis and evaluation of unsymmetrical polyamine derivatives as antitumor agents. Bioorg Med Chem 2008; 16:7005-12. [DOI: 10.1016/j.bmc.2008.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/14/2008] [Accepted: 05/15/2008] [Indexed: 11/26/2022]
|
38
|
Kaur N, Delcros JG, Archer J, Weagraff NZ, Martin B, Phanstiel Iv O. Designing the polyamine pharmacophore: influence of N-substituents on the transport behavior of polyamine conjugates. J Med Chem 2008; 51:2551-60. [PMID: 18363351 DOI: 10.1021/jm701341k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-Ethylated N-arylmethyl polyamine conjugates were synthesized and evaluated for their ability to target the polyamine transporter (PAT). To understand the effect of N-ethylation upon PAT selectivity, ethyl groups were appended onto a PAT-selective N (1)-anthracenenylmethyl homospermidine derivative, 1b. Bioevaluation in L1210 murine leukemia cells and in two Chinese hamster ovary cell lines (PAT-active CHO and PAT-deficient CHO-MG) revealed a dramatic decrease in PAT targeting ability upon N (1) or N (5) ethylation of the pharmacophore 1b. Experiments using the amine oxidase inhibitor, aminoguanidine (AG, 2 mM), revealed that the N (9)-ethyl and N (9)-methyl analogues were able to retain their PAT selectivity and cytotoxicity properties in the presence or absence of AG. In contrast, the lead compound 1b (containing a terminal NH 2 group) revealed a dramatic reduction in both its PAT-targeting ability and cytotoxicity in the absence of AG. An improved balance between these three properties of PAT-targeting, cytotoxicity and metabolic stability can be attained via N-methylation at the N (9)-position.
Collapse
Affiliation(s)
- Navneet Kaur
- Groupe Cycle Cellulaire, CNRS UMR 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Av. du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France
| | | | | | | | | | | |
Collapse
|
39
|
Kaur N, Delcros JG, Imran J, Khaled A, Chehtane M, Tschammer N, Martin B, Phanstiel O. A Comparison of Chloroambucil- and Xylene-Containing Polyamines Leads to Improved Ligands for Accessing the Polyamine Transport System. J Med Chem 2008; 51:1393-401. [DOI: 10.1021/jm070794t] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Navneet Kaur
- Department of Chemistry, P.O. Box 162366, University of Central Florida, Orlando, Florida 32816-2366, Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32825, Groupe Cycle Cellulaire, CNRS UMR 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Av. du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France, and Department of Medical Education, College of Medicine, University of Central
| | - Jean-Guy Delcros
- Department of Chemistry, P.O. Box 162366, University of Central Florida, Orlando, Florida 32816-2366, Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32825, Groupe Cycle Cellulaire, CNRS UMR 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Av. du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France, and Department of Medical Education, College of Medicine, University of Central
| | - Jon Imran
- Department of Chemistry, P.O. Box 162366, University of Central Florida, Orlando, Florida 32816-2366, Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32825, Groupe Cycle Cellulaire, CNRS UMR 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Av. du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France, and Department of Medical Education, College of Medicine, University of Central
| | - Annette Khaled
- Department of Chemistry, P.O. Box 162366, University of Central Florida, Orlando, Florida 32816-2366, Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32825, Groupe Cycle Cellulaire, CNRS UMR 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Av. du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France, and Department of Medical Education, College of Medicine, University of Central
| | - Mounir Chehtane
- Department of Chemistry, P.O. Box 162366, University of Central Florida, Orlando, Florida 32816-2366, Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32825, Groupe Cycle Cellulaire, CNRS UMR 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Av. du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France, and Department of Medical Education, College of Medicine, University of Central
| | - Nuska Tschammer
- Department of Chemistry, P.O. Box 162366, University of Central Florida, Orlando, Florida 32816-2366, Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32825, Groupe Cycle Cellulaire, CNRS UMR 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Av. du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France, and Department of Medical Education, College of Medicine, University of Central
| | - Bénédicte Martin
- Department of Chemistry, P.O. Box 162366, University of Central Florida, Orlando, Florida 32816-2366, Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32825, Groupe Cycle Cellulaire, CNRS UMR 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Av. du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France, and Department of Medical Education, College of Medicine, University of Central
| | - Otto Phanstiel
- Department of Chemistry, P.O. Box 162366, University of Central Florida, Orlando, Florida 32816-2366, Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32825, Groupe Cycle Cellulaire, CNRS UMR 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Av. du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France, and Department of Medical Education, College of Medicine, University of Central
| |
Collapse
|
40
|
Tsen C, Iltis M, Kaur N, Bayer C, Delcros JG, von Kalm L, Phanstiel O. A Drosophila Model To Identify Polyamine−Drug Conjugates That Target the Polyamine Transporter in an Intact Epithelium. J Med Chem 2007; 51:324-30. [DOI: 10.1021/jm701198s] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chung Tsen
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816-2366, Department of Biology, University of Central Florida, Orlando, Florida 32816-2368, and Groupe Cycle Cellulaire, UMR CNRS 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Avenue du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France
| | - Mark Iltis
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816-2366, Department of Biology, University of Central Florida, Orlando, Florida 32816-2368, and Groupe Cycle Cellulaire, UMR CNRS 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Avenue du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France
| | - Navneet Kaur
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816-2366, Department of Biology, University of Central Florida, Orlando, Florida 32816-2368, and Groupe Cycle Cellulaire, UMR CNRS 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Avenue du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France
| | - Cynthia Bayer
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816-2366, Department of Biology, University of Central Florida, Orlando, Florida 32816-2368, and Groupe Cycle Cellulaire, UMR CNRS 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Avenue du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France
| | - Jean-Guy Delcros
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816-2366, Department of Biology, University of Central Florida, Orlando, Florida 32816-2368, and Groupe Cycle Cellulaire, UMR CNRS 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Avenue du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France
| | - Laurence von Kalm
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816-2366, Department of Biology, University of Central Florida, Orlando, Florida 32816-2368, and Groupe Cycle Cellulaire, UMR CNRS 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Avenue du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France
| | - Otto Phanstiel
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816-2366, Department of Biology, University of Central Florida, Orlando, Florida 32816-2368, and Groupe Cycle Cellulaire, UMR CNRS 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Avenue du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France
| |
Collapse
|
41
|
Isome M, Lortie MJ, Murakami Y, Parisi E, Matsufuji S, Satriano J. The antiproliferative effects of agmatine correlate with the rate of cellular proliferation. Am J Physiol Cell Physiol 2007; 293:C705-11. [PMID: 17475661 DOI: 10.1152/ajpcell.00084.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polyamines are small cationic molecules required for cellular proliferation. Agmatine is a biogenic amine unique in its capacity to arrest proliferation in cell lines by depleting intracellular polyamine levels. We previously demonstrated that agmatine enters mammalian cells via the polyamine transport system. As polyamine transport is positively correlated with the rate of cellular proliferation, the current study examines the antiproliferative effects of agmatine on cells with varying proliferative kinetics. Herein, we evaluate agmatine transport, intracellular accumulation, and its effects on antizyme expression and cellular proliferation in nontransformed cell lines and their transformed variants. H-ras- and Src-transformed murine NIH/3T3 cells (Ras/3T3 and Src/3T3, respectively) that were exposed to exogenous agmatine exhibit increased uptake and intracellular accumulation relative to the parental NIH/3T3 cell line. Similar increases were obtained for human primary foreskin fibroblasts relative to a human fibrosarcoma cell line, HT1080. Agmatine increases expression of antizyme, a protein that inhibits polyamine biosynthesis and transport. Ras/3T3 and Src/3T3 cells demonstrated augmented increases in antizyme protein expression relative to NIH/3T3 in response to agmatine. All transformed cell lines were significantly more sensitive to the antiproliferative effects of agmatine than nontransformed lines. These effects were attenuated in the presence of exogenous polyamines or inhibitors of polyamine transport. In conclusion, the antiproliferative effects of agmatine preferentially target transformed cell lines due to the increased agmatine uptake exhibited by cells with short cycling times.
Collapse
Affiliation(s)
- Masato Isome
- University of California San Diego and Veterans Affairs San Diego Healthcare System, Division of Nephrology-Hypertension, San Diego, CA 92161, USA
| | | | | | | | | | | |
Collapse
|
42
|
Satriano J. Kidney growth, hypertrophy and the unifying mechanism of diabetic complications. Amino Acids 2007; 33:331-9. [PMID: 17443269 DOI: 10.1007/s00726-007-0529-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 02/01/2007] [Indexed: 01/11/2023]
Abstract
Michael Brownlee has proposed a 'Unifying Mechanism' of hyperglycemia-induced damage in diabetes mellitus. At the crux of this hypothesis is the generation of reactive oxygen species (ROS), and their impact on glycolytic pathways. Diabetes is the leading cause of chronic kidney failure. In the early phase of diabetes, prior to establishment of proteinuria or fibrosis, comes kidney growth and hyperfiltration. This early growth phase consists of an early period of hyperplasia followed by hypertrophy. Hypertrophy also contributes to cellular oxidative stress, and may precede the ROS perturbation of glycolytic pathways described in the Brownlee proposal. This increase in growth promotes hyperfiltration, and along with the hypertrophic phenotype appears required for hyperglycemia-induced cell damage and the progression of downstream diabetic complications. Here we will evaluate this growth phenomenon in the context of diabetes mellitus.
Collapse
Affiliation(s)
- J Satriano
- Division of Nephrology-Hypertension, Department of Medicine, The Veterans Administration San Diego Healthcare System, University of California San Diego, San Diego, CA 92161, USA.
| |
Collapse
|
43
|
Phanstiel O, Kaur N, Delcros JG. Structure-activity investigations of polyamine-anthracene conjugates and their uptake via the polyamine transporter. Amino Acids 2007; 33:305-13. [PMID: 17410331 DOI: 10.1007/s00726-007-0527-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
A series of polyamine conjugates were synthesized and evaluated for their ability to target the polyamine transporter (PAT) in two Chinese hamster ovary (CHO) cell lines (PAT-active CHO and PAT-inactive CHOMG). This systematic study identified salient features of the polyamine architecture required to target and enter cells via the PAT. Indeed, the separation of charges, the degree of N-alkylation, and the spacer unit connecting the N(1)-terminus to the appended cytotoxic component (anthracene) were found to be key contributors to optimal delivery via the PAT. Using the CHO screen, the homospermidine motif (e.g., 4,4-triamine) was identified as a polyamine vector, which could enable the selective import of large N(1)-substituents (i.e., naphthylmethyl, anthracenylmethyl and pyrenylmethyl), which were cytotoxic to cells. The cell selectivity of this approach was demonstrated in B-16 murine melanoma cells and normal melanocytes (Mel-A). Three polyamine areas (recognition and transport, vesicle sequestration and polyamine-target interactions) were identified for future research.
Collapse
Affiliation(s)
- O Phanstiel
- Department of Chemistry, University of Central Florida, Orlando, FL 32816-2366, USA.
| | | | | |
Collapse
|
44
|
Muller C, Herberth H, Cosquer B, Kelche C, Cassel JC, Schimchowitsch S. Structural and functional recovery elicited by combined putrescine and aminoguanidine treatment after aspirative lesion of the fimbria-fornix and overlying cortex in the adult rat. Eur J Neurosci 2007; 25:1949-60. [PMID: 17439484 DOI: 10.1111/j.1460-9568.2007.05474.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Damage to the adult CNS often causes permanent deficits. Based on a lesion model of septohippocampal pathway aspiration in the rat, we attempted to promote neuronal cell survival and post-traumatic recovery by using a pharmacological treatment combining aminoguanidine and putrescine (AGP). The functional recovery was followed over 15 weeks before morphological analysis. AGP treatment produced a persistent attenuation (approximately 50%) of the lesion-induced hyperactivity, a reduction (approximately 60%) in the sensorimotor impairments and an improved performance in the water-maze task which did not, however, rely upon improved memory capabilities. AGP weakened the lesion-induced decrease in ChAT-positive neurons in the medial septum and the extent of thalamic retrograde necrosis (by approximately 30% in each case) and resulted in a partial cholinergic reinnervation of the dentate gyrus. These promising results support the idea that coadministration of putrescine and aminoguanidine might become a potent way to foster structural and functional recovery (or compensation) in the adult mammalian CNS after injury.
Collapse
Affiliation(s)
- Christophe Muller
- Laboratoire de Neurosciences Comportementales et Cognitives, LINC UMR 7191, GDR 2905 CNRS, IFR 37, 67000 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
45
|
Dallavalle S, Giannini G, Alloatti D, Casati A, Marastoni E, Musso L, Merlini L, Morini G, Penco S, Pisano C, Tinelli S, De Cesare M, Beretta GL, Zunino F. Synthesis and Cytotoxic Activity of Polyamine Analogues of Camptothecin. J Med Chem 2006; 49:5177-86. [PMID: 16913706 DOI: 10.1021/jm060285b] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A number of derivatives of camptothecin with a polyamine chain linked to position 7 of camptothecin via an amino, imino, or oxyiminomethyl group were synthesized and tested for their biological activity. All compounds showed marked growth inhibitory activity against the H460 human lung carcinoma cell line. In particular, the iminomethyl derivatives where the amino groups of the chain were protected with Boc groups exhibited a high potency, with IC50 values of approximately 10(-8) M. The pattern of DNA cleavage in vitro and the persistence of the cleavable ternary complex drug-DNA-topoisomerase I observed with polyamine conjugates containing free amino groups support a contribution of specific drug interaction with DNA as a determinant of activity. Modeling of compound 7c in the complex with topoisomerase 1 and DNA is consistent with this hypothesis. The lack of a specific correlation between stabilization of the cleavable complex and growth inhibition likely reflects multiple factors including the cellular pharmacokinetic behavior related to the variable lipophilicity of the conjugate, and the nature and linkage of the polyamine moiety.
Collapse
Affiliation(s)
- Sabrina Dallavalle
- Dipartimento di Scienze Molecolari Agroalimentari, Università di Milano, Via Celoria 2, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Schimchowitsch S, Cassel JC. Polyamine and aminoguanidine treatments to promote structural and functional recovery in the adult mammalian brain after injury: a brief literature review and preliminary data about their combined administration. ACTA ACUST UNITED AC 2006; 99:221-31. [PMID: 16646157 DOI: 10.1016/j.jphysparis.2005.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The regeneration potential of the adult mammalian central nervous system (CNS) is very modest, due to, among other factors, the presence of either a glial scar, or myelin-associated regeneration inhibitors such as Nogo-A, MAG and OMgp, which all interact with the same receptor (NgR). After a brief review of the key proteins (Rho and PKC) implicated in NgR-mediated signalling cascades, we will tackle the implications of cAMP and Arginase I in overcoming myelin growth-inhibitory influence, and then will focus on the effects of polyamines and aminoguanidine to propose (and to briefly support this proposal by our own preliminary data) that their association might be a potent way to enable functionally-relevant regeneration in the adult mammalian CNS.
Collapse
Affiliation(s)
- Sarah Schimchowitsch
- Laboratoire de Neurosciences Comportementales et Cognitives, UMR 7521 CNRS--Université Louis Pasteur, IFR 37 Neurosciences, Strasbourg, France
| | | |
Collapse
|
47
|
Breitbeil F, Kaur N, Delcros JG, Martin B, Abboud KA, Phanstiel O. Modeling the Preferred Shapes of Polyamine Transporter Ligands and Dihydromotuporamine-C Mimics: Shovel versus Hoe. J Med Chem 2006; 49:2407-16. [PMID: 16610784 DOI: 10.1021/jm050814w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Preferred conformers generated from motuporamine and anthracene-polyamine derivatives provided insight into the shapes associated with polyamine transporter (PAT) recognition and potentially dihydromotuporamine C (4a) bioactivity. Molecular modeling revealed that N(1)-(anthracen-9-ylmethyl)-3,3-triamine (6a), N(1)-(anthracen-9-ylmethyl)-4,4-triamine (6b), N(1)-(anthracen-9-ylmethyl)-N(1)-ethyl-3,3-triamine (7a), N(1)-(anthracen-9-ylmethyl)-N(1)-ethyl-4,4-triamine (7b), and 4a all preferred a hoe motif. This hoe shape was defined by the all-anti polyamine shaft extending above the relatively flat, appended ring system. The hoe geometry was also inferred by the (1)H NMR spectrum of the free amine of 7a (CDCl(3)), which showed a strong shielding effect of the anthracene ring on the chemical shifts associated with the appended polyamine chain. This shielding effect was found to be independent over a broad concentration range of 7a, which also supported an intramolecular phenomenon. The degree of substitution at the N(1)-position seems to be an important determinant of both the molecular shape preferences and biological activity of anthracenylmethyl-polyamine conjugates.
Collapse
Affiliation(s)
- Fred Breitbeil
- Groupe Cycle Cellulaire, CNRS UMR 6061, IFR 97, Facult de Medecine, Universit Rennes 1, 2 Av. du Pr Leon Bernard, CS 34317, F-35043 Rennes Cedex, France
| | | | | | | | | | | |
Collapse
|
48
|
Oosthuizen MMJ, Lambrechts H. Oligomeric hepatoproliferin disaggregates into an active monomer that was purified and forcefully dissociated into two different ionic species. Biofactors 2006; 28:55-70. [PMID: 17264393 DOI: 10.1002/biof.5520280106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hepatoproliferin (HPF), a liver regeneration factor, was isolated initially as an aggregated molecule (big-HPF) and was purified into two homogeneous, bioactive species of 14 kDa and 18.5 kDa. These two big-HPFs were disaggregated to completion into two monomeric forms (small-HPFs) when incubated for 10 days in 0.15 M ammonium bicarbonate at 25 degrees C. Both monomeric forms were purified to homogeneity as active entities, one with a molecular mass of 944 Da and one with a molecular mass of 1066 Da. Each of the two (35)S-labelled small-HPFs was found, by enzymic analysis, to contain a charged sulfonated saccharide, which was neutralized by a specific amine. Monomeric HPF is therefore a stable ionic complex formed between these two ionic species. So strong was the electrostatic association that small-HPF remained intact in solution and no amine was displaced by the ammonium ions of the buffer. Small-HPF remained unimpaired during purification, since all activity was retained despite alternating acidic and basic conditions. However, when small-HPF was brought into contact with either a cationic or an anionic resin, it was dissociated to completion when mixed continuously with the resin for 4 days. The ionic entity that was released had no bio-activity and was either a pure radioactively labeled saccharide or a non-labeled amine, depending on the kind of resin used. When incubated together, the separated counterions combine to regain full activity after 2 days of reassociation. However, with incubation for longer, this reassociated small-HPF formed different oligomeric HPFs by aggregation. Small-HPF is therefore a new kind of growth enhancer, consisting of an acidic sulfonated saccharide and a basic amine assembled into a stable active ionic complex that has a tendency to aggregate.
Collapse
Affiliation(s)
- Mathys M J Oosthuizen
- MRF Biochemistry Laboratory, Department of Surgery, University of Witwatersrand, Johannesburg, ZA 2193, South Africa.
| | | |
Collapse
|
49
|
Delcros JG, Tomasi S, Duhieu S, Foucault M, Martin B, Le Roch M, Eifler-Lima V, Renault J, Uriac P. Effect of Polyamine Homologation on the Transport and Biological Properties of Heterocyclic Amidines. J Med Chem 2005; 49:232-45. [PMID: 16392808 DOI: 10.1021/jm050018q] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Five sets of heterocyclic derivatives of various sizes and complexities coupled by an amidine function to putrescine, spermidine, or spermine were prepared. They were essentially tested to determine the influence of the polyamine chain on their cellular transport. To comment on affinity and on selective transport via the polyamine transport system (PTS), K(i) values for polyamine uptake were determined in L1210 cells, and the cytotoxicity and accumulation of the conjugates were determined in CHO and polyamine transport-deficient mutant CHO-MG cells, as well as in L1210 and alpha-difluoromethylornithine- (DFMO-) treated L1210 cells. Unlike spermine, putrescine and spermidine were clearly identified as selective motifs that enable cellular entry via the PTS. However, this property was clearly limited by the size of substituents: these polyamines were able to ferry a dihydroquinoline system via the PTS but did not impart any selectivity to bulkier substituents.
Collapse
Affiliation(s)
- Jean-Guy Delcros
- Groupe de Recherche en Thérapeutique Anticancéreuse, Faculté de Médecine, Université Rennes 1, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sharpe JG, Seidel ER. Polyamines are absorbed through a y+ amino acid carrier in rat intestinal epithelial cells. Amino Acids 2005; 29:245-53. [PMID: 16133764 DOI: 10.1007/s00726-005-0234-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
Due to the similarity in transport characteristics of polyamines and the y+ basic amino acid system, we hypothesized that both substrates could be moving through a common carrier site. Competitive and cross inhibition experiments in intestinal epithelial cells revealed the possibility of a common transport site. N-ethylmalemide (NEM) inhibited both lysine and putrescine transport, confirming that both were carried by a y+ transporter. Overexpressing the y+ transporter CAT-1 in a polyamine transport-deficient cell line, CHO-MG, did not reconstitute polyamine-transport. Thus, polyamines are not traveling through CAT-1. To determine if lysine is carried by a polyamine transport site, an antizyme-overexpressing cell line was used. Antizyme overexpression decreased polyamine uptake by 50%; in contrast, lysine transport was unaffected. Therefore, lysine is not traveling through a polyamine transport site. It appears that polyamines and lysine are likely traveling through a common unknown y+ transport site.
Collapse
Affiliation(s)
- J G Sharpe
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27858, USA
| | | |
Collapse
|