1
|
Losilla M, Gallant JR. Molecular evolution of the ependymin-related gene epdl2 in African weakly electric fish. G3 (BETHESDA, MD.) 2023; 13:6931758. [PMID: 36529459 PMCID: PMC9997568 DOI: 10.1093/g3journal/jkac331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Gene duplication and subsequent molecular evolution can give rise to taxon-specific gene specializations. In previous work, we found evidence that African weakly electric fish (Mormyridae) may have as many as three copies of the epdl2 gene, and the expression of two epdl2 genes is correlated with electric signal divergence. Epdl2 belongs to the ependymin-related family (EPDR), a functionally diverse family of secretory glycoproteins. In this study, we first describe vertebrate EPDR evolution and then present a detailed evolutionary history of epdl2 in Mormyridae with emphasis on the speciose genus Paramormyrops. Using Sanger sequencing, we confirm three apparently functional epdl2 genes in Paramormyrops kingsleyae. Next, we developed a nanopore-based amplicon sequencing strategy and bioinformatics pipeline to obtain and classify full-length epdl2 gene sequences (N = 34) across Mormyridae. Our phylogenetic analysis proposes three or four epdl2 paralogs dating from early Paramormyrops evolution. Finally, we conducted selection tests which detected positive selection around the duplication events and identified ten sites likely targeted by selection in the resulting paralogs. These sites' locations in our modeled 3D protein structure involve four sites in ligand binding and six sites in homodimer formation. Together, these findings strongly imply an evolutionary mechanism whereby epdl2 genes underwent selection-driven functional specialization after tandem duplications in the rapidly speciating Paramormyrops. Considering previous evidence, we propose that epdl2 may contribute to electric signal diversification in mormyrids, an important aspect of species recognition during mating.
Collapse
Affiliation(s)
- Mauricio Losilla
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.,Graduate Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Jason R Gallant
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.,Graduate Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Shabelnikov SV, Bobkov DE, Sharlaimova NS, Petukhova OA. Injury affects coelomic fluid proteome of the common starfish, Asterias rubens. ACTA ACUST UNITED AC 2019; 222:jeb.198556. [PMID: 30877231 DOI: 10.1242/jeb.198556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/11/2019] [Indexed: 01/04/2023]
Abstract
Echinoderms, possessing outstanding regenerative capabilities, provide a unique model system for the study of response to injury. However, little is known about the proteomic composition of coelomic fluid, an important biofluid circulating throughout the animal's body and reflecting the overall biological status of the organism. In this study, we used LC-MALDI tandem mass spectrometry to characterize the proteome of the cell-free coelomic fluid of the starfish Asterias rubens and to follow the changes occurring in response to puncture wound and blood loss. In total, 91 proteins were identified, of which 61 were extracellular soluble and 16 were bound to the plasma membrane. The most represented functional terms were 'pattern recognition receptor activity' and 'peptidase inhibitor activity'. A series of candidate proteins involved in early response to injury was revealed. Ependymin, β-microseminoprotein, serum amyloid A and avidin-like proteins, which are known to be involved in intestinal regeneration in the sea cucumber, were also identified as injury-responsive proteins. Our results expand the list of proteins potentially involved in defense and regeneration in echinoderms and demonstrate dramatic effects of injury on the coelomic fluid proteome.
Collapse
Affiliation(s)
- Sergey V Shabelnikov
- Laboratory of Regulation of Gene Expression, Institute of Cytology, Russian Academy of Sciences, 194064 St Petersburg, Russia
| | - Danila E Bobkov
- Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, 194064 St Petersburg, Russia
| | - Natalia S Sharlaimova
- Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, 194064 St Petersburg, Russia
| | - Olga A Petukhova
- Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, 194064 St Petersburg, Russia
| |
Collapse
|
3
|
McDougall C, Hammond MJ, Dailey SC, Somorjai IML, Cummins SF, Degnan BM. The evolution of ependymin-related proteins. BMC Evol Biol 2018; 18:182. [PMID: 30514200 PMCID: PMC6280359 DOI: 10.1186/s12862-018-1306-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/23/2018] [Indexed: 12/19/2022] Open
Abstract
Background Ependymins were originally defined as fish-specific secreted glycoproteins involved in central nervous system plasticity and memory formation. Subsequent research revealed that these proteins represent a fish-specific lineage of a larger ependymin-related protein family (EPDRs). EPDRs have now been identified in a number of bilaterian animals and have been implicated in diverse non-neural functions. The recent discoveries of putative EPDRs in unicellular holozoans and an expanded EPDR family with potential roles in conspecific communication in crown-of-thorns starfish suggest that the distribution and diversity of EPDRs is significantly broader than currently understood. Results We undertook a systematic survey to determine the distribution and evolution of EPDRs in eukaryotes. In addition to Bilateria, EPDR genes were identified in Cnidaria, Placozoa, Porifera, Choanoflagellatea, Filasterea, Apusozoa, Amoebozoa, Charophyta and Percolozoa, and tentatively in Cercozoa and the orphan group Malawimonadidae. EPDRs appear to be absent from prokaryotes and many eukaryote groups including ecdysozoans, fungi, stramenopiles, alveolates, haptistans and cryptistans. The EPDR family can be divided into two major clades and has undergone lineage-specific expansions in a number of metazoan lineages, including in poriferans, molluscs and cephalochordates. Variation in a core set of conserved residues in EPDRs reveals the presence of three distinct protein types; however, 3D modelling predicts overall protein structures to be similar. Conclusions Our results reveal an early eukaryotic origin of the EPDR gene family and a dynamic pattern of gene duplication and gene loss in animals. This research provides a phylogenetic framework for the analysis of the functional evolution of this gene family. Electronic supplementary material The online version of this article (10.1186/s12862-018-1306-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carmel McDougall
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia.,Australian Rivers Institute, Griffith University, Nathan, Queensland, 4111, Australia
| | - Michael J Hammond
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Simon C Dailey
- Gatty Marine Laboratory, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK.,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Ildiko M L Somorjai
- Gatty Marine Laboratory, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK.,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Scott F Cummins
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Bernard M Degnan
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
4
|
Eguía-Aguilar P, Gutiérrez-Castillo L, Pérezpeña-Díazconti M, García-Chéquer J, García-Quintana J, Chico-Ponce de León F, Gordillo-Domínguez L, Torres-García S, Arenas-Huertero F. Expression of microRNAs in tumors of the central nervous system in pediatric patients in México. Childs Nerv Syst 2017; 33:2117-2128. [PMID: 28815380 DOI: 10.1007/s00381-017-3569-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE MicroRNAs were identified as molecules that participate in gene regulation; alterations in their expression characterize central nervous system (CNS). Information in pediatrics is scarce, so the objective of this work was to determine and then compare the patterns of expression of microRNAs in astrocytomas, ependymomas, and medulloblastomas, as well as in non-neoplastic brain. METHODS Low-density arrays were utilized to evaluate 756 microRNAs in three samples of each type of tumor and non-neoplastic brain. The relative expression was calculated in order to identify the three microRNAs whose expression was modified notably. This was verified using RT-qPCR in more number of tumor samples. RESULTS The microRNAs selected for testing were miR-100-5p, miR-195-5p, and miR-770-5p. A higher expression of miR-100-5p was observed in the astrocytomas and ependymomas compared to the medulloblastomas: on average 3.8 times (p < 0.05). MiR-770-5p was expressed less in medulloblastomas compared to astrocytomas four times (p = 0.0162). MiR-195-5p had a low expression in medulloblastomas compared to non-neoplastic cerebellum (p = 0.049). In all three tumor types, expression of miR-770-5p was lower than in non-neoplastic brain (p < 0.001). CONCLUSIONS These microRNAs may represent potential markers in these tumors.
Collapse
Affiliation(s)
- Pilar Eguía-Aguilar
- Departmento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Lisette Gutiérrez-Castillo
- Departmento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, México.,Facultad de Ciencia y Tecnología, Universidad Simón Bolívar, Ciudad de México, México
| | - Mario Pérezpeña-Díazconti
- Departmento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Jeanette García-Chéquer
- Departmento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Jorge García-Quintana
- Departmento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | | | - Luis Gordillo-Domínguez
- Departmento de Neurocirugía, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Samuel Torres-García
- Departmento de Neurocirugía, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Francisco Arenas-Huertero
- Facultad de Ciencia y Tecnología, Universidad Simón Bolívar, Ciudad de México, México. .,Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez-Instituto Nacional de Salud, Dr. Márquez 162, Colonia Doctores, Delegación Cuauhtémoc, 06720, Ciudad de México, México.
| |
Collapse
|
5
|
Apostolopoulos J, Sparrow RL, McLeod JL, Collier FM, Darcy PK, Slater HR, Ngu C, Gregorio-King CC, Kirkland MA. Identification and characterization of a novel family of mammalian ependymin-related proteins (MERPs) in hematopoietic, nonhematopoietic, and malignant tissues. DNA Cell Biol 2001; 20:625-35. [PMID: 11749721 DOI: 10.1089/104454901753340613] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evidence is presented for a family of mammalian homologs of ependymin, which we have termed the mammalian ependymin-related proteins (MERPs). Ependymins are secreted glycoproteins that form the major component of the cerebrospinal fluid in many teleost fish. We have cloned the entire coding region of human MERP-1 and mapped the gene to chromosome 7p14.1 by fluorescence in situ hybridization. In addition, three human MERP pseudogenes were identified on chromosomes 8, 16, and X. We have also cloned the mouse MERP-1 homolog and an additional family member, mouse MERP-2. Then, using bioinformatics, the mouse MERP-2 gene was localized to chromosome 13, and we identified the monkey MERP-1 homolog and frog ependymin-related protein (ERP). Despite relatively low amino acid sequence conservation between piscine ependymins, toad ERP, and MERPs, several amino acids (including four key cysteine residues) are strictly conserved, and the hydropathy profiles are remarkably alike, suggesting the possibilities of similar protein conformation and function. As with fish ependymins, frog ERP and MERPs contain a signal peptide typical of secreted proteins. The MERPs were found to be expressed at high levels in several hematopoietic cell lines and in nonhematopoietic tissues such as brain, heart, and skeletal muscle, as well as several malignant tissues and malignant cell lines. These findings suggest that MERPs have several potential roles in a range of cells and tissues.
Collapse
Affiliation(s)
- J Apostolopoulos
- Research Unit, Australian Red Cross Blood Service-Victoria, Southbank, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nimmrich I, Erdmann S, Melchers U, Chtarbova S, Finke U, Hentsch S, Hoffmann I, Oertel M, Hoffmann W, Müller O. The novel ependymin related gene UCC1 is highly expressed in colorectal tumor cells. Cancer Lett 2001; 165:71-9. [PMID: 11248421 DOI: 10.1016/s0304-3835(01)00390-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Normal cells differ from malignant tumor cells in the transcription levels of many different genes. Two colorectal tumor cell lines were compared with a normal colorectal cell line by differential display reverse transcription PCR to screen for tumor cell specific differentially transcribed genes. By this strategy the upregulation of a novel gene was detected designated as 'upregulated in colorectal cancer gene-1' (UCC1). The UCC1 gene transcript level is increased in cultured tumor cells and in two out of three analyzed colorectal tumor tissue specimens compared to normal cultured cells and to corresponding normal tissue samples. Remarkably, the UCC1 protein shows significant sequence similarity to the highly divergent piscine glycoproteins termed ependymins which are synthesized by leptomeningeal fibroblasts and secreted into the cerebrospinal fluid.
Collapse
Affiliation(s)
- I Nimmrich
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Strabetae 11, D-44227, Dortmund, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tang SJ, Sun KH, Sun GH, Lin G, Lin WW, Chuang MJ. Cold-induced ependymin expression in zebrafish and carp brain: implications for cold acclimation. FEBS Lett 1999; 459:95-9. [PMID: 10508924 DOI: 10.1016/s0014-5793(99)01229-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cold acclimation has been suggested to be mediated by alternations in the gene expression pattern in the cold-adapted fish. To investigate the mechanism of cold acclimation in fish brain at the molecular level, relevant subsets of differentially expressed genes of interest were identified and cloned by the PCR-based subtraction suppression hybridization. Characterization of the selected cold-induced cDNA clones revealed one encoding ependymin. This gene was shown to be brain-specific. The expression of ependymin was induced by a temperature shift from 25 degrees C to 6 degrees C in Cyprinus carpio or 12 degrees C in Danio rerio. Activation of ependymin was detected 2 h after cold exposure and peaked at more than 10-fold at 12 h. This peak level remains unchanged until the temperature returns to 25 degrees C. Although the amount of soluble ependymin protein in brain was not changed by cold treatment, its level in the fibrous insoluble polymers increased 2-fold after exposure to low temperature. These findings indicate that the increase in ependymin expression is an early event that may play an important role in the cold acclimation of fish.
Collapse
Affiliation(s)
- S J Tang
- Institute of Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | | | | | | |
Collapse
|
8
|
|