Papavoine CH, Aelen JM, Konings RN, Hilbers CW, Van de Ven FJ. NMR studies of the major coat protein of bacteriophage M13. Structural information of gVIIIp in dodecylphosphocholine micelles.
EUROPEAN JOURNAL OF BIOCHEMISTRY 1995;
232:490-500. [PMID:
7556198 DOI:
10.1111/j.1432-1033.1995.490zz.x]
[Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The membrane-bound form of the major coat protein (gVIIIp) of bacteriophage M13 has been studied using nuclear magnetic resonance spectroscopy. As membrane mimetics, we used dodecylphosphocholine (DodPCho) detergent micelles to solubilize the protein. We were able to nearly completely assign all resonances of the protein solubilized in DodPCho micelles by using both homonuclear and heteronuclear multidimensional experiments. Based on the patterns of the nuclear Overhauser enhancements and the chemical shifts of the resonances, we deduced the secondary structure of the protein. Additional structural information was obtained from amide proton exchange data and J-coupling constants. The protein consists of two alpha-helices which are connected by a hinge region around residue 21. From spin-label experiments, the location of the protein relative to the DodPCho micelles was determined. One, hydrophobic, helix spans the micelle, and another, amphipathic, helix, is located beneath the surface of the micelle. Comparison of the data of gVIIIp in DodPCho micelles with those of gVIIIp in sodium dodecyl sulfate (SDS) micelles [Van de Ven, F. J. M., van Os, J. W. M., Aelen, J. M. A., Wymenga, S. S., Remerowski, M. L., Konings, R. N. H. & Hilbers, C. W. (1993) Biochemistry 32, 8322-8328; Papavoine, C. H. M., Konings, R. N. H., Hilbers, C. W. & Van de Ven, F. J. M. (1994) Biochemistry 33, 12,990-12,997] reveals that the structures of the protein in the two detergent micelles are very similar. They differ only in the arrangement of the detergent molecules around the protein. For gVIIIp in SDS micelles, we found a micellar structure which is distorted near the C-terminus of the protein; whereas for DodPCho micelles, both distorted and regular elliptical micelles occur. This distortion is probably due to the interaction of the positively charged lysine side chains with the negatively charged head group of the detergent molecules.
Collapse