1
|
Giuliano P, La Rosa G, Capozzi S, Cassano E, Damiano S, Habetswallner F, Iodice R, Marra M, Pavone LM, Quarantelli M, Vitelli G, Santillo M, Paternò R. A Blood Test for the Diagnosis of Multiple Sclerosis. Int J Mol Sci 2024; 25:1696. [PMID: 38338973 PMCID: PMC10855725 DOI: 10.3390/ijms25031696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune chronic disease characterized by inflammation and demyelination of the central nervous system (CNS). Despite numerous studies conducted, valid biomarkers enabling a definitive diagnosis of MS are not yet available. The aim of our study was to identify a marker from a blood sample to ease the diagnosis of MS. In this study, since there is evidence connecting the serotonin pathway to MS, we used an ELISA (Enzyme-Linked Immunosorbent Assay) to detect serum MS-specific auto-antibodies (auto-Ab) against the extracellular loop 1 (ECL-1) of the 5-hydroxytryptamine (5-HT) receptor subtype 2A (5-HT2A). We utilized an ELISA format employing poly-D-lysine as a pre-coating agent. The binding of 208 serum samples from controls, both healthy and pathological, and of 104 serum samples from relapsing-remitting MS (RRMS) patients was tested. We observed that the serum-binding activity in control cohort sera, including those with autoimmune and neurological diseases, was ten times lower compared to the RRMS patient cohort (p = 1.2 × 10-47), with a sensitivity and a specificity of 98% and 100%, respectively. These results show that in the serum of patients with MS there are auto-Ab against the serotonin receptor type 2A which can be successfully used in the diagnosis of MS due to their high sensitivity and specificity.
Collapse
Affiliation(s)
| | - Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (S.C.); (S.D.); (M.M.); (G.V.); (M.S.)
| | - Serena Capozzi
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (S.C.); (S.D.); (M.M.); (G.V.); (M.S.)
| | - Emanuele Cassano
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (E.C.); (R.I.)
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (S.C.); (S.D.); (M.M.); (G.V.); (M.S.)
| | | | - Rosa Iodice
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (E.C.); (R.I.)
| | - Maurizio Marra
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (S.C.); (S.D.); (M.M.); (G.V.); (M.S.)
| | - Luigi Michele Pavone
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy;
| | - Mario Quarantelli
- Biostructure and Bioimaging Institute, Consiglio Nazionale delle Ricerche (CNR), Via De Amicis 95, 80145 Naples, Italy;
| | - Giuseppe Vitelli
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (S.C.); (S.D.); (M.M.); (G.V.); (M.S.)
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (S.C.); (S.D.); (M.M.); (G.V.); (M.S.)
| | - Roberto Paternò
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (S.C.); (S.D.); (M.M.); (G.V.); (M.S.)
| |
Collapse
|
2
|
Okasha H. Fundamental Uses of Peptides as a New Model in Both Treatment and Diagnosis. Recent Pat Biotechnol 2024; 18:110-127. [PMID: 38282442 DOI: 10.2174/1872208317666230512143508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/16/2023] [Accepted: 04/04/2023] [Indexed: 01/30/2024]
Abstract
An amino acid short chain is known as a peptide. Peptide bonds are the connections that hold the amino acids of a peptide together in a particular order. Characteristically, the shorter length of peptides helps to identify them from proteins. Different ways are used to classify peptides, including chain length, source of peptides, or their biological functions. The fact that peptides serve several purposes suggests that there is a foundation for improvement in peptide production and structure to enhance action. In addition, many patents on peptides for therapeutic and diagnostic approaches have been obtained. This review aims to give an overview of peptides used recently in treatment and diagnosis.
Collapse
Affiliation(s)
- Hend Okasha
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| |
Collapse
|
3
|
Trier NH. Characterization of Peptide Antibodies by Epitope Mapping Using Resin-Bound and Soluble Peptides. Methods Mol Biol 2024; 2821:179-193. [PMID: 38997489 DOI: 10.1007/978-1-0716-3914-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Characterization of peptide antibodies through identification of their target epitopes is of utmost importance, as information about epitopes provide important knowledge, among others, for discovery and development of new therapeutics, vaccines, and diagnostics.This chapter describes a strategy for mapping of continuous peptide antibody epitopes using resin-bound and soluble peptides. The approach combines three different types of peptide sets for full characterization of peptide antibodies; (i) overlapping peptides, used to locate antigenic regions; (ii) truncated peptides, used to identify the minimal peptide length required for antibody binding; and (iii) substituted peptides, used to identify the key residues important for antibody binding and to determine the specific contribution of key residues. For initial screening, resin-bound peptides are used for epitope estimation, while soluble peptides subsequently are used for final epitope characterization and identification of critical hot spot residues. The combination of resin-bound peptides and soluble peptides for epitope mapping provides a time-saving and straightforward approach for characterization of antibodies recognizing continuous epitopes, which applies to peptide antibodies and occasionally antibodies directed to larger proteins as well.
Collapse
|
4
|
Sives S, Keep S, Bickerton E, Vervelde L. Revealing Novel-Strain-Specific and Shared Epitopes of Infectious Bronchitis Virus Spike Glycoprotein Using Chemical Linkage of Peptides onto Scaffolds Precision Epitope Mapping. Viruses 2023; 15:2279. [PMID: 38005955 PMCID: PMC10675791 DOI: 10.3390/v15112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The avian coronavirus, infectious bronchitis virus (IBV), is an economically important infectious disease affecting chickens, with a diverse range of serotypes found globally. The major surface protein, spike (S), has high diversity between serotypes, and amino acid differences in the S1 sub-unit are thought to be responsible for poor cross-protection afforded by vaccination. Here, we attempt to address this, by using epitope mapping technology to identify shared and serotype-specific immunogenic epitopes of the S glycoprotein of three major circulating strains of IBV, M41, QX, and 4/91, via CLIPS peptide arrays based on peptides from the S1 sub-units. The arrays were screened with sera from chickens immunised with recombinant IBV, based on Beau-R backbone expressing heterologous S, generated in two independent vaccination/challenge trials. The screening of sera from rIBV vaccination experiments led to the identification of 52 immunogenic epitopes on the S1 of M41, QX, and 4/91. The epitopes were assigned into six overlapping epitope binding regions. Based on accessibility and location in the hypervariable regions of S, three sequences, 25YVYYYQSAFRPPNGWHLQGGAYAVVNSTN54, 67TVGVIKDVYNQSVASI82, and 83AMTVPPAGMSWSVS96, were selected for further investigation, and synthetic peptide mimics were recognised by polyclonal sera. These epitopes may have the potential to contribute towards a broader cross-protective IBV vaccine.
Collapse
Affiliation(s)
- Samantha Sives
- Division of Immunology, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Sarah Keep
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK
| | | | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| |
Collapse
|
5
|
Ricci AD, Bracco L, Salas-Sarduy E, Ramsey JM, Nolan MS, Lynn MK, Altcheh J, Ballering GE, Torrico F, Kesper N, Villar JC, Marcipar IS, Marco JD, Agüero F. The Trypanosoma cruzi Antigen and Epitope Atlas: antibody specificities in Chagas disease patients across the Americas. Nat Commun 2023; 14:1850. [PMID: 37012236 PMCID: PMC10070320 DOI: 10.1038/s41467-023-37522-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
During an infection the immune system produces pathogen-specific antibodies. These antibody repertoires become specific to the history of infections and represent a rich source of diagnostic markers. However, the specificities of these antibodies are mostly unknown. Here, using high-density peptide arrays we examined the human antibody repertoires of Chagas disease patients. Chagas disease is a neglected disease caused by Trypanosoma cruzi, a protozoan parasite that evades immune mediated elimination and mounts long-lasting chronic infections. We describe a proteome-wide search for antigens, characterised their linear epitopes, and show their reactivity on 71 individuals from diverse human populations. Using single-residue mutagenesis we revealed the core functional residues for 232 of these epitopes. Finally, we show the diagnostic performance of identified antigens on challenging samples. These datasets enable the study of the Chagas antibody repertoire at an unprecedented depth and granularity, while also providing a rich source of serological biomarkers.
Collapse
Affiliation(s)
- Alejandro D Ricci
- Instituto de Investigaciones Biotecnológicas (IIB) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | - Leonel Bracco
- Instituto de Investigaciones Biotecnológicas (IIB) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas (IIB) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | - Janine M Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México
| | - Melissa S Nolan
- Laboratory of Vector-borne and Zoonotic Diseases, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - M Katie Lynn
- Laboratory of Vector-borne and Zoonotic Diseases, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Jaime Altcheh
- Hospital de Niños "Ricardo Gutierrez", Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP) - GCBA-CONICET, Buenos Aires, Argentina
| | - Griselda E Ballering
- Hospital de Niños "Ricardo Gutierrez", Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | | | - Norival Kesper
- LIM-49, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Juan C Villar
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga y Fundación Cardioinfantil - Instituto de Cardiología, Bogotá, Colombia
| | - Iván S Marcipar
- Facultad de Ciencias Médicas y Facultad de Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge D Marco
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas (IIB) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina.
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Sheff J, Kelly J, Foss M, Brunette E, Kemmerich K, van Faassen H, Raphael S, Hussack G, Comamala G, Rand K, Stanimirovic DB. Epitope mapping of a blood-brain barrier crossing antibody targeting the cysteine-rich region of IGF1R using hydrogen-exchange mass spectrometry enabled by electrochemical reduction. J Biochem 2023; 173:95-105. [PMID: 36346120 DOI: 10.1093/jb/mvac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022] Open
Abstract
Pathologies of the central nervous system impact a significant portion of our population, and the delivery of therapeutics for effective treatment is challenging. The insulin-like growth factor-1 receptor (IGF1R) has emerged as a target for receptor-mediated transcytosis, a process by which antibodies are shuttled across the blood-brain barrier (BBB). Here, we describe the biophysical characterization of VHH-IR4, a BBB-crossing single-domain antibody (sdAb). Binding was confirmed by isothermal titration calorimetry and an epitope was highlighted by surface plasmon resonance that does not overlap with the IGF-1 binding site or other known BBB-crossing sdAbs. The epitope was mapped with a combination of linear peptide scanning and hydrogen-deuterium exchange mass spectrometry (HDX-MS). IGF1R is large and heavily disulphide bonded, and comprehensive HDX analysis was achieved only through the use of online electrochemical reduction coupled with a multiprotease approach, which identified an epitope for VHH-IR4 within the cysteine-rich region (CRR) of IGF1R spanning residues W244-G265. This is the first report of an sdAb binding the CRR. We show that VHH-IR4 inhibits ligand induced auto-phosphorylation of IGF1R and that this effect is mediated by downstream conformational effects. Our results will guide the selection of antibodies with improved trafficking and optimized IGF1R binding characteristics.
Collapse
Affiliation(s)
- Joey Sheff
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - John Kelly
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Mary Foss
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Eric Brunette
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Kristin Kemmerich
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Shalini Raphael
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Gerard Comamala
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.2100
| | - Kasper Rand
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.2100
| | - Danica B Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
7
|
Lengfeld J, Zhang H, Stoesz S, Murali R, Pass F, Greene MI, Goel PN, Grover P. Challenges in Detection of Serum Oncoprotein: Relevance to Breast Cancer Diagnostics. BREAST CANCER-TARGETS AND THERAPY 2021; 13:575-593. [PMID: 34703307 PMCID: PMC8524259 DOI: 10.2147/bctt.s331844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/02/2021] [Indexed: 11/23/2022]
Abstract
Breast cancer is a highly prevalent malignancy that shows improved outcomes with earlier diagnosis. Current screening and monitoring methods have improved survival rates, but the limitations of these approaches have led to the investigation of biomarker evaluation to improve early diagnosis and treatment monitoring. The enzyme-linked immunosorbent assay (ELISA) is a specific and robust technique ideally suited for the quantification of protein biomarkers from blood or its constituents. The continued clinical relevancy of this assay format will require overcoming specific technical challenges, including the ultra-sensitive detection of trace biomarkers and the circumventing of potential assay interference due to the expanding use of monoclonal antibody (mAb) therapeutics. Approaches to increasing the sensitivity of ELISA have been numerous and include employing more sensitive substrates, combining ELISA with the polymerase chain reaction (PCR), and incorporating nanoparticles as shuttles for detection antibodies and enzymes. These modifications have resulted in substantial boosts in the ability to detect extremely low levels of protein biomarkers, with some systems reliably detecting antigen at sub-femtomolar concentrations. Extensive utilization of mAb therapies in oncology has presented an additional contemporary challenge for ELISA, particularly when both therapeutic and assay antibodies target the same protein antigen. Resolution of issues such as epitope overlap and steric hindrance requires a rational approach to the design of diagnostic antibodies that takes advantage of modern antibody generation pipelines, epitope binning techniques and computational methods to strategically target biomarker epitopes. This review discusses technical strategies in ELISA implemented to date and their feasibility to address current constraints on sensitivity and problems with interference in the clinical setting. The impact of these recent advancements will depend upon their transformation from research laboratory protocols into facile, reliable detection systems that can ideally be replicated in point-of-care devices to maximize utilization and transform both the diagnostic and therapeutic monitoring landscape.
Collapse
Affiliation(s)
- Justin Lengfeld
- Martell Diagnostic Laboratories, Inc., Roseville, MN, 55113, USA
| | - Hongtao Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Steven Stoesz
- Martell Diagnostic Laboratories, Inc., Roseville, MN, 55113, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Research Division of Immunology; Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Franklin Pass
- Martell Diagnostic Laboratories, Inc., Roseville, MN, 55113, USA
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peeyush N Goel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Payal Grover
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Peptide Affinity Chromatography Applied to Therapeutic Antibodies Purification. Int J Pept Res Ther 2021; 27:2905-2921. [PMID: 34690622 PMCID: PMC8525457 DOI: 10.1007/s10989-021-10299-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
The interest in therapeutic monoclonal antibodies (mAbs) has significantly grown in the pharmaceutical industry, exceeding 100 FDA mAbs approved. Although the upstream processing of their industrial production has been significantly improved in the last years, the downstream processing still depends on immobilized protein A affinity chromatography. The high cost, low capacity and short half-life of immobilized protein A chromatography matrices, encouraged the design of alternative short-peptide ligands for mAb purification. Most of these peptides have been obtained by screening combinatorial peptide libraries. These low-cost ligands can be easily produced by solid-phase peptide synthesis and can be immobilized on chromatographic supports, thus obtaining matrices with high capacity and selectivity. Furthermore, matrices with immobilized peptide ligands have longer half-life than those with protein A due to the higher stability of the peptides. In this review the design and synthesis of peptide ligands, their immobilization on chromatographic supports and the evaluation of the affinity supports for their application in mAb purification is described.
Collapse
|
9
|
Pandey S, Malviya G, Chottova Dvorakova M. Role of Peptides in Diagnostics. Int J Mol Sci 2021; 22:ijms22168828. [PMID: 34445532 PMCID: PMC8396325 DOI: 10.3390/ijms22168828] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
The specificity of a diagnostic assay depends upon the purity of the biomolecules used as a probe. To get specific and accurate information of a disease, the use of synthetic peptides in diagnostics have increased in the last few decades, because of their high purity profile and ability to get modified chemically. The discovered peptide probes are used either in imaging diagnostics or in non-imaging diagnostics. In non-imaging diagnostics, techniques such as Enzyme-Linked Immunosorbent Assay (ELISA), lateral flow devices (i.e., point-of-care testing), or microarray or LC-MS/MS are used for direct analysis of biofluids. Among all, peptide-based ELISA is considered to be the most preferred technology platform. Similarly, peptides can also be used as probes for imaging techniques, such as single-photon emission computed tomography (SPECT) and positron emission tomography (PET). The role of radiolabeled peptides, such as somatostatin receptors, interleukin 2 receptor, prostate specific membrane antigen, αβ3 integrin receptor, gastrin-releasing peptide, chemokine receptor 4, and urokinase-type plasminogen receptor, are well established tools for targeted molecular imaging ortumor receptor imaging. Low molecular weight peptides allow a rapid clearance from the blood and result in favorable target-to-non-target ratios. It also displays a good tissue penetration and non-immunogenicity. The only drawback of using peptides is their potential low metabolic stability. In this review article, we have discussed and evaluated the role of peptides in imaging and non-imaging diagnostics. The most popular non-imaging and imaging diagnostic platforms are discussed, categorized, and ranked, as per their scientific contribution on PUBMED. Moreover, the applicability of peptide-based diagnostics in deadly diseases, mainly COVID-19 and cancer, is also discussed in detail.
Collapse
Affiliation(s)
- Shashank Pandey
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
- Correspondence:
| | - Gaurav Malviya
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G611BD, UK;
| | - Magdalena Chottova Dvorakova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic;
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
| |
Collapse
|
10
|
Sheff J, Wang P, Xu P, Arbour M, Masson L, van Faassen H, Hussack G, Kemmerich K, Brunette E, Stanimirovic D, Hill JJ, Kelly J, Ni F. Defining the epitope of a blood-brain barrier crossing single domain antibody specific for the type 1 insulin-like growth factor receptor. Sci Rep 2021; 11:4284. [PMID: 33608571 PMCID: PMC7896052 DOI: 10.1038/s41598-021-83198-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Ligand-activated signaling through the type 1 insulin-like growth factor receptor (IGF1R) is implicated in many physiological processes ranging from normal human growth to cancer proliferation and metastasis. IGF1R has also emerged as a target for receptor-mediated transcytosis, a transport phenomenon that can be exploited to shuttle biotherapeutics across the blood–brain barrier (BBB). We employed differential hydrogen–deuterium exchange mass spectrometry (HDX-MS) and nuclear magnetic resonance (NMR) to characterize the interactions of the IGF1R ectodomain with a recently discovered BBB-crossing single-domain antibody (sdAb), VHH-IR5, in comparison with IGF-1 binding. HDX-MS confirmed that IGF-1 induced global conformational shifts in the L1/FnIII-1/-2 domains and α-CT helix of IGF1R. In contrast, the VHH-IR5 sdAb-mediated changes in conformational dynamics were limited to the α-CT helix and its immediate vicinity (L1 domain). High-resolution NMR spectroscopy titration data and linear peptide scanning demonstrated that VHH-IR5 has high-affinity binding interactions with a peptide sequence around the C-terminal region of the α-CT helix. Taken together, these results define a core linear epitope for VHH-IR5 within the α-CT helix, overlapping the IGF-1 binding site, and suggest a potential role for the α-CT helix in sdAb-mediated transcytosis.
Collapse
Affiliation(s)
- Joey Sheff
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Ping Wang
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Ping Xu
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Melanie Arbour
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Luke Masson
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Kristin Kemmerich
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Eric Brunette
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Danica Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Jennifer J Hill
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - John Kelly
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Feng Ni
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada.
| |
Collapse
|
11
|
Teng F, Han F, Zhu X, Yu L, Gai D, Xu C, Cui Y. Identification of continuous immunoglobulin G epitopes of Dermatophagoides farinae allergens by peptide microarray immunoassay. IUBMB Life 2020; 72:1976-1985. [PMID: 32710808 DOI: 10.1002/iub.2333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 11/09/2022]
Abstract
Dermatophagoides farinae, as a common house dust mite species, is one of the main sources of allergens in the world. At present, Dermatophagoides farinae is found to contain more than 30 groups of allergens. These allergens are used for allergen-specific immunotherapy (AIT) of allergic diseases. During the AIT process, immunoglobulin G (IgG) antibodies can block immunoglobulin E (IgE) antibody-induced allergic reactions in the human body. One of the mechanisms may be that IgG and IgE competitively bind to the same allergic protein, so it is necessary to explore the binding sites (epitopes) of IgG antibodies to allergens. In this study, peptide arrays were constructed to react with the serums from patients with allergic asthma to find the IgG epitopes of several allergens including major allergens (Der f 1, 2) and mid-tier allergens (Der f 4, 5, and 7), and then verified by enzyme-linked immunosorbent assay (ELISA) test. Relevant epitopic sequences were located on the tertiary structure of individual allergens, as reconstructed by homology modeling. One IgG epitope of Der f 1 (90-106aa, NVPSELDLRSLRTVTPI), five IgG epitopes of Der f 4 (61-77aa, ERYQPVSYDIHTRSGDE; 193-209aa, FRSDASTHQWPDDLRSI; 226-242aa, HPFIYHETIYYGGNGIN; 271-287aa, LRWLRNFGTEWGLVPSG; 352-368aa, NDWVGPPTDQHGNILSV), and one IgG epitope of Der f 5 (84-101aa, RYNVEIALKSNEILERDL) were identified. IgG epitopes of Der f 2, 7 were not found. There are overlaps between the IgG and IgE epitopes of Der f 1, 4, and 5. These findings not only reflect the practicality of peptide array and ELISA test in the allergen IgG epitope identification, but also provide more information for further understanding of the human immunological changes during AIT and the molecular mechanisms of IgG blocking IgE activity.
Collapse
Affiliation(s)
- Feixiang Teng
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Feifei Han
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xuming Zhu
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Lili Yu
- Department of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Dongzheng Gai
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Cong Xu
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Yubao Cui
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
12
|
Ma M, Liu J, Jin S, Wang L. Development of tumour peptide vaccines: From universalization to personalization. Scand J Immunol 2020; 91:e12875. [PMID: 32090366 DOI: 10.1111/sji.12875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022]
Abstract
In recent years, relying on the human immune system to kill tumour cells has become an effective means of cancer treatment. The development of peptide vaccines, which not only break the immune tolerance of a tumour but also attack malignant cells via specific antitumour immunity, has received increased attention in tumour immunization therapy due to their safety and easy preparation. The use of large-scale sequencing technology enables the continuous discovery of new tumour antigens. With improved accuracy of epitope prediction by computer simulation and the usage of a tetramer assay, cytotoxic lymphocyte epitopes can be screened and identified more easily. Transmembrane peptide and nanoparticle technologies promote more effective intake and delivery of antigens. Consequently, considerable evolution from universal to personalized peptide vaccines has taken place, and such vaccines induce an efficient and specific immune response targeting tumour neoantigens. Recently, genomic analysis and bioinformatics approaches have greatly facilitated the breakthrough of personalized peptide vaccines targeting neoantigens, resulting in a renewed interest in this field. Further, the combination of tumour peptide vaccines with checkpoint blockades may improve patient outcomes. In this review, we discuss the development of tumour peptide vaccines and the new technological progress, from universalization to personalization, to highlight the substantial promise of tumour peptide vaccines in clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Minjun Ma
- Department of Gastrology, The First People's Hospital of Fuyang of Hangzhou, Hangzhou, China
| | - Jingwen Liu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shenghang Jin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lan Wang
- Linhai Center for Disease Control and Prevention, Linhai, China
| |
Collapse
|
13
|
Shine PV, Shankar KM, Abhiman B, Sudheer NS, Patil R. Epitope mapping of the White Spot Syndrome Virus (WSSV) VP28 monoclonal antibody through combined in silico and in vitro analysis reveals the potential antibody binding site. Mol Cell Probes 2020; 50:101508. [PMID: 31935436 DOI: 10.1016/j.mcp.2020.101508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/23/2019] [Accepted: 01/10/2020] [Indexed: 01/18/2023]
Abstract
White Spot Syndrome Virus (WSSV) infecting shrimp is an enveloped double-stranded DNA virus. The WSSV is a member of the genus Whispovirus. The envelope protein VP28 is the most investigated protein of WSSV. In the present study, the epitope mapping of the monoclonal antibody (MAb) C-33 was carried out. Based on the epitope mapping results, an antigen-antibody interaction model was derived. Peptide scanning and confirmation of epitopes of MAb C-33 were carried out using the sequence data. The MAb was reactive to the epitope of both recombinant VP28 and the whole virus. The results of the study indicated the presence of an epitope region. The epitope region is found positioned within two peptides, covering 13 amino acids. Framework and CDR (complementarity determining regions) of heavy and light chain (VH & VL) sequences showed identity to germline immunoglobulin sequences. The Web Antibody Modelling (WAM) selected for further evaluation based on a comparative analysis of WAM and Rosetta server-generated models of the Fv region. The docking study using WAM generated model revealed that the residues from LEU98 to GLY105 are active in antibody binding. The findings of this study could form a structural basis for further research in VP28 based diagnostics and therapeutics or vaccine discovery.
Collapse
Affiliation(s)
- P V Shine
- Aquatic Animal Health Laboratory, Department of Aquaculture, College of Fisheries, Mangalore, India
| | - K M Shankar
- Aquatic Animal Health Laboratory, Department of Aquaculture, College of Fisheries, Mangalore, India.
| | - B Abhiman
- Aquatic Animal Health Laboratory, Department of Aquaculture, College of Fisheries, Mangalore, India
| | - N S Sudheer
- Central Institute of Brackishwater Aquaculture, Chennai, India
| | - R Patil
- Aquatic Animal Health Laboratory, Department of Aquaculture, College of Fisheries, Mangalore, India
| |
Collapse
|
14
|
Dobrut A, Brzozowska E, Górska S, Pyclik M, Gamian A, Bulanda M, Majewska E, Brzychczy-Włoch M. Epitopes of Immunoreactive Proteins of Streptococcus Agalactiae: Enolase, Inosine 5'-Monophosphate Dehydrogenase and Molecular Chaperone GroEL. Front Cell Infect Microbiol 2018; 8:349. [PMID: 30333963 PMCID: PMC6176014 DOI: 10.3389/fcimb.2018.00349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
Three Streptococcus agalactiae (group B streptococci, GBS) immunoreactive proteins: enolase (47.4 kDa), inosine 5'-monophosphate dehydrogenase (IMPDH) (53 kDa) and molecular chaperone GroEL (57 kDa) were subjected to investigation. Enolase protein was described in our previous paper, whereas IMPDH and GroEL were presented for the first time. The aim of our paper was to provide mapping of specific epitopes, highly reactive with umbilical cord blood serum. Bioinformatic analyses allowed to select 32 most likely epitopes for enolase, 36 peptides for IMPDH and 41 immunoreactive peptides for molecular chaperone GroEL, which were synthesized by PEPSCAN. Ten peptides: two in enolase, one in IMPDH and seven in molecular chaperone GroEL have been identified as potentially highly selective epitopes that can be used as markers in rapid immunological diagnostic tests or constitute a component of an innovative vaccine against GBS infections.
Collapse
Affiliation(s)
- Anna Dobrut
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Brzozowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Sabina Górska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marcelina Pyclik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Andrzej Gamian
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Małgorzata Bulanda
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Elzbieta Majewska
- Department of Clinical Obstetrics and Perinatology, University Hospital, Krakow, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
15
|
Pyclik M, Górska S, Brzozowska E, Dobrut A, Ciekot J, Gamian A, Brzychczy-Włoch M. Epitope Mapping of Streptococcus agalactiae Elongation Factor Tu Protein Recognized by Human Sera. Front Microbiol 2018; 9:125. [PMID: 29467739 DOI: 10.3389/fmicb.2018.00125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/18/2018] [Indexed: 12/26/2022] Open
Abstract
The elongation factor Tu has been identified as one of the most immunoreactive proteins that was recognized by human sera of GBS (group B streptococcus) positive patients. In this paper, we present the polypeptide-specific epitopes of the bacterial protein that are recognized by human antibodies: 28LTAAITTVLARRLP41 (peptide no. 3) and 294GQVLAKPGSINPHTKF309 (peptide no. 21). To determine the shortest amino acid sequence recognized by antibodies, truncation peptide libraries were prepared using the PEPSCAN method. The analysis of immunoreactivity of peptides with sera of GBS positive and negative women revealed that the most immunoreactive sequence was 306HTKF309. Moreover, we observed that this sequence also showed the highest specificity which was based on ratio of reactivity with sera of GBS positive relative to sera of GBS negative patients. Epitope was synthetized on Wang resin with the Fmoc strategy. Our results open the possibility to use 306HTKF309 peptide in diagnostic assays to determine Streptococcus agalactiae infection in humans.
Collapse
Affiliation(s)
- Marcelina Pyclik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Sabina Górska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Ewa Brzozowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Dobrut
- Chair of Microbiology, Department of Molecular Medical Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - Jarosław Ciekot
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Andrzej Gamian
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Monika Brzychczy-Włoch
- Chair of Microbiology, Department of Molecular Medical Microbiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
16
|
Xu WX, Wang J, Tang HP, Chen LH, Lian WB, Zhan JM, Gupta SK, Ji CN, Gu SH, Xie Y. A simpler and more cost-effective peptide biosynthetic method using the truncated GST as carrier for epitope mapping. PLoS One 2017; 12:e0186097. [PMID: 29023483 PMCID: PMC5638316 DOI: 10.1371/journal.pone.0186097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/25/2017] [Indexed: 11/19/2022] Open
Abstract
There is a need to develop better methods for epitope mapping and/or identification of antibody-recognizing motifs. Here, we describe improved biosynthetic peptide (BSP) method using a newly developed plasmid pXXGST-3 as vector, which has a viral E7 gene in the cloning sites of pXXGST-1. It is crucial to employ pXXGST-3 instead of pXXGST-1, since it makes use of the BSP method simpler and easier to perform, and more cost-effective for epitope mapping. These merits are embodied in two aspects: i) convenient recovery of double enzyme-digested product due to the existence of 315 bp inserted between BamH I and Sal I sites, and thus greatly reducing the production of self-ligation clones, and ii) no longer requiring control protein when screening recombinant (r-) clones expressing 8/18mer peptides by running polyacrylamide gel electrophoresis. The protocol involves the following core steps: (i) design of plus and minus strands of DNA fragments encoding overlapping 8/18mer peptides; (ii) chemical synthesis of the designed DNA fragments; (iii) development of r-clones using pXXGST-3 vector expressing each 8/18mer peptide fused with truncated GST188 protein; (iv) screening r-clones by running the cell pellets from each induced clone on SDS-PAGE gel followed by sequencing of inserted DNA fragments for each verified r-clone; and (v) Western blotting with either monoclonal antibodies or polyclonal antibodies. This improved GST188-BSP method provides a powerful alternative tool for epitope mapping.
Collapse
Affiliation(s)
- Wan-Xiang Xu
- Division of Reproductive Immunology, Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, P. R. China
- * E-mail: (WXX); (SKG); (YX)
| | - Jian Wang
- Division of Reproductive Immunology, Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, P. R. China
| | - Hai-Ping Tang
- Division of Reproductive Immunology, Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, P. R. China
| | - Ling-Han Chen
- Division of Reproductive Immunology, Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, P. R. China
| | - Wen-Bo Lian
- Division of Reproductive Immunology, Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, P. R. China
| | - Jian-Min Zhan
- Division of Reproductive Immunology, Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, P. R. China
| | - Satish K. Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (WXX); (SKG); (YX)
| | - Chao-Neng Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, P. R. China
| | - Shao-Hua Gu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, P. R. China
| | - Yi Xie
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, P. R. China
- * E-mail: (WXX); (SKG); (YX)
| |
Collapse
|
17
|
Palermo A, Weber LK, Rentschler S, Isse A, Sedlmayr M, Herbster K, List V, Hubbuch J, Löffler FF, Nesterov-Müller A, Breitling F. Identification of a Tetanus Toxin Specific Epitope in Single Amino Acid Resolution. Biotechnol J 2017; 12. [PMID: 28922578 DOI: 10.1002/biot.201700197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/14/2017] [Indexed: 01/24/2023]
Abstract
Vaccinations are among the most potent tools to fight infectious diseases. However, cross-reactions are an ongoing problem and there is an urgent need to fully understand the mechanisms of the immune response. For the development of a methodological workflow, the linear epitopes in the immune response to the tetanus toxin is investigated in sera of 19 vaccinated Europeans applying epitope mapping with peptide arrays. The most prominent epitope, appearing in nine different sera (923 IHLVNNESSEVIVHK937 ), is investigated in a substitution analysis to identify the amino acids that are crucial for the binding of the corresponding antibody species - the antibody fingerprint. The antibody fingerprints of different individuals are compared and found to be strongly conserved (929 ExxEVIVxK937 ), which is astonishing considering the randomness of their development. Additionally, the corresponding antibody species is isolated from one serum with batch chromatography using the amino acid sequence of the identified epitope and the tetanus specificity of the isolated antibody is verified by ELISA. Studying antibody fingerprints with peptide arrays should be transferable to any kind of humoral immune response toward protein antigens. Furthermore, antibody fingerprints have shown to be highly disease-specific and, therefore, can be employed as reliable biomarkers enabling the study of cross-reacting antigens.
Collapse
Affiliation(s)
- Andrea Palermo
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Laura K Weber
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Simone Rentschler
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Awale Isse
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Martyna Sedlmayr
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Karin Herbster
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Volker List
- Medical Services, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Felix F Löffler
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Alexander Nesterov-Müller
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Frank Breitling
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany
| |
Collapse
|
18
|
Weber LK, Isse A, Rentschler S, Kneusel RE, Palermo A, Hubbuch J, Nesterov-Mueller A, Breitling F, Loeffler FF. Antibody fingerprints in lyme disease deciphered with high density peptide arrays. Eng Life Sci 2017; 17:1078-1087. [PMID: 32624735 DOI: 10.1002/elsc.201700062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/15/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022] Open
Abstract
Lyme disease is the most common tick-borne infectious disease in Europe and North America. Previous studies discovered the immunogenic role of a surface-exposed lipoprotein (VlsE) of Borreliella burgdorferi. We employed high density peptide arrays to investigate the antibody response to the VlsE protein in VlsE-positive patients by mapping the protein as overlapping peptides and subsequent in-depth epitope substitution analyses. These investigations led to the identification of antibody fingerprints represented by a number of key residues that are indispensable for the binding of the respective antibody. This approach allows us to compare the antibody specificities of different patients to the resolution of single amino acids. Our study revealed that the sera of VlsE-positive patients recognize different epitopes on the protein. Remarkably, in those cases where the same epitope is targeted, the antibody fingerprint is almost identical. Furthermore, we could correlate two fingerprints with human autoantigens and an Epstein-Barr virus epitope; yet, the link to autoimmune disorders seems unlikely and must be investigated in further studies. The other three fingerprints are much more specific for B. burgdorferi. Since antibody fingerprints of longer sequences have proven to be highly disease specific, our findings suggest that the fingerprints could function as diagnostic markers that can reduce false positive test results.
Collapse
Affiliation(s)
- Laura K Weber
- Institute of Microstructure Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | - Awale Isse
- Institute of Microstructure Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | - Simone Rentschler
- Institute of Microstructure Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | | | - Andrea Palermo
- Institute of Microstructure Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences Section IV: Biomolecular Separation Engineering Karlsruhe Institute of Technology Karlsruhe Germany
| | | | - Frank Breitling
- Institute of Microstructure Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | - Felix F Loeffler
- Institute of Microstructure Technology Karlsruhe Institute of Technology Karlsruhe Germany.,HEiKA-Heidelberg Karlsruhe Research Partnership Heidelberg University Karlsruhe Institute of Technology (KIT) Karlsruhe Germany.,Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Potsdam Germany
| |
Collapse
|
19
|
Okuwa T, Sasaki Y, Matsuzaki Y, Himeda T, Yoshino N, Hongo S, Ohara Y, Muraki Y. The epitope sequence of S16, a monoclonal antibody against influenza C virus hemagglutinin-esterase fusion glycoprotein. Future Virol 2017. [DOI: 10.2217/fvl-2016-0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aim: S16, a monoclonal antibody against the hemagglutinin-esterase fusion (HEF) glycoprotein of influenza C virus, reacts with SV40 large T antigen (LT) and a host cellular component(s). The aim is to determine the location of S16 linear epitope on LT and the amino acid sequence of S16 epitope. Materials & methods: BHK-21 cells expressing wild-type and mutant LTs, HEFs or GFPs, each of which was tagged with a FLAG epitope, were analyzed by immunoblotting using S16. Results & conclusions: An amino acid sequence 98-FNEENL-103 on LT forms a linear epitope recognized by S16. The sequence of S16 epitope was defined as F[NAT]EE[NYA]L, excluding FAEEAL and FTEEAL. This finding will be of help in identifying a host cellular component(s) crossreactive with S16.
Collapse
Affiliation(s)
- Takako Okuwa
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa, Japan
| | - Yutaka Sasaki
- Division of Infectious Diseases & Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, Yamagata, Japan
| | - Toshiki Himeda
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa, Japan
| | - Naoto Yoshino
- Division of Infectious Diseases & Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, Yamagata, Japan
| | - Yoshiro Ohara
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa, Japan
- Present address: Yamagata Kosei Hospital, 255 Onigoe, Sugesawa, Yamagata 990–2362, Japan
| | - Yasushi Muraki
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa, Japan
- Division of Infectious Diseases & Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| |
Collapse
|
20
|
Pérez-Gamarra S, Hattara L, Batra G, Saviranta P, Lamminmäki U. Array-in-well binding assay for multiparameter screening of phage displayed antibodies. Methods 2016; 116:43-50. [PMID: 27956240 DOI: 10.1016/j.ymeth.2016.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 12/27/2022] Open
Abstract
Phage display is a well-established and powerful tool for the development of recombinant antibodies. In a standard phage display selection process using a high quality antibody phage library, a large number of unique antibody clones can be generated in short time. However, the pace of the antibody discovery project eventually depends on the methodologies used in the next screening phase to identify the clones with the most promising binding characteristics e.g., in terms of specificity, affinity and epitope. Here, we report an array-in-well binding assay, a miniaturized and multiplexed immunoassay that integrates the epitope mapping to the evaluation of the binding activity of phage displayed antibody fragments in a single well. The array-in-well assay design used here incorporates a set of partially overlapping 15-mer peptides covering the complete primary sequence of the target antigen, the intact antigen itself and appropriate controls printed as an array with 10×10 layout at the bottom of a well of a 96-well microtiter plate. The streptavidin-coated surface of the well facilitates the immobilization of the biotinylated analytes as well-confined spots. Phage displayed antibody fragments bound to the analyte spots are traced using anti-phage antibody labelled with horseradish peroxidase for tyramide signal amplification based highly sensitive detection. In this study, we generated scFv antibodies against HIV-1 p24 protein using a synthetic antibody phage library, evaluated the binders with array-in-well binding assay and further classified them into epitopic families based on their capacity to recognize linear epitopes. The array-in-well assay enables the integration of epitope mapping to the screening assay for early classification of antibodies with simplicity and speed of a standard ELISA procedure to advance the antibody development projects.
Collapse
Affiliation(s)
- Susan Pérez-Gamarra
- Department of Biochemistry/Biotechnology, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Liisa Hattara
- Medical Biotechnology Centre, VTT Technical Research Centre of Finland, Espoo FI-02044 VTT, Finland
| | - Gaurav Batra
- Centre for Biodesign and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 122001, India
| | - Petri Saviranta
- Medical Biotechnology Centre, VTT Technical Research Centre of Finland, Espoo FI-02044 VTT, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland.
| |
Collapse
|
21
|
Weller HN, Rubin AE, Moshiri B, Ruediger W, Li WJ, Allen J, Nolfo J, Bertok A, Rosso VW. Development and Commercialization of the MiniBlock Synthesizer Family: A Historical Case Study. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.jala.2004.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An internal development project at Bristol-Myers Squibb (BMS) led to invention of a family of organic chemistry synthesis blocks for both parallel synthesis in drug discovery and parallel reaction optimization in pharmaceutical development. The internal demand for these synthesis blocks became so great that the original development team was challenged by the burden of ongoing manufacture, support, and supply chain management. As a result, BMS entered into a unique industry partnership with Mettler-Toledo AutoChem (MT), Newark, DE, formerly Bohdan Automation, to commercialize the reactor blocks and extend the product family, now known as the MiniBlock line. This manuscript describes the initial development drivers, the overall technical design, and the ultimate successful commercialization of the MiniBlock synthesis family.
Collapse
Affiliation(s)
- Harold N. Weller
- Bristol-Myers Squibb Company, Princeton, NJ and Mettler-Toledo AutoChem, Inc, Newark, DE
| | - A. Erik Rubin
- Bristol-Myers Squibb Company, Princeton, NJ and Mettler-Toledo AutoChem, Inc, Newark, DE
| | - Ben Moshiri
- Bristol-Myers Squibb Company, Princeton, NJ and Mettler-Toledo AutoChem, Inc, Newark, DE
- EDAX/AMETEk, Mahwah, NJ
| | - Walter Ruediger
- Bristol-Myers Squibb Company, Princeton, NJ and Mettler-Toledo AutoChem, Inc, Newark, DE
| | - Wen-Jeng Li
- Bristol-Myers Squibb Company, Princeton, NJ and Mettler-Toledo AutoChem, Inc, Newark, DE
| | - John Allen
- Bristol-Myers Squibb Company, Princeton, NJ and Mettler-Toledo AutoChem, Inc, Newark, DE
| | - Joseph Nolfo
- Bristol-Myers Squibb Company, Princeton, NJ and Mettler-Toledo AutoChem, Inc, Newark, DE
| | - Alexander Bertok
- Bristol-Myers Squibb Company, Princeton, NJ and Mettler-Toledo AutoChem, Inc, Newark, DE
| | - Victor W. Rosso
- Bristol-Myers Squibb Company, Princeton, NJ and Mettler-Toledo AutoChem, Inc, Newark, DE
| |
Collapse
|
22
|
Cheong FW, Fong MY, Lau YL. Identification and characterization of epitopes on Plasmodium knowlesi merozoite surface protein-142 (MSP-142) using synthetic peptide library and phage display library. Acta Trop 2016; 154:89-94. [PMID: 26624919 DOI: 10.1016/j.actatropica.2015.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/07/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
Abstract
Plasmodium knowlesi can cause potentially life threatening human malaria. The Plasmodium merozoite surface protein-142 (MSP-142) is a potential target for malaria blood stage vaccine, and for diagnosis of malaria. Two epitope mapping techniques were used to identify the potential epitopes within P. knowlesi MSP-142. Nine and 14 potential epitopes were identified using overlapping synthetic peptide library and phage display library, respectively. Two regions on P. knowlesi MSP-142 (amino acid residues 37-95 and residues 240-289) were identified to be the potential dominant epitope regions. Two of the prominent epitopes, P10 (TAKDGMEYYNKMGELYKQ) and P31 (RCLLGFKEVGGKCVPASI), were evaluated using mouse model. P10- and P31-immunized mouse sera reacted with recombinant P. knowlesi MSP-142, with the IgG isotype distribution of IgG2b>IgG1>IgG2a>IgG3. Significant higher level of cytokines interferon-gamma and interleukin-2 was detected in P31-immunized mice. Both P10 and P31 could be the suitable epitope candidates to be used in malaria vaccine designs and immunodiagnostic assays, provided further evaluation is needed to validate the potential uses of these epitopes.
Collapse
|
23
|
Pozsgay J, Szarka E, Huber K, Babos F, Magyar A, Hudecz F, Sarmay G. Synthetic Peptide-Based ELISA and ELISpot Assay for Identifying Autoantibody Epitopes. Methods Mol Biol 2016; 1352:223-233. [PMID: 26490479 DOI: 10.1007/978-1-4939-3037-1_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Enzyme-linked immunosorbent assay (ELISA) is an invaluable diagnostic tool to detect serum autoantibody binding to target antigen. To map the autoantigenic epitope(s), overlapping synthetic peptides covering the total sequence of a protein antigen are used. A large set of peptides synthesized on the crown of pins can be tested by Multipin ELISA for fast screening. Next, to validate the results, the candidate epitope peptides are resynthesized by solid-phase synthesis, coupled to ELISA plate directly, or in a biotinylated form, bound to neutravidin-coated surface and the binding of autoantibodies from patients' sera is tested by indirect ELISA. Further, selected epitope peptides can be applied in enzyme-linked immunospot assay to distinguish individual, citrullinated peptide-specific autoreactive B cells in a pre-stimulated culture of patients' lymphocytes.
Collapse
Affiliation(s)
- Judit Pozsgay
- Department of Immunology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary
| | - Eszter Szarka
- Department of Immunology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary
| | - Krisztina Huber
- Department of Immunology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary
| | - Fruzsina Babos
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anna Magyar
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ferenc Hudecz
- Department of Organic Chemistry, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gabriella Sarmay
- Department of Immunology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary.
| |
Collapse
|
24
|
Li C, Liang W, Liu W, Yang D, Wang H, Ma W, Zhou G, Yu L. Identification of a conserved linear epitope using a monoclonal antibody against non-structural protein 3B of foot-and-mouth disease virus. Arch Virol 2015; 161:365-75. [PMID: 26563318 DOI: 10.1007/s00705-015-2667-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/30/2015] [Indexed: 11/28/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is a member of the family Picornaviridae that has caused severe economic losses in many countries of the world. Regular vaccinations have been effectively used to control foot-and-mouth disease (FMD) in countries where the disease is enzootic. Distinguishing between infected and vaccinated animals in herds after immunization is an important component of effective eradication strategies. Nonstructural protein (NSP) 3B of FMDV is part of a larger antigen that is used for this differential diagnosis. In this study, an FMDV serotype-independent monoclonal antibody (MAb) against NSP 3B, 5D12, was generated. Using western blot, it was revealed that MAb 5D12 binds to three fragments of 3B displaying the motifs G(1)PYAGPLERQKPLK(14), K(18)LPQQEGPYAGPMER(32) and V(45)KEGPYEGPVKKPVA(59). The motif G(1)PYAGPLERQKPLK(14) was chosen for further mapping. Different truncated motifs derived from the motif G(1)PYAGPLERQKPLK(14) were expressed as GST-fusion constructs for western blot analysis. The results showed that the 5-aa peptide P(2)YAGP(6) was the minimal epitope reactive to MAb 5D12. Subsequent alanine-scanning mutagenesis analysis revealed that Pro(2), Gly(5) and Pro(6) were crucial for MAb 5D12 binding to P(2)YAGP(6). Furthermore, through sequence alignment analysis, the epitope PxxGP recognized by 5D12 was found to be present not only in 3B-1 but also in 3B2 and 3B3 and was highly conserved in seven serotypes of FMDV strains. Western blot analysis also revealed that the peptide epitope could be recognized by sera from FMDV-infected pigs and cattle. Thus, the 5D12-recognized 3B epitope identified here provides theoretical support for the development of MAb 5D12 as a differential diagnosis reagent for FMDV infection.
Collapse
Affiliation(s)
- Chaosi Li
- State Key Laboratory of Veterinary Biotechnology, Division of Livestock Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin, 150001, People's Republic of China
| | - Weifeng Liang
- State Key Laboratory of Veterinary Biotechnology, Division of Livestock Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin, 150001, People's Republic of China
| | - Wenming Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Livestock Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin, 150001, People's Republic of China
| | - Decheng Yang
- State Key Laboratory of Veterinary Biotechnology, Division of Livestock Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin, 150001, People's Republic of China
| | - Haiwei Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Livestock Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin, 150001, People's Republic of China
| | - Wenge Ma
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, 151 Eastern Kelamayi Street, Ürümqi, 830000, People's Republic of China
| | - Guohui Zhou
- State Key Laboratory of Veterinary Biotechnology, Division of Livestock Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Li Yu
- State Key Laboratory of Veterinary Biotechnology, Division of Livestock Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin, 150001, People's Republic of China
| |
Collapse
|
25
|
Garcia Alonso M, Caballero ML, Umpierrez A, Lluch-Bernal M, Knaute T, Rodríguez-Pérez R. Relationships between T cell and IgE/IgG4 epitopes of the Anisakis simplex major allergen Ani s 1. Clin Exp Allergy 2015; 45:994-1005. [DOI: 10.1111/cea.12474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/05/2014] [Accepted: 12/07/2014] [Indexed: 02/06/2023]
Affiliation(s)
- M. Garcia Alonso
- Hospital La Paz Institute for Health Research; IdiPaz; Madrid Spain
| | | | - A. Umpierrez
- Allergy Department; Hospital La Paz; IdiPaz; Madrid Spain
| | | | - T. Knaute
- JPT Peptide Technologies; Berlin Germany
| | | |
Collapse
|
26
|
Alsop AE, Fennell SC, Bartolo RC, Tan IKL, Dewson G, Kluck RM. Dissociation of Bak α1 helix from the core and latch domains is required for apoptosis. Nat Commun 2015; 6:6841. [PMID: 25880232 DOI: 10.1038/ncomms7841] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 03/03/2015] [Indexed: 02/06/2023] Open
Abstract
During apoptosis, Bak permeabilizes mitochondria after undergoing major conformational changes, including poorly defined N-terminal changes. Here, we characterize those changes using 11 antibodies that were epitope mapped using peptide arrays and mutagenesis. After Bak activation by Bid, epitopes throughout the α1 helix are exposed indicating complete dissociation of α1 from α2 in the core and from α6-α8 in the latch. Moreover, disulfide tethering of α1 to α2 or α6 blocks cytochrome c release, suggesting that α1 dissociation is required for further conformational changes during apoptosis. Assaying epitope exposure when α1 is tethered shows that Bid triggers α2 movement, followed by α1 dissociation. However, α2 reaches its final position only after α1 dissociates from the latch. Thus, α1 dissociation is a key step in unfolding Bak into three major components, the N terminus, the core (α2-α5) and the latch (α6-α8).
Collapse
Affiliation(s)
- Amber E Alsop
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stephanie C Fennell
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Ray C Bartolo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Iris K L Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Grant Dewson
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ruth M Kluck
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
27
|
Defining species-specific immunodominant B cell epitopes for molecular serology of Chlamydia species. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:539-52. [PMID: 25761461 DOI: 10.1128/cvi.00102-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/09/2015] [Indexed: 11/20/2022]
Abstract
Urgently needed species-specific enzyme-linked immunosorbent assays (ELISAs) for the detection of antibodies against Chlamydia spp. have been elusive due to high cross-reactivity of chlamydial antigens. To identify Chlamydia species-specific B cell epitopes for such assays, we ranked the potential epitopes of immunodominant chlamydial proteins that are polymorphic among all Chlamydia species. High-scoring peptides were synthesized with N-terminal biotin, followed by a serine-glycine-serine-glycine spacer, immobilized onto streptavidin-coated microtiter plates, and tested with mono-specific mouse hyperimmune sera against each Chlamydia species in chemiluminescent ELISAs. For each of nine Chlamydia species, three to nine dominant polymorphic B cell epitope regions were identified on OmpA, CT618, PmpD, IncA, CT529, CT442, IncG, Omp2, TarP, and IncE proteins. Peptides corresponding to 16- to 40-amino-acid species-specific sequences of these epitopes reacted highly and with absolute specificity with homologous, but not heterologous, Chlamydia monospecies-specific sera. Host-independent reactivity of such epitopes was confirmed by testing of six C. pecorum-specific peptides from five proteins with C. pecorum-reactive sera from cattle, the natural host of C. pecorum. The probability of cross-reactivity of peptide antigens from closely related chlamydial species or strains correlated with percent sequence identity and declined to zero at <50% sequence identity. Thus, phylograms of B cell epitope regions predict the specificity of peptide antigens for rational use in the genus-, species-, or serovar-specific molecular serology of Chlamydia spp. We anticipate that these peptide antigens will improve chlamydial serology by providing easily accessible assays to nonspecialist laboratories. Our approach also lends itself to the identification of relevant epitopes of other microbial pathogens.
Collapse
|
28
|
Trier NH. Characterization of Peptide Antibodies by Epitope Mapping Using Resin-Bound and Soluble Peptides. Methods Mol Biol 2015; 1348:229-39. [PMID: 26424276 DOI: 10.1007/978-1-4939-2999-3_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Characterization of peptide antibodies through identification of their target epitopes is of utmost importance. Understanding antibody specificity at the amino acid level provides the key to understand the specific interaction between antibodies and their epitopes and their use as research and diagnostic tools as well as therapeutic agents. This chapter describes a straightforward strategy for mapping of continuous peptide antibody epitopes using resin-bound and soluble peptides. The approach combines three different types of peptide sets for full characterization of peptide antibodies: (1) overlapping peptides, used to locate antigenic regions; (2) truncated peptides, used to identify the minimal peptide length required for antibody binding; and (3) substituted peptides, used to identify the key residues important for antibody binding and to determine the specific contribution of key residues. For initial screening resin-bound peptides are used for epitope estimation, while soluble peptides subsequently are used for fine mapping. The combination of resin-bound peptides and soluble peptides for epitope mapping provides a time-sparing and straightforward approach for characterization of peptide antibodies.
Collapse
Affiliation(s)
- Nicole Hartwig Trier
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark.
| |
Collapse
|
29
|
Agca S, Houen G, Trier NH. Characterization of continuous B-cell epitopes in the N-terminus of glutamate decarboxylase67 using monoclonal antibodies. J Pept Sci 2014; 20:928-34. [DOI: 10.1002/psc.2703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Selin Agca
- Department of Clinical Biochemistry, Immunology and Genetics; Statens Serum Institut; Artillerivej 5 2300 Copenhagen S Denmark
- Department of Molecular Biology and Genetics; Aarhus University; Forskerparken - Gustav Wieds Vej 10 8000 Aarhus C Denmark
| | - Gunnar Houen
- Department of Clinical Biochemistry, Immunology and Genetics; Statens Serum Institut; Artillerivej 5 2300 Copenhagen S Denmark
| | - Nicole Hartwig Trier
- Department of Clinical Biochemistry, Immunology and Genetics; Statens Serum Institut; Artillerivej 5 2300 Copenhagen S Denmark
| |
Collapse
|
30
|
Heyduk E, Heyduk T. Ribosome display enhanced by next generation sequencing: a tool to identify antibody-specific peptide ligands. Anal Biochem 2014; 464:73-82. [PMID: 25058925 DOI: 10.1016/j.ab.2014.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/28/2014] [Accepted: 07/14/2014] [Indexed: 11/18/2022]
Abstract
Detection of antibodies in serum has many important applications. Our goal was to develop a facile general experimental approach for identifying antibody-specific peptide ligands that could be used as the reagents for antibody detection. Our emphasis was on an approach that would allow identification of peptide ligands for antibodies in serum without the need to isolate the target antibody or to know the identity of its antigen. We combined ribosome display (RD) with the analysis of peptide libraries by next generation sequencing (NGS) of their coding RNA to facilitate identification of antibody-specific peptide ligands from random sequence peptide library. We first demonstrated, using purified antibodies, that with our approach-specific peptide ligands for antibodies with simple linear epitopes, as well as peptide mimotopes for antibodies recognizing complex epitopes, were readily identified. Inclusion of NGS analysis reduced the number of RD selection rounds that were required to identify specific ligands and facilitated discrimination between specific and spurious nonspecific sequences. We then used a model of human serum spiked with a known target antibody to develop NGS-based analysis that allowed identification of specific ligands for a target antibody in the context of an overwhelming amount of unrelated immunoglobins present in serum.
Collapse
Affiliation(s)
- Ewa Heyduk
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, St. Louis, MO 63104, USA
| | - Tomasz Heyduk
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, St. Louis, MO 63104, USA.
| |
Collapse
|
31
|
Zhao C, Trudeau B, Xie H, Prostko J, Fishpaugh J, Ramsay C. Epitope mapping and targeted quantitation of the cardiac biomarker troponin by SID-MRM mass spectrometry. Proteomics 2014; 14:1311-21. [PMID: 24596168 DOI: 10.1002/pmic.201300150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 02/05/2014] [Accepted: 02/27/2014] [Indexed: 11/09/2022]
Abstract
The absolute quantitation of the targeted protein using MS provides a promising method to evaluate/verify biomarkers used in clinical diagnostics. In this study, a cardiac biomarker, troponin I (TnI), was used as a model protein for method development. The epitope peptide of TnI was characterized by epitope excision followed with LC/MS/MS method and acted as the surrogate peptide for the targeted protein quantitation. The MRM-based MS assay using a stable internal standard that improved the selectivity, specificity, and sensitivity of the protein quantitation. Also, plasma albumin depletion and affinity enrichment of TnI by anti-TnI mAb-coated microparticles reduced the sample complexity, enhanced the dynamic range, and further improved the detecting sensitivity of the targeted protein in the biological matrix. Therefore, quantitation of TnI, a low abundant protein in human plasma, has demonstrated the applicability of the targeted protein quantitation strategy through its epitope peptide determined by epitope mapping method.
Collapse
Affiliation(s)
- Cheng Zhao
- Research Analytical Chemistry, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, IL, USA
| | | | | | | | | | | |
Collapse
|
32
|
García-Mayoral MF, Treviño MA, Pérez-Piñar T, Caballero ML, Knaute T, Umpierrez A, Bruix M, Rodríguez-Pérez R. Relationships between IgE/IgG4 epitopes, structure and function in Anisakis simplex Ani s 5, a member of the SXP/RAL-2 protein family. PLoS Negl Trop Dis 2014; 8:e2735. [PMID: 24603892 PMCID: PMC3945735 DOI: 10.1371/journal.pntd.0002735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/27/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Anisakiasis is a re-emerging global disease caused by consumption of raw or lightly cooked fish contaminated with L3 Anisakis larvae. This zoonotic disease is characterized by severe gastrointestinal and/or allergic symptoms which may misdiagnosed as appendicitis, gastric ulcer or other food allergies. The Anisakis allergen Ani s 5 is a protein belonging to the SXP/RAL-2 family; it is detected exclusively in nematodes. Previous studies showed that SXP/RAL-2 proteins are active antigens; however, their structure and function remain unknown. The aim of this study was to elucidate the three-dimensional structure of Ani s 5 and its main IgE and IgG4 binding regions. METHODOLOGY/PRINCIPAL FINDINGS The tertiary structure of recombinant Ani s 5 in solution was solved by nuclear magnetic resonance. Mg2+, but not Ca2+, binding was determined by band shift using SDS-PAGE. IgE and IgG4 epitopes were elucidated by microarray immunoassay and SPOTs membranes using sera from nine Anisakis allergic patients. The tertiary structure of Ani s 5 is composed of six alpha helices (H), with a Calmodulin like fold. H3 is a long, central helix that organizes the structure, with H1 and H2 packing at its N-terminus and H4 and H5 packing at its C-terminus. The orientation of H6 is undefined. Regarding epitopes recognized by IgE and IgG4 immunoglobulins, the same eleven peptides derived from Ani s 5 were bound by both IgE and IgG4. Peptides 14 (L40-K59), 26 (A76-A95) and 35 (I103-D122) were recognized by three out of nine sera. CONCLUSIONS/SIGNIFICANCE This is the first reported 3D structure of an Anisakis allergen. Magnesium ion binding and structural resemblance to Calmodulin, suggest some putative functions for SXP/RAL-2 proteins. Furthermore, the IgE/IgG4 binding regions of Ani s 5 were identified as segments localized on its surface. These data will contribute towards a better understanding of the interactions that occur between immunoglobulins and allergens and, in turn, facilitate the design of novel diagnostic tests and immunotherapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana Umpierrez
- Carlos III Hospital, Allergy Department, Madrid, Spain
| | - Marta Bruix
- Institute of Physical Chemistry “Rocasolano”. CSIC. Madrid, Spain
| | | |
Collapse
|
33
|
Bottino CG, Gomes LP, Pereira JB, Coura JR, Provance DW, De-Simone SG. Chagas disease-specific antigens: characterization of epitopes in CRA/FRA by synthetic peptide mapping and evaluation by ELISA-peptide assay. BMC Infect Dis 2013; 13:568. [PMID: 24299278 PMCID: PMC3890492 DOI: 10.1186/1471-2334-13-568] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 11/08/2013] [Indexed: 11/23/2022] Open
Abstract
Background The identification of epitopes in proteins recognized by medically relevant antibodies is useful for the development of peptide-based diagnostics and vaccines. In this study, epitopes in the cytoplasmic repetitive antigen (CRA) and flagellar repetitive antigen (FRA) proteins from Trypanosoma cruzi were identified using synthetic peptide techniques and pooled sera from Chagasic patients. The epitopes were further assayed with an ELISA assay based on synthetic peptides. Methods Twenty-two overlapping synthetic peptides representing the coding sequence of the T. cruzi CRA and FRA proteins were assessed by a Spot-synthesis array analysis using sera donated by patients with Chagas disease. Shorter peptides were selected that represented the determined epitopes and synthesized by solid phase synthesis to evaluate the patterns of cross-reactivities and discrimination through an ELISA-diagnostic assay. Results The peptide Spot-synthesis array successfully identified two IgG antigenic determinants in the CRA protein and four in FRA. Bioinformatics suggested that the CRA antigens were unique to T. cruzi while the FRA antigen showed similarity with sequences present within various proteins from Leishmania sp. Subsequently, shorter peptides representing the CRA-1, CRA-2 and FRA-1 epitopes were synthesized by solid phase synthesis and assayed by an ELISA-diagnostic assay. The CRA antigens gave a high discrimination between Chagasic, Leishmaniasis and T. cruzi-uninfected serum. A sensitivity and specificity of 100% was calculated for CRA. While the FRA antigen showed a slightly lower sensitivity (91.6%), its specificity was only 60%. Conclusions The epitopes recognized by human anti-T. cruzi antibodies have been precisely located in two biomarkers of T. cruzi, CRA and FRA. The results from screening a panel of patient sera through an ELISA assay based on peptides representing these epitopes strongly suggest that the sequences from CRA would be useful for the development of diagnostic reagents that could improve upon the sensitivity and specificity of currently available diagnostic tests. Overall, the results provide further evidence of the usefulness of identifying specific linear B-cell epitopes for improving diagnostic tools.
Collapse
Affiliation(s)
| | | | | | | | | | - Salvatore G De-Simone
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS)/Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças Negligenciadas (INCT-IDN), Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
34
|
Wu GW, Tang M, Wang GP, Wang CX, Liu Y, Yang F, Hong N. The epitope structure of Citrus tristeza virus coat protein mapped by recombinant proteins and monoclonal antibodies. Virology 2013; 448:238-46. [PMID: 24314654 DOI: 10.1016/j.virol.2013.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/03/2013] [Accepted: 10/14/2013] [Indexed: 11/24/2022]
Abstract
It has been known that there exists serological differentiation among Citrus tristeza virus (CTV) isolates. The present study reports three linear epitopes (aa 48-63, 97-104, and 114-125) identified by using bacterially expressed truncated coat proteins and ten monoclonal antibodies against the native virions of CTV-S4. Site-directed mutagenesis analysis demonstrated that the mutation D98G within the newly identified epitope (97)DDDSTGIT(104) abolished its reaction to MAbs 1, 4, and 10, and the presence of G98 in HB1-CP also resulted in its failure to recognize the three MAbs. Our results suggest that the conformational differences in the epitope I (48)LGTQQNAALNRDLFLT(63) between the CPs of isolates S4 and HB1 might contribute to the different reactions of two isolates to MAbs 5 and 6. This study provides new information for the antigenic structures of CTV, and will extend the understanding of the processes required for antibody binding and aid the development of epitope-based diagnostic tools.
Collapse
Affiliation(s)
- Guan-Wei Wu
- National Key Laboratory of Agromicrobiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
35
|
Kang M, Kim SY, An SSA, Ju YR. Characterizing affinity epitopes between prion protein and β-amyloid using an epitope mapping immunoassay. Exp Mol Med 2013; 45:e34. [PMID: 23907583 PMCID: PMC3789258 DOI: 10.1038/emm.2013.63] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/12/2013] [Accepted: 05/02/2013] [Indexed: 12/11/2022] Open
Abstract
Cellular prion protein, a membrane protein, is expressed in all mammals. Prion protein is also found in human blood as an anchorless protein, and this protein form is one of the many potential sources of misfolded prion protein replication during transmission. Many studies have suggested that β-amyloid1-42 oligomer causes neurotoxicity associated with Alzheimer's disease, which is mediated by the prion protein that acts as a receptor and regulates the hippocampal potentiation. The prevention of the binding of these proteins has been proposed as a possible preventative treatment for Alzheimer's disease; therefore, a greater understanding of the binding hot-spots between the two molecules is necessary. In this study, the epitope mapping immunoassay was employed to characterize binding epitopes within the prion protein and complementary epitopes in β-amyloid. Residues 23-39 and 93-119 in the prion protein were involved in binding to β-amyloid1-40 and 1-42, and monomers of this protein interacted with prion protein residues 93-113 and 123-166. Furthermore, β-amyloid antibodies against the C-terminus detected bound β-amyloid1-42 at residues 23-40, 104-122 and 159-175. β-Amyloid epitopes necessary for the interaction with prion protein were not determined. In conclusion, charged clusters and hydrophobic regions of the prion protein were involved in binding to β-amyloid1-40 and 1-42. The 3D structure appears to be necessary for β-amyloid to interact with prion protein. In the future, these binding sites may be utilized for 3D structure modeling, as well as for the pharmaceutical intervention of Alzheimer's disease.
Collapse
Affiliation(s)
- Mino Kang
- Department of Bionanotechnology, Gachon University, Gyeonggi, Korea
| | - Su Yeon Kim
- Division of Zoonoses, Center for Immunology and Pathology, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong, Republic of Korea
| | - Seong Soo A An
- Department of Bionanotechnology, Gachon University, Gyeonggi, Korea
| | - Young Ran Ju
- Division of Zoonoses, Center for Immunology and Pathology, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong, Republic of Korea
| |
Collapse
|
36
|
Habib I, Smolarek D, Hattab C, Grodecka M, Hassanzadeh-Ghassabeh G, Muyldermans S, Sagan S, Gutiérrez C, Laperche S, Le-Van-Kim C, Aronovicz YC, Wasniowska K, Gangnard S, Bertrand O. VHH (nanobody) directed against human glycophorin A: A tool for autologous red cell agglutination assays. Anal Biochem 2013; 438:82-9. [DOI: 10.1016/j.ab.2013.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/12/2013] [Accepted: 03/15/2013] [Indexed: 01/01/2023]
|
37
|
Babos F, Szarka E, Nagy G, Majer Z, Sármay G, Magyar A, Hudecz F. Role of N- or C-terminal biotinylation in autoantibody recognition of citrullin containing filaggrin epitope peptides in rheumatoid arthritis. Bioconjug Chem 2013; 24:817-27. [PMID: 23617702 DOI: 10.1021/bc400073z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report on the synthesis, conformational analysis, and autoantibody binding properties of new sets of rheumatoid arthritis (RA) specific biotin-peptide conjugates derived from filaggrin epitope peptides. The biotin with or without a linker was attached to the Cit or Arg containing epitope core ((311)TXGRS(315)) or epitope region ((306)SHQESTXGXSXGRSGRSGS(324)) peptide (where X = Cit), through an amide bond at the N- or C-terminal of the epitopes. Antibody binding was detected by indirect enzyme-linked immunosorbent assay (ELISA) using sera from RA, Systemic lupus erythematosus (SLE) patients, as well as healthy individuals, and the secondary structure of conjugates was investigated by electronic circular dichroism (ECD). We found that autoantibodies from RA patients recognize specifically both filaggrin epitope region ((306)SHQESTXGXSXGRSGRSGS(324)) and short epitope core ((311)TXGRS(315)) peptides. Our data also indicate that the positioning of the biotin label within a peptide sequence can markedly influence the antibody binding, but the length of the linker incorporated has essentially no effect on the recognition. ECD experiments demonstrate that the Arg/Cit change does not influence the solution conformation of the peptide conjugates. However, the presence and position of the biotin moiety has a pronounced effect on the conformation of the 5-mer epitope core peptides, while it does not alter the secondary structure of the 19-mer epitope region peptides.
Collapse
Affiliation(s)
- Fruzsina Babos
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
38
|
Werno AM, Lewis JG, George PM, Murdoch DR. Immune reactivity of four monoclonal and two polyclonal antibodies raised against recombinant pneumococcal surface adhesin A. Hybridoma (Larchmt) 2012; 31:168-75. [PMID: 22741580 DOI: 10.1089/hyb.2011.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study four monoclonal antibodies (MAbs) and two polyclonal antisera were raised against pneumococcal surface adhesion A (psaA), a 37 kDa cell wall protein, and were characterized. The MAbs were purified, isotyped, and epitope mapped with peptide microarrays. All monoclonals and polyclonals underwent testing in immunodot blot, Western blot, and ELISA assays to assess their specificity. All monoclonal antibodies belonged to isotype IgG1 κ. Peptide microarray mapping identified two likely epitopes, which could not be confirmed using synthetic peptides of the identified amino acid sequence. All four MAbs detected the 53 pneumococcal serotypes tested in the immunodot blot and only reacted with Streptococcus pseudopneumoniae in cross-reactivity studies by Western blot. The polyclonal antisera also recognized all tested pneumococcal serotypes and cross-reacted with S. pseudopneumoniae and Streptococcus oralis by Western blot. The MAbs cross-reacted with S. pseudopneumoniae in the ELISA. Both polyclonal antisera cross-reacted with all isolates tested in the ELISA. These antisera should be suitable to establish a diagnostic ELISA platform for pneumococcal antigen detection with polyclonal antisera as the capture antibody. The specificity of the four MAbs appears to be high as they only recognized S. pneumoniae and S. pseudopneumoniae. However, further testing of closely related streptococcal species is necessary to confirm this finding.
Collapse
Affiliation(s)
- Anja M Werno
- Microbiology Unit, Canterbury Health Laboratories, Christchurch, New Zealand
| | | | | | | |
Collapse
|
39
|
Jaron-Mendelson M, Yossef R, Appel MY, Zilka A, Hadad U, Afergan F, Rosental B, Engel S, Nedvetzki S, Braiman A, Porgador A. Dimerization of NKp46 Receptor Is Essential for NKp46-Mediated Lysis: Characterization of the Dimerization Site by Epitope Mapping. THE JOURNAL OF IMMUNOLOGY 2012; 188:6165-74. [DOI: 10.4049/jimmunol.1102496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Mapping of minimal motifs of B-cell epitopes on human zona pellucida glycoprotein-3. Clin Dev Immunol 2011; 2012:831010. [PMID: 22162720 PMCID: PMC3227431 DOI: 10.1155/2012/831010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/02/2011] [Indexed: 11/17/2022]
Abstract
The human zona pellucida glycoprotein-3 (hZP3) by virtue of its critical role during fertilization has been proposed as a promising candidate antigen to develop a contraceptive vaccine. In this direction, it is imperative to map minimal motifs of the B cell epitopes (BCEs) so as to avoid ZP-specific oophoritogenic T cell epitopes (TCEs) in the ZP3-based immunogens. In this study, based on known results of mapping marmoset and bonnet monkey ZP3 (mstZP3 and bmZP3), two predictable epitopes23–30 and 301–320 on hZP3 were first confirmed and five minimal motifs within four epitopes on hZP3 were defined using serum to recombinant hZP3a22–176 or hZP3b177–348 as well as a biosynthetic peptide strategy. These defined minimal motifs were QPLWLL23–28 for hZP323–30, MQVTDD103–108 for hZP393–110, EENW178–181 for hZP3172–190, as well as SNSWF306–310 and EGP313–315 for hZP3301–320, respectively. Furthermore, the antigenicity of two peptides for hZP3172–187 and hZP3301–315 and specificity of the antibody response to these peptides were also evaluated, which produced high-titer antibodies in immunized animals that were capable of reacting to ZP on human oocytes, r-hZP3b177–348 protein, as well as r-hZP3172–190, r-hZP3303–310, and r-hZP3313–320 epitope peptides fused with truncated GST188 protein.
Collapse
|
41
|
Hjelm B, Forsström B, Igel U, Johannesson H, Stadler C, Lundberg E, Ponten F, Sjöberg A, Rockberg J, Schwenk JM, Nilsson P, Johansson C, Uhlén M. Generation of monospecific antibodies based on affinity capture of polyclonal antibodies. Protein Sci 2011; 20:1824-35. [PMID: 21898641 DOI: 10.1002/pro.716] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/20/2011] [Accepted: 08/05/2011] [Indexed: 02/02/2023]
Abstract
A method is described to generate and validate antibodies based on mapping the linear epitopes of a polyclonal antibody followed by sequential epitope-specific capture using synthetic peptides. Polyclonal antibodies directed towards four proteins RBM3, SATB2, ANLN, and CNDP1, potentially involved in human cancers, were selected and antibodies to several non-overlapping epitopes were generated and subsequently validated by Western blot, immunohistochemistry, and immunofluorescence. For all four proteins, a dramatic difference in functionality could be observed for these monospecific antibodies directed to the different epitopes. In each case, at least one antibody was obtained with full functionality across all applications, while other epitope-specific fractions showed no or little functionality. These results present a path forward to use the mapped binding sites of polyclonal antibodies to generate epitope-specific antibodies, providing an attractive approach for large-scale efforts to characterize the human proteome by antibodies.
Collapse
Affiliation(s)
- Barbara Hjelm
- Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, 10691 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang Q, Willison LN, Tripathi P, Sathe SK, Roux KH, Emmett MR, Blakney GT, Zhang HM, Marshall AG. Epitope mapping of a 95 kDa antigen in complex with antibody by solution-phase amide backbone hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 2011; 83:7129-36. [PMID: 21861454 PMCID: PMC3173601 DOI: 10.1021/ac201501z] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epitopes of a homohexameric food allergen protein, cashew Ana o 2, identified by two monoclonal antibodies, 2B5 and 1F5, were mapped by solution-phase amide backbone H/D exchange (HDX) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and the results were compared to previous mapping by immunological and mutational analyses. Antibody 2B5 defines a conformational epitope, and 1F5 defines a linear epitope. Intact murine IgG antibodies were incubated with recombinant Ana o 2 (rAna o 2) to form antigen-monoclonal antibody (Ag-mAb) complexes. mAb-complexed and uncomplexed (free) rAna o 2 were then subjected to HDX. HDX instrumentation and automation were optimized to achieve high sequence coverage by protease XIII digestion. The regions protected from H/D exchange upon antibody binding overlap and thus confirm the previously identified epitope-bearing segments: the first extension of HDX monitored by mass spectrometry to a full-length antigen-antibody complex in solution.
Collapse
Affiliation(s)
- Qian Zhang
- Department Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
| | - LeAnna N. Willison
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Pallavi Tripathi
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Shridhar K. Sathe
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306
| | - Kenneth H. Roux
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Mark R. Emmett
- Department Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State Universitiy, 1800 E. Paul Dirac Drive, Tallahassee, FL 323010-4005
| | - Greg T. Blakney
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State Universitiy, 1800 E. Paul Dirac Drive, Tallahassee, FL 323010-4005
| | - Hui-Min Zhang
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State Universitiy, 1800 E. Paul Dirac Drive, Tallahassee, FL 323010-4005
| | - Alan G. Marshall
- Department Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State Universitiy, 1800 E. Paul Dirac Drive, Tallahassee, FL 323010-4005
| |
Collapse
|
43
|
Abstract
Background FMD is one of the major causes of economic loss of cloven-hoofed animals in the world today. The assessment of dominant genotype/lineage and prevalent trends and confirmation the presence of infection or vaccination not only provides scientific basis and first-hand information for appropriate control measure but also for disease eradication and regaining FMD free status following an outbreak. Although different biological and serological approaches are still applied to study this disease, ELISA test based on the distinct format, antigen type and specific antibody reinforce its predominance in different research areas of FMD, and this may replace the traditional methods in the near future. This review gives comprehensive insight on ELISA currently available for typing, antigenic analysis, vaccination status differentiation and surveillance vaccine purity and content at all stages of manufacture in FMDV. Besides, some viewpoint about the recent advances and trends of ELISA reagent for FMD are described here. Methods More than 100 studies regarding ELISA method available for FMD diagnosis, antigenic analysis and monitor were thoroughly reviewed. We investigated previous sagacious results of these tests on their sensitivity, specificity. Results We found that in all ELISA formats for FMD, antibody-trapping and competitive ELISAs have high specificity and RT-PCR (oligoprobing) ELISA has extra sensitivity. A panel of monoclonal antibodies to different sites or monoclonal antibody in combination of antiserum is the most suitable combination of antibodies in ELISA for FMD. Even though from its beginning, 3ABC is proven to be best performance in many studies, no single NSP can differentiate infected from vaccinated animals with complete confidence. Meanwhile, recombinant antigens and peptide derived from FMDV NPs, and NSPs have been developed for use as an alternative to the inactivated virus antigen for security. Conclusions There is a need of target protein, which accurately determines the susceptible animal status based on the simple, fast and reliable routine laboratory test. A further alternative based on virus-like particle (VLP, also called empty capsids) in combination of high throughput antibody technique (Phage antibody library/antibody microarray) may be the powerful ELISA diagnostic reagents in future.
Collapse
|
44
|
Iobagiu C, Magyar A, Nogueira L, Cornillet M, Sebbag M, Arnaud J, Hudecz F, Serre G. The antigen specificity of the rheumatoid arthritis-associated ACPA directed to citrullinated fibrin is very closely restricted. J Autoimmun 2011; 37:263-72. [PMID: 21872430 DOI: 10.1016/j.jaut.2011.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/21/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
Abstract
The major targets of the disease-specific autoantibodies to citrullinated proteins (ACPA) in synovium of rheumatoid arthritis (RA) patients are borne by the citrullinated α- and β-chains of fibrin. We demonstrated that ACPA target a limited set of citrullinated fibrin peptides and particularly four multicitrullinated peptides which present the major epitopes. In this study, we established the clear immunodominance of the peptides α36-50Cit(38,42) and β60-74Cit(60,72,74) which were recognised by 51/81 (63%) and 61/81 (75%) of ACPA-positive patients, respectively, more than 90% recognising one, the other or both peptides. We also identified the citrullyl residues αCit(42), βCit(72) and βCit(74) as essential for antigenicity, and at a lesser degree αCit(38). Then, we assayed on overlapping 7-mer peptides encompassing the sequences of the two peptides, 3 series of sera recognising either α36-50Cit(38,42) or β60-74Cit(60,72,74) or both peptides. In each series, the reactivity profiles of the sera, largely superimposable, allowed identification of the two 4/5-mer overlapping epitopes (α: VECit(42)HQ and α': Cit(38)VVE), and the single 5-mer epitope (β: GYCit(72)ACit(74)), all located to a flexible globular domain of fibrin on a topological 3D model. In conclusion, we demonstrated that only 3 immunodominant epitopes are targeted by ACPA on citrullinated fibrin stressing their actual oligoclonality. However, the reactivity to the 3 epitopes distinguishes three subgroups of patients. The closely restricted antigen specificity suggests that the autoimmune reaction to citrullinated fibrin is antigen-driven. The accessibility of the epitopes reinforces the hypothesis of a pathogenic role for ACPA via immune complexe formation in the synovial tissue.
Collapse
Affiliation(s)
- Cristina Iobagiu
- Laboratory of "Epidermis Differentiation and Rheumatoid Autoimmunity", UMR 5165 CNRS-Toulouse III University, Purpan Hospital, Place du Dr Baylac, TSA 40031, 31059 Toulouse cedex 9, France.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Crystal structure of human natural cytotoxicity receptor NKp30 and identification of its ligand binding site. Proc Natl Acad Sci U S A 2011; 108:6223-8. [PMID: 21444796 DOI: 10.1073/pnas.1100622108] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural killer (NK) cells are a group of innate immune cells that carry out continuous surveillance for the presence of virally infected or cancerous cells. The natural cytotoxicity receptor (NCR) NKp30 is critical for the elimination of a large group of tumor cell types. Although several ligands have been proposed for NKp30, the lack of a conserved structural feature among these ligands and their uncertain physiological relevance has contributed to confusion in the field and hampered a full understanding of the receptor. To gain insights into NKp30 ligand recognition, we have determined the crystal structure of the extracellular domain of human NKp30. The structure displays an I-type Ig-like fold structurally distinct from the other natural cytotoxicity receptors NKp44 and NKp46. Using cytolytic killing assays against a range of tumor cell lines and subsequent peptide epitope mapping of a NKp30 blocking antibody, we have identified a critical ligand binding region on NKp30 involving its F strand. Using different solution binding studies, we show that the N-terminal domain of B7-H6 is sufficient for NKp30 recognition. Mutations on NKp30 further confirm that residues in the vicinity of the F strand, including part of the C strand and the CD loop, affect binding to B7-H6. The structural comparison of NKp30 with CD28 family receptor and ligand complexes also supports the identified ligand binding site. This study provides insights into NKp30 ligand recognition and a framework for a potential family of unidentified ligands.
Collapse
|
46
|
Agostino M, Sandrin MS, Thompson PE, Farrugia W, Ramsland PA, Yuriev E. Carbohydrate-mimetic peptides: structural aspects of mimicry and therapeutic implications. Expert Opin Biol Ther 2011; 11:211-24. [DOI: 10.1517/14712598.2011.542140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
47
|
Däumer MP, Schneider B, Giesen DM, Aziz S, Kaiser R, Kupfer B, Schneweis KE, Schneider-Mergener J, Reineke U, Matz B, Eis-Hübinger AM. Characterisation of the epitope for a herpes simplex virus glycoprotein B-specific monoclonal antibody with high protective capacity. Med Microbiol Immunol 2010; 200:85-97. [PMID: 20931340 DOI: 10.1007/s00430-010-0174-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Indexed: 02/07/2023]
Abstract
Monoclonal antibody (MAb) 2c, specific for glycoprotein B of herpes simplex virus (HSV), had been shown to mediate clearance of infection from the mucous membranes of mice, thereby completely inhibiting mucocutaneous inflammation and lethality, even in mice depleted of both CD4(+) and CD8(+) cells. Additionally, ganglionic infection was highly restricted. In vitro, MAb 2c exhibits a potent complement-independent neutralising activity against HSV type 1 and 2, completely inhibits the viral cell-to-cell spread as well as the syncytium formation induced by syncytial HSV strains (Eis-Hübinger et al. in Intervirology 32:351-360, 1991; Eis-Hübinger et al. in J Gen Virol 74:379-385, 1993). Here, we describe the mapping of the epitope for MAb 2c. The antibody was found to recognise a discontinuous epitope comprised of the HSV type 1 glycoprotein B residues 299 to 305 and one or more additional discontinuous regions that can be mimicked by the sequence FEDF. Identification of the epitope was confirmed by loss of antibody binding to mutated glycoprotein B with replacement of the epitopic key residues, expressed in COS-1 cells. Similarly, MAb 2c was not able to neutralise HSV mutants with altered key residues, and MAb 2c was ineffective in mice inoculated with such mutants. Interestingly, identification and fine-mapping of the discontinuous epitope was not achieved by binding studies with truncated glycoprotein B variants expressed in COS cells but by peptide scanning with synthetic overlapping peptides and peptide key motif analysis. Reactivity of MAb 2c was immensely increased towards a peptide composed of the glycoprotein B residues 299 to 305, a glycine linker, and a C-terminal FEDF motif. If it could be demonstrated that antibodies of the specificity and bioactivity of MAb 2c can be induced by the epitope or a peptide mimicking the epitope, strategies for active immunisation might be conceivable.
Collapse
Affiliation(s)
- Martin P Däumer
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Smolarek D, Hattab C, Hassanzadeh-Ghassabeh G, Cochet S, Gutiérrez C, de Brevern AG, Udomsangpetch R, Picot J, Grodecka M, Wasniowska K, Muyldermans S, Colin Y, Le Van Kim C, Czerwinski M, Bertrand O. A recombinant dromedary antibody fragment (VHH or nanobody) directed against human Duffy antigen receptor for chemokines. Cell Mol Life Sci 2010; 67:3371-87. [PMID: 20458517 PMCID: PMC2966875 DOI: 10.1007/s00018-010-0387-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 04/21/2010] [Accepted: 04/23/2010] [Indexed: 12/11/2022]
Abstract
Fy blood group antigens are carried by the Duffy antigen receptor for chemokines (DARC), a red cells receptor for Plasmodium vivax broadly implicated in human health and diseases. Recombinant VHHs, or nanobodies, the smallest intact antigen binding fragment derivative from the heavy chain-only antibodies present in camelids, were prepared from a dromedary immunized against DARC N-terminal extracellular domain and selected for DARC binding. A described VHH, CA52, does recognize native DARC on cells. It inhibits P. vivax invasion of erythrocytes and displaces interleukin-8 bound to DARC. The targeted epitope overlaps the well-defined DARC Fy6 epitope. K (D) of CA52-DARC equilibrium is sub-nanomolar, hence ideal to develop diagnostic or therapeutic compounds. Immunocapture by immobilized CA52 yielded highly purified DARC from engineered K562 cells. This first report on a VHH with specificity for a red blood cell protein exemplifies VHHs' potentialities to target, to purify, and to modulate the function of cellular markers.
Collapse
Affiliation(s)
- Dorota Smolarek
- INSERM, UMR_S 665, 75015 Paris, France
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Institut National de la Transfusion Sanguine, 75015 Paris, France
- Université Paris7-Denis Diderot, 75013 Paris, France
| | - Claude Hattab
- INSERM, UMR_S 665, 75015 Paris, France
- Institut National de la Transfusion Sanguine, 75015 Paris, France
- Université Paris7-Denis Diderot, 75013 Paris, France
| | - Gholamreza Hassanzadeh-Ghassabeh
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium
| | - Sylvie Cochet
- INSERM, UMR_S 665, 75015 Paris, France
- Institut National de la Transfusion Sanguine, 75015 Paris, France
- Université Paris7-Denis Diderot, 75013 Paris, France
| | - Carlos Gutiérrez
- Department of Animal Medicine and Surgery, Veterinary Faculty, University of Las Palmas, Las Palmas, Spain
| | - Alexandre G. de Brevern
- INSERM, UMR_S 665, 75015 Paris, France
- Institut National de la Transfusion Sanguine, 75015 Paris, France
- Université Paris7-Denis Diderot, 75013 Paris, France
| | | | - Julien Picot
- INSERM, UMR_S 665, 75015 Paris, France
- Institut National de la Transfusion Sanguine, 75015 Paris, France
- Université Paris7-Denis Diderot, 75013 Paris, France
| | - Magdalena Grodecka
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Kazimiera Wasniowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium
| | - Yves Colin
- INSERM, UMR_S 665, 75015 Paris, France
- Institut National de la Transfusion Sanguine, 75015 Paris, France
- Université Paris7-Denis Diderot, 75013 Paris, France
| | - Caroline Le Van Kim
- INSERM, UMR_S 665, 75015 Paris, France
- Institut National de la Transfusion Sanguine, 75015 Paris, France
- Université Paris7-Denis Diderot, 75013 Paris, France
| | - Marcin Czerwinski
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Olivier Bertrand
- INSERM, UMR_S 665, 75015 Paris, France
- Institut National de la Transfusion Sanguine, 75015 Paris, France
- Université Paris7-Denis Diderot, 75013 Paris, France
| |
Collapse
|
49
|
Wu Y, Zhang Q, Sales D, Bianco AE, Craig A. Vaccination with peptide mimotopes produces antibodies recognizing bacterial capsular polysaccharides. Vaccine 2010; 28:6425-35. [PMID: 20674874 DOI: 10.1016/j.vaccine.2010.07.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 06/07/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
A phage display peptide library was screened using a panel of antibodies to the capsular polysaccharides of Streptococcus agalactiae and Neisseria meningitidis. Mimotopes NPDHPRVPTFMA (2-8), LIPFHKHPHHRG (3-2) and EQEIFTNITDRV (G3) showing the highest binding capacity and strongest ELISA reaction were selected for immunization experiments. These mimotopes were either synthesised as oligodeoxynucleotides for DNA immunization or MAP (multiple antigen peptide) for peptide immunization. Mimotope-DNA vaccination, particularly for G3, induced antibodies recognizing a number of target bacteria. This response was seen after the second boost injection and was significantly enhanced by the 3rd boost injection with a Th1-associated profile, which was dominated by IgG2a, followed by IgG1. Mimotope-MAP immunization also produced strong humoral immune responses to the bacteria. Antibodies from G3 DNA immunization reacted with the surface molecules of S. agalactiae, N. meningitidis and Escherichia coli K5 shown by indirect immunofluorescence staining, indicating a possible localization to the bacterial capsule. Antibodies produced both from DNA/MAP immunization reacted with purified bacterial capsular polysaccharides by ELISA and were of high avidity. We have further characterized peptide G3 by a 'tiling path' study to examine the effect of changing individual residues in the peptide in raising antibodies, which showed that the EIFTN motif in G3 was important in generating antibodies to several capsulated bacteria. We conclude that mimotope immunization with DNA or MAP potentially induces strong antibody responses against encapsulated bacteria. It is suggested that the antibody targets are polysaccharides, and these antibodies may cross react at least among closely related species of bacteria.
Collapse
Affiliation(s)
- Yang Wu
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | | | | | |
Collapse
|
50
|
Laing P, Tighe P, Kwiatkowski E, Milligan J, Price M, Sewell H. Selection of peptide ligands for the antimucin core antibody C595 using phage display technology: definition of candidate epitopes for a cancer vaccine. Mol Pathol 2010; 48:M136-41. [PMID: 16695994 PMCID: PMC407946 DOI: 10.1136/mp.48.3.m136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aims-To further define the specificity of the antimucin core antibody C595 by fitting it with a family of hexapeptide ligands by immunoselection of filamentous bacteriophage from a gene III display library of approximately 6.4 x 10(7) random hexapeptides.Methods-Three rounds of immuno-selection were used to enrich for C595 binding phage. DNA sequencing revealed the hexapeptides expressed. Bacteriophage and corresponding synthetic hexapeptides were used in ELISA assay to determine binding affinities.Results-Twenty nine clones from this selected population were analysed. Seven contained the natural epitope RPAP, encoded by two different DNA sequences; 17/29 contained the motif RLPP. In all, 28/29 clones contained the motif RXXP and one clone (RVRPAP) contained the motif RXXP in two peptidic registers; 24/28 clones (6/8 DNA sequences) contained a hydrophobic residue (V or I) at position 1 relative to the RXXP motif. In addition the proximity of RXXP to glycine (position 5) suggests that this contributes in the natural epitope to antibody/antigen binding, which was not detected by chemical synthetic methods. One clone, KSKAGV, bears no obvious relationship to the natural epitope and therefore qualifies as a weakly binding mimotope.Conclusions-This approach has rapidly defined the specificity of this antibody in unprecedented detail, and provides a more comprehensive molecular basis for exploring the immune recognition of the MUC1 mucin by the C595 antibody. Importantly, the novel but related epitopes seen provide peptide specificities and a strategy which may prove useful in generating cancer vaccine candidates.
Collapse
Affiliation(s)
- P Laing
- Division of Molecular and Clinical Immunology, Clinical Laboratory Science Dept, University Hospital, Queens Medical Centre, Nottingham NG7 2UH
| | | | | | | | | | | |
Collapse
|