1
|
Jena R, Rahimi FA, Mandal T, Das TN, Parambil SRV, Mondal SK, Maji TK. Photocatalytic CO 2 Reduction to Solar Fuels by a Chemically Stable Bimetallic Porphyrin-Based Framework. Inorg Chem 2024. [PMID: 39265145 DOI: 10.1021/acs.inorgchem.4c02841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Porphyrin-based photocatalysts have emerged as promising candidates for facilitating carbon dioxide (CO2) reduction due to their exceptional light-harvesting properties. However, their performance is hindered by complex synthesis procedures, limited structural stability, inadequate CO2 activation capabilities, and a lack of comprehensive structure-property relationships. This study investigates the performance of a porphyrin-based bimetallic framework, [Cu(TPP)Cu2Mo3O11] (TPP = tetrapyridylporphyrin), termed MoCu-1 for photocatalytic CO2 reduction. In addition to its straightforward one-pot synthesis method, the framework shows remarkable chemical stability, particularly notable in alkaline reaction conditions, making it a compelling option for sustainable catalytic applications. By harnessing the superior photoabsorption properties of the porphyrin linker and the abundance of catalytic sites provided by the bimetallic structure, this framework exhibits the potential for enhancing CO2 reduction efficiency. MoCu-1 demonstrates excellent activity in converting CO2 into CO, achieving a maximum yield of 3.21 mmol g-1 with a selectivity of ∼93%. We unravel the intricate interplay of structural features and catalytic activity through systematic characterization techniques and an in situ diffuse reflectance Fourier transform study, which provided insights into the mechanism governing CO2 conversion and was supported by density functional theory calculations. This work contributes to advancing our understanding of photocatalytic processes and offers guidance for designing robust materials for CO2 utilization in renewable energy applications.
Collapse
Affiliation(s)
- Rohan Jena
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Tamagna Mandal
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Tarak Nath Das
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sneha Raj V Parambil
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Soumya Kanti Mondal
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
2
|
Luangphai S, Fongsiang J, Thuptimdang P, Buddhiranon S, Chanawanno K. Colorimetric Cu 2+ Detection of (1 E,2 E)-1,2-Bis((1 H-pyrrol-2-yl)methylene)hydrazine Using a Custom-Built Colorimeter. ACS OMEGA 2022; 7:44448-44457. [PMID: 36506133 PMCID: PMC9730750 DOI: 10.1021/acsomega.2c06751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
The compound (1E,2E)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine (1) was investigated for its chemosensor application. The colorimetric response of 1 with various ions was investigated, and the selective optical change upon mixing with Cu2+ was found. The Cu2+ binding stoichiometry of 1 derived from Job's plot and the in silico study give us the tentative structural detail of the binding mode of 1 and Cu2+ being 1:1. The binding constant between 1 and Cu2+ from the Benesi-Hildebrand plot was 1.49 × 104 M-1. The limit of detection of 1 in Cu2+ detection was 0.64 μM (0.040 ppm), which is much lower than the WHO and US EPA maximum allowable Cu2+ level in drinking water (2 and 1.3 ppm, respectively). The custom-built colorimeter demonstrates a good linear relationship between Cu2+ concentration and electrical resistance (Ω) upon 1-Cu2+ ion binding.
Collapse
Affiliation(s)
- Sasipan Luangphai
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai50200, Thailand
| | - Jaturon Fongsiang
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai50200, Thailand
| | - Pumis Thuptimdang
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai50200, Thailand
- Environmental
Science Research Center (ESRC), Chiang Mai
University, Chiang Mai50200, Thailand
| | - Sasiwimon Buddhiranon
- Department
of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok10900, Thailand
- Department
of Polymer Engineering, University of Akron, Akron, Ohio44325-0301, United States
| | - Kullapa Chanawanno
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai50200, Thailand
- Environmental
Science Research Center (ESRC), Chiang Mai
University, Chiang Mai50200, Thailand
| |
Collapse
|
3
|
Mohamed ME, Abd-El-Nabey BA. Fabrication of a biological metal-organic framework based superhydrophobic textile fabric for efficient oil/water separation. Sci Rep 2022; 12:15483. [PMID: 36109549 PMCID: PMC9477873 DOI: 10.1038/s41598-022-19816-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023] Open
Abstract
In response to the industry's difficulty in properly separating oily wastewater discharge, researchers are investigating enhanced oil/water separation materials. In this work, a cost-effective and environmentally friendly superhydrophobic textile fabric was fabricated for effective oil-water mixture and emulsion separation. A biological metal-organic framework consisting of copper as a core metal and aspartic acid as a linker (Cu-Asp MOF) was used to improve the surface roughness of the pristine textile fabric, and stearic acid was used to lower its surface energy. The thermal gravimetric analysis investigated the prepared Cu-Asp MOF's thermal stability. X-ray spectroscopy and Fourier-transform infrared spectroscopy studied the crystal orientation and chemical composition of the Cu-Asp MOF, Cu-Asp MOF@SA, pristine textile fabric, and superhydrophobic textile fabric, respectively. The surface morphology of the pristine and modified textile fabric was studied by scanning electron microscope. The wettability results showed that the prepared superhydrophobic textile fabric has a water contact angle of 158° ± 1.3 and water sliding angle of 2° ± 0.2°. The prepared superhydrophobic textile fabric showed excellent oil-water mixture and emulsion separation performance, oil absorption capacity, chemical stability, mechanical abrasion resistance, and a high flux rate. These outstanding characteristics of the prepared superhydrophobic textile fabric greatly increase the possibility for practical applications.
Collapse
Affiliation(s)
- M E Mohamed
- Chemistry Department, Faculty of Science, Alexandria University, PO Box 426, Alexandria, 21321, Egypt.
| | - B A Abd-El-Nabey
- Chemistry Department, Faculty of Science, Alexandria University, PO Box 426, Alexandria, 21321, Egypt
| |
Collapse
|
4
|
Jose PA, Sankarganesh M, Raja JD, Sakthivel A, Annaraj J, Jeyaveeramadhavi S, Girija A. Spectrophotometric and fluorometric detection of DNA/BSA interaction, antimicrobial, anticancer, antioxidant and catalytic activities of biologically active methoxy substituted pyrimidine-ligand capped copper nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120454. [PMID: 34666266 DOI: 10.1016/j.saa.2021.120454] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
New Schiff base ligand (DPMN) was synthesized from the condensation of 2-hydroxy-5-nitrobenzaldehyde and 2-amino-4,6-dimethoxypyrimidine which was confirmed by spectroscopic and analytical methods. Solid air stable copper nanoparticles (DPMN-CuNPs) were synthesized from its copper chloride salt and it is stabilized by the prepared Schiff base ligand by phase transfer assisted synthesis which is a modified Brust-Schiffrin technique. The formation of ligand stabilized copper nanoparticles was confirmed by UV-Visible and FT-IR spectroscopic techniques. The size, surface morphology and quality of DPMN-CuNPs were analyzed by SEM and TEM techniques. Antioxidant activities of DPMN and DPMN-CuNPs with DPPH, SOD, peroxide and nitrous oxide were analyzed by electronic absorption spectroscopy. DNA interaction between DPMN and DPMN-CuNPs with CT-DNA was carried out using electronic absorption, fluorescence, viscometric measurements and cyclic voltammetric techniques. Interaction between BSA and the synthesized compounds analyzed by electronic absorption spectroscopy, Antimicrobial studies confirmed that the synthesized DPMN-CuNPs possess significant biological activities than DPMN. Anticancer results suggest that prepared DPMN-CuNPs have significant anticancer activity against different cancer cell lines and least toxic effect against the normal (NHDF) cell line. Other than the positive response in biological evaluation, our DPMN-CuNPs possess good catalytic activity in methyl orange reduction, methylene blue degradation and nitro phenol reduction.
Collapse
Affiliation(s)
- P Adwin Jose
- Department of Chemistry, E.G.S. Pillay Engineering College (Autonomous), Nagapattinum, Tamil Nadu 611 002, India
| | - M Sankarganesh
- Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu 625 002, India; Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - J Dhaveethu Raja
- Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu 625 002, India.
| | - A Sakthivel
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu 626 005, India
| | - J Annaraj
- Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625 021, India
| | - S Jeyaveeramadhavi
- Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu 625 002, India
| | - A Girija
- Department of Chemistry, Velumanokaran Arts and Science College for Women, Ramanathapuram, Tamil Nadu 623 504, India
| |
Collapse
|
5
|
Karpagam S, Mamindla A, Kumar Sali V, Niranjana RS, Periasamy VS, Alshatwi AA, Akbarsha MA, Rajendiran V. Folic acid-conjugated mixed-ligand copper(II) complexes as promising cytotoxic agents for triple-negative breast cancers: A case study using MDA-MB-231 cell. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Castellini E, Bernini F, Sebastianelli L, Bighi B, Ignacio Sainz‐Díaz C, Mucci A, Malferrari D, Ranieri A, Gorni G, Marini C, Franca Brigatti M, Borsari M. The Copper Chemical Garden as a Low Cost and Efficient Material for Breaking Down Air Pollution by Gaseous Ammonia. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elena Castellini
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 I-41125 Modena Italy
| | - Fabrizio Bernini
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 I-41125 Modena Italy
| | - Lorenzo Sebastianelli
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 I-41125 Modena Italy
| | - Beatrice Bighi
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 I-41125 Modena Italy
| | - Claro Ignacio Sainz‐Díaz
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR) Av. de las Palmeras, 4 18100 Armilla, Granada Spain
| | - Adele Mucci
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 I-41125 Modena Italy
| | - Daniele Malferrari
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 I-41125 Modena Italy
| | - Antonio Ranieri
- Department of Life Sciences University of Modena and Reggio Emilia Via Campi 103 I-41125 Modena Italy
| | - Giulio Gorni
- ALBA Synchrotron Light Source Crta. BP 1413, Km. 3.3 08290, Cerdanyola Del Vallès Barcelona Spain
| | - Carlo Marini
- ALBA Synchrotron Light Source Crta. BP 1413, Km. 3.3 08290, Cerdanyola Del Vallès Barcelona Spain
| | - Maria Franca Brigatti
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 I-41125 Modena Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 I-41125 Modena Italy
| |
Collapse
|
7
|
Erol B, Erol K, Gökmeşe E. The effect of the chelator characteristics on insulin adsorption in immobilized metal affinity chromatography. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
A spectroscopic study of Cu(II)-complexes of chelating resins containing nitrogen and sulfur atoms in the chelating groups. REACT FUNCT POLYM 2000. [DOI: 10.1016/s1381-5148(98)00077-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|