1
|
Noaman N, Abbineni PS, Withers M, Coorssen JR. Coomassie staining provides routine (sub)femtomole in-gel detection of intact proteoforms: Expanding opportunities for genuine Top-down Proteomics. Electrophoresis 2017; 38:3086-3099. [PMID: 28872692 DOI: 10.1002/elps.201700190] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/11/2017] [Accepted: 08/25/2017] [Indexed: 01/22/2023]
Abstract
Modified colloidal Coomassie Brilliant Blue (cCBB) staining utilising a novel destain protocol and near-infrared fluorescence detection (nIRFD) rivals the in-gel protein detection sensitivity (DS) of SYPRO Ruby. However, established DS estimates are likely inaccurate in terms of 2DE-resolved proteoform 'spots' since DS is routinely measured from comparatively diffuse protein 'bands' following wide-well 1DE. Here, cCBB DS for 2DE-based proteomics was more accurately determined using narrow-well 1DE. As precise estimates of protein standard monomer concentrations are essential for accurate quantitation, coupling UV absorbance with gel-based purity assessments is described. Further, as cCBB is compatible with both nIRFD and densitometry, the impacts of imaging method (and image resolution) on DS were assessed. Narrow-well 1DE enabled more accurate quantitation of cCBB DS for 2DE, achieving (sub)femtomole DS with either nIRFD or densitometry. While densitometry offers comparative simplicity and affordability, nIRFD has the unique potential for enhanced DS with Deep Imaging. Higher-resolution nIRFD also improved analysis of a 2DE-resolved proteome, surpassing the DS of standard nIRFD and densitometry, with nIRFD Deep Imaging further maximising proteome coverage. cCBB DS for intact proteins rivals that of mass spectrometry (MS) for peptides in complex mixtures, reaffirming that 2DE-MS currently provides the most routine, broadly applicable, robust, and information-rich Top-down approach to Discovery Proteomics.
Collapse
Affiliation(s)
- Nour Noaman
- Department of Molecular Physiology, and the WSU Molecular Medicine Research Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Prabhodh S Abbineni
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Withers
- Department of Molecular Physiology, and the WSU Molecular Medicine Research Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Brock University, St Catharines, Ontario, Canada
| |
Collapse
|
2
|
|
3
|
Tellez R, Gómez-Viquez L, Liy-Salmeron G, Meneses A. GABA, glutamate, dopamine and serotonin transporters expression on forgetting. Neurobiol Learn Mem 2012; 98:66-77. [DOI: 10.1016/j.nlm.2012.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 04/26/2012] [Accepted: 05/14/2012] [Indexed: 01/25/2023]
|
4
|
Tellez R, Gómez-Víquez L, Meneses A. GABA, glutamate, dopamine and serotonin transporters expression on memory formation and amnesia. Neurobiol Learn Mem 2011; 97:189-201. [PMID: 22183017 DOI: 10.1016/j.nlm.2011.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/11/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
Notwithstanding several neurotransmission systems are frequently related to memory formation, amnesia and/or therapeutic targets for memory alterations, the role of transporters γ-aminobutyric acid (GABA, GAT1), glutamate (neuronal glutamate transporter excitatory amino acid carrier; EACC1), dopamine (DAT) and serotonin (SERT) is poorly understood. Hence, in this paper Western-blot analysis was used to evaluate expression changes on them during memory formation in trained and untrained rats treated with the selective serotonin transporter inhibitor fluoxetine, the amnesic drug d-methamphetamine (METH) and fluoxetine plus METH. Transporters expression was evaluated in the hippocampus, prefrontal cortex and striatum. Data indicated that in addition of memory performance other behavioral parameters (e.g., explorative behavior, food-intake, etc.) that memory formation was recorded. Thus, memory formation in a Pavlovian/instrumental autoshaping was associated to up-regulation of prefrontal cortex GAT1 and EAAC1, striatal SERT, DAT and EACC1; while, hippocampal EACC1, GAT1 and SERT were down-regulated. METH impaired short (STM) and long-term memory (LTM), at 24 or 48h. The METH-induced amnesia down-regulated SERT, DAT, EACC1 and GAT1 in hippocampus and the GAT1 in striatum; no-changes were observed in prefrontal cortex. Post-training administration of fluoxetine improved LTM (48h), which was associated to DAT, GAT1 (prefrontal cortex) up-regulation, but GAT1 (striatum) and SERT (hippocampus) down-regulation. Fluoxetine plus METH administration was able to prevent amnesia, which was associated to DAT, EACC1 and GAT1 (prefrontal cortex), SERT and DAT (hippocampus) and EACC1 or DAT (striatal) up-regulation. Together these data show that memory formation, amnesia and anti-amnesic effects are associated to specific patters of transporters expression.
Collapse
Affiliation(s)
- Ruth Tellez
- Depto. de Farmacobiología, CINVESTAV-IPN, Tenorios 235, Granjas Coapa, Mexico City 14330, Mexico
| | | | | |
Collapse
|
5
|
Tang TX, Wu H. Research on Color Channel Selection, Three-Dimensional Visualization, and Acquisition Time of Computerized Image Analysis for One-Dimensional Planar Separation. Chromatographia 2009. [DOI: 10.1365/s10337-009-1148-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Medberry S, Gallagher S. Digital electrophoresis analysis. CURRENT PROTOCOLS IN CELL BIOLOGY 2008; Chapter 6:Unit 6.9. [PMID: 18228408 DOI: 10.1002/0471143030.cb0609s16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Digital recording of gel images offers several advantages over conventional photography. Capture of the image is quick and reliable, retaining the image in a medium that allows digital analysis of the image. These images are easy to handle, accurate, reproducible and less expensive to generate. This unit provides a guide to digital capture and analysis, discussing the equipment and methods for image capture and the process of image analysis for one- and two-dimensional gels.
Collapse
Affiliation(s)
- Scott Medberry
- Amersham Pharmacia Biotech, San Francisco, California, USA
| | | |
Collapse
|
7
|
Affiliation(s)
- Joerg Stroka
- a Food Products Unit , Joint Research Centre , European Commission , Ispra , 21020 , Italy
| | - Bernd Spangenberg
- b University of Applied Sciences Offenburg , Badstrasse 24, Offenburg , 77652 , Germany
| | - Elke Anklam
- a Food Products Unit , Joint Research Centre , European Commission , Ispra , 21020 , Italy
| |
Collapse
|
8
|
Scrivener E, Boghigian BA, Golenko E, Bogdanova A, Jackson P, Mikulskis A, Denoyer E, Courtney P, Lopez MF, Patton WF. Performance validation of an improved Xenon-arc lamp-based CCD camera system for multispectral imaging in proteomics. Proteomics 2005; 5:4354-66. [PMID: 16206330 DOI: 10.1002/pmic.200500062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Advances in gel-based nonradioactive protein expression and PTM detection using fluorophores has served as the impetus for developing analytical instrumentation with improved imaging capabilities. We describe a CCD camera-based imaging instrument, equipped with both a high-pressure Xenon arc lamp and a UV transilluminator, which provides broad-band wavelength coverage (380-700 nm and UV). With six-position filter wheels, both excitation and emission wavelengths may be selected, providing optimal measurement and quantitation of virtually any dye and allowing excellent spectral resolution among different fluorophores. While spatial resolution of conventional fixed CCD camera imaging systems is typically inferior to laser scanners, this problem is circumvented with the new instrument by mechanically scanning the CCD camera over the sample and collecting multiple images that are subsequently automatically reconstructed into a complete high-resolution image. By acquiring images in succession, as many as four different fluorophores may be evaluated from a gel. The imaging platform is suitable for analysis of the wide range of dyes and tags commonly encountered in proteomics investigations. The instrument is unique in its capabilities of scanning large areas at high resolution and providing accurate selectable illumination over the UV/visible spectral range, thus maximizing the efficiency of dye multiplexing protocols.
Collapse
|
9
|
Medberry S, Gallagher S, Moomaw B. Overview of digital electrophoresis analysis. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2005; Chapter 10:10.12.1-10.12.25. [PMID: 18429273 DOI: 10.1002/0471140864.ps1012s41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gel electrophoresis has become a ubiquitous method in molecular biology for separating biomolecules. This prominence is the result of several factors, including the robustness, speed, and potentially high throughput of the technique. The results of this method are traditionally documented using silver halide-based photography followed by manual interpretation. While this remains an excellent method for qualitative documentation of single-gel results, digital capture offers a number of significant advantages when documentation requires quantitation and sophisticated analysis. Digital images of gel electropherograms can be obtained rapidly using an image-capture device, and the images can be easily manipulated using image analysis software. This overview presents reasons for digital documentation and analysis, defines some important key terms for imaging, explains the capture process and reviews the devices used for image capture, and provides an introduction to the software and methods used for one- and two-dimensional digital image analysis.
Collapse
Affiliation(s)
| | | | - Butch Moomaw
- Hamamatsu Photonic Systems, Spring Branch, Texas
| |
Collapse
|
10
|
Zhang D, Xie Y, Mrozek MF, Ortiz C, Davisson VJ, Ben-Amotz D. Raman detection of proteomic analytes. Anal Chem 2004; 75:5703-9. [PMID: 14588009 DOI: 10.1021/ac0345087] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The compatibility of nonenhanced Raman spectroscopy with chromatographic and mass spectroscopic proteomic sensing is demonstrated for the first time. High-quality normal Raman spectra are derived from protein solutions with concentrations down to 1 microM and 1 fmol of protein nondestructively probed within the excitation laser beam. These results are obtained using a drop coating deposition Raman (DCDR) method in which the solution of interest is microdeposited (or microprinted) on a compatible substrate, followed by solvent evaporation and backscattering detection. Representative applications include the DCDR detection of insulin derived from an HPLC fraction, nondestructive DCDR followed by MALDI-TOF of lysozyme, the DCDR detection of protein spots deposited using an ink-jet microprinter, and the identification of spectral differences between glycan isomers of equal mass (such as those derived from posttranslationally modified proteins).
Collapse
Affiliation(s)
- Dongmao Zhang
- Department of Chemistry and Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indianapolis, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
11
|
Medberry S, Gallagher S, Moomaw B. Overview of Digital Electrophoresis Analysis. ACTA ACUST UNITED AC 2004; Chapter 10:Unit 10.5. [DOI: 10.1002/0471142727.mb1005s66] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Affiliation(s)
- Peter G Vekilov
- Department of Chemical Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
13
|
Mádi A, Pusztahelyi T, Punyiczki M, Fésüs L. The biology of the post-genomic era: the proteomics. ACTA BIOLOGICA HUNGARICA 2003; 54:1-14. [PMID: 12705317 DOI: 10.1556/abiol.54.2003.1.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The complete identification of coding sequences in a number of species has led to announce the beginning of the post-genomic era, new tools have become available to study complex phenomena in biological systems. Rapid advances in genomic sequencing and bioinformatics have established the field of genomics to investigate thousands genes' activity through mRNA display. However, recent studies have demonstrated a lack of correlation between the transcriptional profiles and the actual protein levels in cells, so investigation of the expressed part of the genome is also required to link genomic data to biological function. It is possible that evolutional development occured by increasing complexity of regulation processes at the level of RNA and protein molecules instead of simple increase in gene number, so investigation of proteins and protein complexes became important fields of our post-genomic era. High-resolution two-dimensional gels combined with sensitive mass spectrometry can reveal virtually all proteins present in cells opening new insights into functions of cells, tissues and whole organisms.
Collapse
Affiliation(s)
- A Mádi
- Signal Transduction and Apoptosis Research Group of the Hungarian Academy of Sciences, University of Debrecen, Nagyerdei krt. 98, H-4012 Debrecen, Hungary
| | | | | | | |
Collapse
|
14
|
|
15
|
Affiliation(s)
- Anders Blomberg
- Department of Cell and Molecular Biology, Lundberg Laboratory, University of Göteborg, 41390 Göteborg, Sweden
| |
Collapse
|
16
|
Nilsson A, Norbeck J, Oelz R, Blomberg A, Gustafsson L. Fermentative capacity after cold storage of baker's yeast is dependent on the initial physiological state but not correlated to the levels of glycolytic enzymes. Int J Food Microbiol 2001; 71:111-24. [PMID: 11789928 DOI: 10.1016/s0168-1605(01)00542-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Growth and starvation of baker's yeast was monitored by on-line microcalorimetry and cells originating from four different physiological states were stored at low temperature (4 degrees C) for up to 26 days. The different physiological states were designated F (respiro-Fermentative phase of growth), R (initial Respiratory phase of growth), -N (non-growing state because of Nitrogen depletion), and -NC (non-growing state because of both Nitrogen and Carbon depletion). The cells were tested before and after cold storage for their fermentative capacity, and characterised by 2D gel analysis (and subsequent quantitative silver staining and image analysis with software PDQUEST) for their levels of six enzymes of the glycolytic pathway (hexokinase 2 (Hxk2p), fructose bisphosphate aldolase (Fba1p), glyceraldehyde-3-phosphate dehydrogenase (Tdh3p), enolase A (Enolp), enolase B (Eno2p), and triose phosphate isomerase (Tpi1p)) and two enzymes of the fermentative branch (pyruvate decarboxylase (Pdc1p) and alcohol dehydrogenase (Adh1p)). The enzymes Hxk2p, Tdh3p, Eno2p, Pdc1p and Adh1p were down-regulated by 25-80% during the transition between the F and R states. During the transition to non-growing states (-N and -NC states), the levels of Hxk2p, Tdh3p and Eno2p were further reduced. However, after cold storage, the glycolytic and fermentative enzymes of the different physiological states were expressed to the same extent. In contrast, the fermentative capacity differed between the states; the R-state cells were superior compared to cells from the other states tested and preserved more than 50% of their initial fermentative capacity (6 mmol ethanol per gram dry weight and hour). Our data therefore clearly demonstrate that persistence of fermentative capacity during total starvation at low temperature after as long as 1 month is strongly dependent on the physiological state from which the cells originate. However, the level of expression of the glycolytic enzymes could not explain the difference in fermentative capacity of the different physiological states after cold storage.
Collapse
Affiliation(s)
- A Nilsson
- Department of Cell and Molecular Biology, Göteborg University, Sweden
| | | | | | | | | |
Collapse
|
17
|
Abstract
Quantitative two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) is used to determine changes in individual protein levels in complex protein mixtures. To provide reliable data, the software used for 2-D gel image analysis must provide a linear response over a wide dynamic range of data output. Here, we show that Phoretix 2D Full analysis of 2-D gels stained with colloidal Coomassie Brilliant Blue G-250 can provide a linear measure of changes in protein quantity. We show using a complex mixture of Arabidopsis thaliana proteins, that this is true for essentially all focused proteins, in a data output range greater than three orders of magnitude. An analysis of the factors that affect errors in the results demonstrated that reproducibility of the data is significantly improved by user seeding, whereas it is reduced by use of the background subtraction algorithms.
Collapse
Affiliation(s)
- P Mahon
- University of Cambridge, Department of Biochemistry, United Kingdom
| | | |
Collapse
|
18
|
Kemper C, Berggren K, Diwu Z, Patton WF. An improved, luminescent europium-based stain for detection of electroblotted proteins on nitrocellulose or polyvinylidene difluoride membranes. Electrophoresis 2001; 22:881-9. [PMID: 11332756 DOI: 10.1002/1522-2683()22:5<881::aid-elps881>3.0.co;2-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
SYPRO Rose Plus protein blot stain is an improved europium-based metal chelate stain for the detection of proteins on nitrocellulose and poly(vinylidene difluoride) (PVDF) membranes. Staining is achieved without covalently modifying the proteins. The stain may be excited with a 254 nm (UV-C), 302 nm (UV-B), or 365 nm (UV-A) light source and displays a sharp emission maximum at 612 nm. The emission peak has a full width at half-maximum of only 8 nm. The stain exhibits exceptional photostability, allowing long exposure times for maximum sensitivity. Since the dye is composed of a europium complex, it has a long emission lifetime, potentially allowing time-resolved detection, greatly reducing background fluorescence. Proteins immobilized to a nitrocellulose or PVDF membrane by electroblotting, dot-blotting, or vacuum slot-blotting are incubated with SYPRO Rose Plus protein blot stain for 15-30 min. Membranes are rinsed briefly, visualized with UV epi-illumination and the luminescence of the europium dye is measured using a 490 nm long-pass or 625 +/- 15 nm band-pass filter in combination with a conventional photographic or charge-coupled device (CCD) camera system. Alternatively, the dye may be visualized using a xenon-arc illumination source. The stain is readily removed from proteins by incubating membranes at mildly alkaline pH. The reversibility of the protein staining procedure allows for subsequent biochemical analyses, such as immunoblotting and biotin-streptavidin detection using colorimetric, direct fluorescence or fluorogenic visualization methods.
Collapse
Affiliation(s)
- C Kemper
- Molecular Probes, Inc, Eugene, OR 97402, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Image capture is the first step of image analysis. There are two major devices for image capture in the field of electrophoresis. One is the charged-couple device (CCD) camera and the other is the scanner. Image capture technologies have shown great progress in recent years especially in the field of fluorescence detection and chemiluminescent detection. The direction of image analysis is high resolution, wide dynamic range and high density precision and this holds true for the CCD camera system. Various components in the CCD camera system suitable for high-sensitive fluorescence detection and chemiluminescent detection are explained. As an example, the LAS-1000plus camera system which has 1364 x 922 pixels and generates 14-bits image is introduced. Powerful cooling enables overnight exposure of chemiluminescence. Introduction of blue light-emitting diode (LED) as excitation light source improved safety to eyes. Two types of scanners for fluorescence detection and the specific characteristics are explained. There are mechanical scanning systems using confocal optics and optical scanning systems using light collecting guide optics. Deep focusing range and equal fluorescence intensity at various depth is a characteristic feature of light collecting guide optics.
Collapse
Affiliation(s)
- K Miura
- Industrial Materials and Products Division, Fuji Photo Film Co, Ltd, Tokyo, Japan.
| |
Collapse
|
20
|
Lopez MF, Berggren K, Chernokalskaya E, Lazarev A, Robinson M, Patton WF. A comparison of silver stain and SYPRO Ruby Protein Gel Stain with respect to protein detection in two-dimensional gels and identification by peptide mass profiling. Electrophoresis 2000; 21:3673-83. [PMID: 11271486 DOI: 10.1002/1522-2683(200011)21:17<3673::aid-elps3673>3.0.co;2-m] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Proteomic projects are often focused on the discovery of differentially expressed proteins between control and experimental samples. Most laboratories choose the approach of running two-dimensional (2-D) gels, analyzing them and identifying the differentially expressed proteins by in-gel digestion and mass spectrometry. To date, the available stains for visualizing proteins on 2-D gels have been less than ideal for these projects because of poor detection sensitivity (Coomassie blue stain) or poor peptide recovery from in-gel digests and mass spectrometry (silver stain), unless extra destaining and washing steps are included in the protocol. In addition, the limited dynamic range of these stains has made it difficult to rigorously and reliably determine subtle differences in protein quantities. SYPRO Ruby Protein Gel Stain is a novel, ruthenium-based fluorescent dye for the detection of proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels that has properties making it well suited to high-throughput proteomics projects. The advantages of SYPRO Ruby Protein Gel Stain relative to silver stain demonstrated in this study include a broad linear dynamic range and enhanced recovery of peptides from in-gel digests for matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry.
Collapse
Affiliation(s)
- M F Lopez
- Proteome Systems, Inc., Woburn, MA 01824, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Berggren K, Chernokalskaya E, Steinberg TH, Kemper C, Lopez MF, Diwu Z, Haugland RP, Patton WF. Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis 2000; 21:2509-21. [PMID: 10939466 DOI: 10.1002/1522-2683(20000701)21:12<2509::aid-elps2509>3.0.co;2-9] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SYPRO Ruby dye is a permanent stain comprised of ruthenium as part of an organic complex that interacts noncovalently with proteins. SYPRO Ruby Protein Gel Stain provides a sensitive, gentle, fluorescence-based method for detecting proteins in one-dimensional and two-dimensional sodium dodecyl sulfate-polyacrylamide gels. Proteins are fixed, stained from 3h to overnight and then rinsed in deionized water or dilute methanol/acetic acid solution for 30 min. The stain can be visualized using a wide range of excitation sources commonly used in image analysis systems including a 302 nm UV-B transilluminator, 473 nm second harmonic generation (SHG) laser, 488 nm argon-ion laser, 532 nm yttrium-aluminum-garnet (YAG) laser, xenon arc lamp, blue fluorescent light bulb or blue light-emitting diode (LED). The sensitivity of SYPRO Ruby Protein Gel Stain is superior to colloidal Coomassie Brilliant Blue (CBB) stain or monobromobimane labeling and comparable with the highest sensitivity silver or zinc-imidazole staining procedures available. The linear dynamic range of SYPRO Ruby Protein Gel stain extends over three orders of magnitude, which is vastly superior to silver, zinc-imidazole, monobromobimane and CBB stain. The fluorescent stain does not contain superfluous chemicals (formaldehyde, glutaraldehyde, Tween-20) that frequently interfere with peptide identification in mass spectrometry. While peptide mass profiles are severely altered in protein samples prelabeled with monobromobimane, successful identification of proteins by peptide mass profiling using matrix-assisted laser desorption/ionization mass spectrometry was easily performed after protein detection with SYPRO Ruby Protein Gel stain.
Collapse
|
22
|
Abstract
Recent evidence has demonstrated a lack of correlation between transcriptional profiles and actual protein levels in cells. Proteome analysis has therefore become indispensable and complementary to genomic analysis for an accurate picture of cellular metabolism. Although proteomics is a relatively young discipline, technology for increasing throughput in proteomic projects is rapidly being developed. The operating paradigm in proteome analysis today is a combination of two-dimensional (2-D) gel electrophoresis (for protein resolution) with mass spectrometry (for protein identification). All the intermediary steps in the procedure including gel staining, image analysis, protein spot excision, digestion and mass spectrometry can be automated to increase efficiency and save time. This report reviews the current state of the proteomics technology and discusses approaches to enhance the sensitivity of 2-D gels with fractionation techniques.
Collapse
Affiliation(s)
- M F Lopez
- VP Proteomics R&D Genomic Solutions Inc, Chelmsford, MA 01824-4171, USA.
| |
Collapse
|
23
|
Patton WF. A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis 2000; 21:1123-44. [PMID: 10786886 DOI: 10.1002/(sici)1522-2683(20000401)21:6<1123::aid-elps1123>3.0.co;2-e] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As proteomics evolves into a high-throughput technology for the study of global protein regulation, new demands are continually being placed upon protein visualization and quantitation methods. Chief among these are increased detection sensitivity, broad linear dynamic range and compatibility with modern methods of microchemical analyses. The limitations of conventional protein staining techniques are increasingly being encountered as high sensitivity electrophoresis methods are interfaced with automated gel stainers, image analysis workstations, robotic spot excision instruments, protein digestion work stations, and mass spectrometers. Three approaches to fluorescence detection of proteins in two-dimensional (2-D) gels are currently practiced: covalent derivatization of proteins with fluorophores, intercalation of fluorophores into the sodium dodecyl sulfate (SDS) micelle, and direct electrostatic interaction with proteins by a Coomassie Brilliant Blue-type mechanism. This review discusses problems encountered in the analysis of proteins visualized with conventional stains and addresses advances in fluorescence protein detection, including immunoblotting, as well as the use of charge-coupled device (CCD) camera-based and laser-scanner-based image acquisition devices in proteomics.
Collapse
Affiliation(s)
- W F Patton
- Molecular Probes, Inc., Eugene, OR 97402, USA.
| |
Collapse
|
24
|
Patton WF. A thousand points of light: The application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis 2000. [DOI: 10.1002/(sici)1522-2683(20000401)21:6%3c1123::aid-elps1123%3e3.0.co;2-e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Steinberg TH, Lauber WM, Berggren K, Kemper C, Yue S, Patton WF. Fluorescence detection of proteins in sodium dodecyl sulfate-polyacrylamide gels using environmentally benign, nonfixative, saline solution. Electrophoresis 2000; 21:497-508. [PMID: 10726749 DOI: 10.1002/(sici)1522-2683(20000201)21:3<497::aid-elps497>3.0.co;2-i] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
SYPRO Tangerine stain is an environmentally benign alternative to conventional protein stains that does not require solvents such as methanol or acetic acid for effective protein visualization. Instead, proteins can be stained in a wide range of buffers, including phosphate-buffered saline or simply 150 mM NaCl using an easy, one-step procedure that does not require destaining. Stained proteins can be excited by ultraviolet light of about 300 nm or with visible light of about 490 nm. The fluorescence emission maximum of the dye is approximately 640 nm. Noncovalent binding of SYPRO Tangerine dye is mediated by sodium dodecyl sulfate (SDS) and to a lesser extent by hydrophobic amino acid residues in proteins. This is in stark contrast to acidic silver nitrate staining, which interacts predominantly with lysine residues or Coomassie Blue R, which in turn interacts primarily with arginine and lysine residues. The sensitivity of SYPRO Tangerine stain is similar to that of the SYPRO Red and SYPRO Orange stains - about 4-10 ng per protein band. This detection sensitivity is comparable to colloidal Coomassie blue staining and rapid silver staining procedures. Since proteins stained with SYPRO Tangerine dye are not fixed, they can easily be eluted from gels or utilized in zymographic assays, provided that SDS does not inactivate the protein of interest. This is demonstrated with in-gel detection of rabbit liver esterase activity using alpha-naphthyl acetate and Fast Blue BB dye as well as Escherichia coli beta-glucuronidase activity using ELF-97 beta-D-glucuronide. The dye is also suitable for staining proteins in gels prior to their transfer to membranes by electroblotting. Gentle staining conditions are expected to improve protein recovery after electroelution and to reduce the potential for artifactual protein modifications such as the alkylation of lysine and esterification of glutamate residues, which complicate interpretation of peptide fragment profiles generated by mass spectrometry.
Collapse
|
26
|
Berggren K, Steinberg TH, Lauber WM, Carroll JA, Lopez MF, Chernokalskaya E, Zieske L, Diwu Z, Haugland RP, Patton WF. A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports. Anal Biochem 1999; 276:129-43. [PMID: 10603235 DOI: 10.1006/abio.1999.4364] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SYPRO Ruby protein blot stain provides a sensitive, gentle, fluorescence-based method for detecting proteins on nitrocellulose or polyvinylidene difluoride (PVDF) membranes. SYPRO Ruby dye is a permanent stain composed of ruthenium as part of an organic complex that interacts noncovalently with proteins. Stained proteins can be excited by ultraviolet light of about 302 nm or with visible light of about 470 nm. Fluorescence emission of the dye is approximately 618 nm. The stain can be visualized using a wide range of excitation sources utilized in image analysis systems including a UV-B transilluminator, 488-nm argon-ion laser, 532-nm yttrium-aluminum-garnet (YAG) laser, blue fluorescent light bulb, or blue light-emitting diode (LED). The detection sensitivity of SYPRO Ruby protein blot stain (0.25-1 ng protein/mm(2)) is superior to that of amido black, Coomassie blue, and india ink staining and nearly matches colloidal gold staining. SYPRO Ruby protein blot stain visualizes proteins more rapidly than colloidal gold stain and the linear dynamic range is more extensive. Unlike colloidal gold stain, SYPRO Ruby protein blot stain is fully compatible with subsequent biochemical applications including colorimetric and chemiluminescent immunoblotting, Edman-based sequencing and mass spectrometry.
Collapse
Affiliation(s)
- K Berggren
- Molecular Probes, Inc., Eugene, Oregon 97402, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Arnott D, O'Connell KL, King KL, Stults JT. An integrated approach to proteome analysis: identification of proteins associated with cardiac hypertrophy. Anal Biochem 1998; 258:1-18. [PMID: 9527842 DOI: 10.1006/abio.1998.2566] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertrophy of cardiac myocytes is a primary response of the heart to overload, and is an independent predictor of heart failure and death. Distinct cellular phenotypes are associated with hypertrophy resulting from different causes. These phenotypes have been described by others at the molecular level by analysis of gene transcription patterns. An alternative approach is the analysis of large-scale protein expression patterns (the proteome) by two-dimensional polyacrylamide gel electrophoresis. Realization of this goal requires the ability to rigorously analyze complex 2D gel images, efficiently digest individual gel isolated proteins (especially those expressed at low levels), and analyze the resulting peptides with high sensitivity for rapid database searches. We have undertaken to improve the technology and experimental approaches to these challenges in order to effectively study a cell culture model for cardiac hypertrophy. The 2D gel patterns for cell lysates from multiple samples of cardiac myocytes with or without phenylephrine-induced hypertrophy were analyzed and spots which changed in abundance with statistical significance were located. Eleven such spots were identified using improved procedures for in-gel digestion of silver-stained proteins and high-sensitivity mass spectrometry. The incorporation of low levels of sodium dodecyl sulfate into the digestion buffer improved peptide recovery. The combination of matrix-assisted laser desorption mass spectrometry for initial measurements and capillary liquid chromatography-ion trap mass spectrometry for peptide sequence determination yielded efficient protein identification. The integration of 2D gel image analysis and routine identification of proteins present in gels at the subpicomole level represents a general model for proteome studies relating genomic sequence with protein expression patterns.
Collapse
Affiliation(s)
- D Arnott
- Protein Chemistry Department, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | | | | | | |
Collapse
|
29
|
Chung-Welch N, Patton WF, Shepro D, Cambria RP. Two-stage isolation procedure for obtaining homogenous populations of microvascular endothelial and mesothelial cells from human omentum. Microvasc Res 1997; 54:121-34. [PMID: 9327383 DOI: 10.1006/mvre.1997.2039] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The human omentum is a highly vascularized tissue often advocated as a source of human microvascular endothelial (HOME) cells. The omentum also contains mesothelial (MESO) cells and isolation protocols published to date do not describe a separation of the two cell populations. Using a two-stage collagenase digestion procedure, homogenous populations of HOME and MESO cells are obtained from the same omental tissue sample. HOME and MESO cells are both simple squamous epithelial cells and consequently are often difficult to discriminate between based on morphology and reactivity with many of the conventional endothelial and mesothelial cell markers. Both HOME and MESO cells form typical cobblestone, contact-inhibited monolayers, metabolize DiI-Ac-LDL, and are immunoreactive to von Willebrand Factor and Ulex europeaus I lectin. However, MESO cells are distinguishable from HOME cells based upon their expression of cytokeratins. Moreover, HOME cells and not MESO cells form capillary-like structures when cultured on Matrigel. It appears that HOME and MESO cells share many phenotypic properties, but are distinguishable from one another based upon a comprehensive panel of endothelial and mesothelial markers. Both cell types should be useful for studying the biology and pathology of the human microvasculature in vitro.
Collapse
Affiliation(s)
- N Chung-Welch
- Microvascular Research Laboratory, Boston University, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
30
|
Decristoforo C, Zaknun J, Kohler B, Oberladstaetter M, Riccabona G. The use of electronic autoradiography in radiopharmacy. Nucl Med Biol 1997; 24:361-5. [PMID: 9257336 DOI: 10.1016/s0969-8051(97)00055-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of Microchannel Plate Analysers (Instant Imager, Canberra Packard), the so called Electronic Autoradiography, in Radiopharmacy is described. The system can be used for quality control of radiopharmaceuticals as well as for scientific research purposes. Quantitative analysis of 2-dimensional radioactive samples of all radionuclides used in Nuclear Medicine (especially 99mTc) can be performed in a very short time with little effort. Advantages and limitations for radiopharmaceutical work are described.
Collapse
Affiliation(s)
- C Decristoforo
- Department of Nuclear Medicine, University Hospital Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
31
|
O'Connell KL, Stults JT. Identification of mouse liver proteins on two-dimensional electrophoresis gels by matrix-assisted laser desorption/ionization mass spectrometry of in situ enzymatic digests. Electrophoresis 1997; 18:349-59. [PMID: 9150913 DOI: 10.1002/elps.1150180309] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A number of proteins from a silver-stained two-dimensional (2-D) electrophoresis gel of mouse liver whole-cell lysate were identified by peptide mass mapping and sequence database searching. The excised protein spots were processed by in situ reduction and alkylation, followed by Lys-C digestion. The masses of the resulting peptide mixtures were measured with a matrix-assisted laser desorption/ionization (MALDI) reflection-time-of-flight mass spectrometer. These masses were used successfully to search a protein sequence database. Optimized silver staining and digestion protocols allowed proteins to be identified routinely at the low picomole level. The high mass accuracy and resolution provided by delayed extraction were important for high specificity in the database search. Fragment ion data obtained by MALDI post-source decay (PSD) measurements not only provided confirmation of peptide identification, but could be used to identify the protein from a single peptide without spectral interpretation.
Collapse
Affiliation(s)
- K L O'Connell
- Protein Chemistry Department, Genentech, Inc., South San Francisco, CA 94080, USA
| | | |
Collapse
|
32
|
Lim MJ, Patton WF, Lopez MF, Spofford KH, Shojaee N, Shepro D. A luminescent europium complex for the sensitive detection of proteins and nucleic acids immobilized on membrane supports. Anal Biochem 1997; 245:184-95. [PMID: 9056210 DOI: 10.1006/abio.1996.9961] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Certain metal complexes selectively interact with proteins immobilized on solid-phase membrane supports to form brightly colored products. Detecting the absorbance of colorimetric stains is limited by the molar extinction coefficient of the product, however. Development of light-emitting complexes should improve detection sensitivity, but fluorescent labels described to date modify free amino, carboxyl, or sulfhydryl groups often rendering proteins unsuitable for further analysis. Bathophenanthroline disulfonate (BPSA) forms a luminescent europium (Eu) complex that reversibly binds to proteins and nucleic acids. Analysis of charge-fractionated carrier ampholytes and synthetic polymers of different L-amino acids indicates that protein binding is chiefly through protonated alpha- and epsilon-amino side chains. Proteins or nucleic acids immobilized to a nitrocellulose or polyvinyl difluoride membrane by electroblotting, dot-blotting, or vacuum slot-blotting are incubated with the lanthanide complex at acidic pH. Membranes are rinsed, illuminated with UV light and the phosphorescence of BPSA-Eu is measured at 590 to 615 nm using a CCD camera or spectrofluorimeter. The linear dynamic range of the stain is 476- and 48-fold for protein and DNA, respectively. A strong chelating agent such as ethylenediaminetetraacetic acid combined with a shift to basic pH (PH 8-10) elutes BPSA-Eu from the membrane. The reversible nature of the protein staining procedure allows for subsequent biochemical analyses, such as immunoblotting, lectin staining, and mass spectrometry.
Collapse
Affiliation(s)
- M J Lim
- Boston University, Biological Sciences Department, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
33
|
Shojaee N, Patton WF, Lim MJ, Shepro D. Pyrogallol red-molybdate: a reversible, metal chelate stain for detection of proteins immobilized on membrane supports. Electrophoresis 1996; 17:687-93. [PMID: 8738328 DOI: 10.1002/elps.1150170411] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Certain metal complexes selectively interact with proteins immobilized on solid-phase membrane supports to form brightly colored products. The metal chelates form protein-dye complexes in the presence of metal ions at acidic pH but are eluted from the proteins by immersing membranes in a solution of basic pH that contains other chelating agents. The reversible nature of the protein staining procedure allows for subsequent biochemical analyses, such as immunoblotting, N-terminal and internal protein sequencing. Among the metal complexes evaluated to date, the triazine dye-ferrous complexes (ferene S, ferrozine) and the ferrocyanide-ferric complexes provide the most sensitive detection of proteins immobilized on membranes. While the pyrogallol red-molybdate complex is commonly used in solution-based total protein assays, its utility as a reversible stain for proteins immobilized on membranes has not been reported. Pyrogallol red-molybdate complexes readily stain proteins on nitrocellulose and polyvinyl difluoride membranes with similar sensitivity as ferrozine-ferrous complexes. Analysis of charge-fractionated carrier ampholytes and synthetic polymers of different L-amino acids indicate that binding is prominently via protonated alpha and epsilon-amino side chains. Carbamylation of amino groups in bovine serum albumin substantially diminishes pyrogallol red-molybdate binding to the protein. The stain is reversible, resistant to chemical interference, and compatible with immunoblotting.
Collapse
Affiliation(s)
- N Shojaee
- Microvascular Research Laboratory, Boston University, MA 02215, USA
| | | | | | | |
Collapse
|