1
|
Hall AN, Hall BW, Kinney KJ, Olsen GG, Banta AB, Noguera DR, Donohue TJ, Peters JM. Tools for genetic engineering and gene expression control in Novosphingobium aromaticivorans and Rhodobacter sphaeroides. Appl Environ Microbiol 2024; 90:e0034824. [PMID: 39324814 PMCID: PMC11497788 DOI: 10.1128/aem.00348-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024] Open
Abstract
Alphaproteobacteria have a variety of cellular and metabolic features that provide important insights into biological systems and enable biotechnologies. For example, some species are capable of converting plant biomass into valuable biofuels and bioproducts that have the potential to contribute to the sustainable bioeconomy. Among the Alphaproteobacteria, Novosphingobium aromaticivorans, Rhodobacter sphaeroides, and Zymomonas mobilis show promise as organisms that can be engineered to convert extracted plant lignin or sugars into bioproducts and biofuels. Genetic manipulation of these bacteria is needed to introduce engineered pathways and modulate expression of native genes with the goal of enhancing bioproduct output. Although recent work has expanded the genetic toolkit for Z. mobilis, N. aromaticivorans and R. sphaeroides still need facile, reliable approaches to deliver genetic payloads to the genome and to control gene expression. Here, we expand the platform of genetic tools for N. aromaticivorans and R. sphaeroides to address these issues. We demonstrate that Tn7 transposition is an effective approach for introducing engineered DNA into the chromosome of N. aromaticivorans and R. sphaeroides. We screen a synthetic promoter library to identify isopropyl β-D-1-thiogalactopyranoside-inducible promoters with regulated activity in both organisms (up to ~15-fold induction in N. aromaticivorans and ~5-fold induction in R. sphaeroides). Combining Tn7 integration with promoters from our library, we establish CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) interference systems for N. aromaticivorans and R. sphaeroides (up to ~10-fold knockdown in N. aromaticivorans and R. sphaeroides) that can target essential genes and modulate engineered pathways. We anticipate that these systems will greatly facilitate both genetic engineering and gene function discovery efforts in these species and other Alphaproteobacteria.IMPORTANCEIt is important to increase our understanding of the microbial world to improve health, agriculture, the environment, and biotechnology. For example, building a sustainable bioeconomy depends on the efficient conversion of plant material to valuable biofuels and bioproducts by microbes. One limitation in this conversion process is that microbes with otherwise promising properties for conversion are challenging to genetically engineer. Here we report genetic tools for Novosphingobium aromaticivorans and Rhodobacter sphaeroides that add to the burgeoning set of tools available for genome engineering and gene expression in Alphaproteobacteria. Our approaches allow straightforward insertion of engineered pathways into the N. aromaticivorans or R. sphaeroides genome and control of gene expression by inducing genes with synthetic promoters or repressing genes using CRISPR interference. These tools can be used in future work to gain additional insight into these and other Alphaproteobacteria and to aid in optimizing yield of biofuels and bioproducts.
Collapse
Affiliation(s)
- Ashley N. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin W. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kyle J. Kinney
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gabby G. Olsen
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy B. Banta
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Kariyawasam NL, Ploetz EA, Swint-Kruse L, Smith PE. Simulated pressure changes in LacI suggest a link between hydration and functional conformational changes. Biophys Chem 2024; 304:107126. [PMID: 37924711 PMCID: PMC10842697 DOI: 10.1016/j.bpc.2023.107126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
The functions of many proteins are associated with interconversions among conformational substates. However, these substates can be difficult to measure experimentally, and determining contributions from hydration changes can be especially difficult. Here, we assessed the use of pressure perturbations to sample the substates accessible to the Escherichia coli lactose repressor protein (LacI) in various liganded forms. In the presence of DNA, the regulatory domain of LacI adopts an Open conformation that, in the absence of DNA, changes to a Closed conformation. Increasing the simulation pressure prevented the transition from an Open to a Closed conformation, in a similar manner to the binding of DNA and anti-inducer, ONPF. The results suggest the hydration of specific residues play a significant role in determining the population of different LacI substates and that simulating pressure perturbation could be useful for assessing the role of hydration changes that accompany functionally-relevant amino acid substitutions.
Collapse
Affiliation(s)
- Nilusha L Kariyawasam
- Department of Chemistry, 213 CBC Building, 1212 Mid-Campus Dr. North, Kansas State University, Manhattan, KS 66506, USA
| | - Elizabeth A Ploetz
- Department of Chemistry, 213 CBC Building, 1212 Mid-Campus Dr. North, Kansas State University, Manhattan, KS 66506, USA
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, MSN 3030, 3901 Rainbow Blvd, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Paul E Smith
- Department of Chemistry, 213 CBC Building, 1212 Mid-Campus Dr. North, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
3
|
Hall AN, Hall BW, Kinney KJ, Olsen GG, Banta AB, Noguera DR, Donohue TJ, Peters JM. Tools for Genetic Engineering and Gene Expression Control in Novosphingobium aromaticivorans and Rhodobacter sphaeroides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554875. [PMID: 37662258 PMCID: PMC10473679 DOI: 10.1101/2023.08.25.554875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Alphaproteobacteria have a variety of cellular and metabolic features that provide important insights into biological systems and enable biotechnologies. For example, some species are capable of converting plant biomass into valuable biofuels and bioproducts have the potential to form the backbone of the sustainable bioeconomy. Among the Alphaproteobacteria, Novosphingobium aromaticivorans, Rhodobacter sphaeroides, and Zymomonas mobilis, show particular promise as organisms that can be engineered to convert extracted plant lignin or sugars into bioproducts and biofuels. Genetic manipulation of these bacteria is needed to introduce engineered pathways and modulate expression of native genes with the goal of enhancing bioproduct output. Although recent work has expanded the genetic toolkit for Z. mobilis, N. aromaticivorans and R. sphaeroides still need facile, reliable approaches to deliver genetic payloads to the genome and to control gene expression. Here, we expand the platform of genetic tools for N. aromaticivorans and R. sphaeroides to address these issues. We demonstrate that Tn7 transposition is an effective approach for introducing engineered DNA into the chromosome of N. aromaticivorans and R. sphaeroides. We screen a synthetic promoter library to identify inducible promoters with strong, regulated activity in both organisms. Combining Tn7 integration with promoters from our library, we establish CRISPR interference systems for N. aromaticivorans and R. sphaeroides that can target essential genes and modulate engineered pathways. We anticipate that these systems will greatly facilitate both genetic engineering and gene function discovery efforts in these industrially important species and other Alphaproteobacteria.
Collapse
Affiliation(s)
- Ashley N. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin W. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kyle J. Kinney
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gabby G. Olsen
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy B. Banta
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy J. Donohue
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Manna AC, Leo S, Girel S, González-Ruiz V, Rudaz S, Francois P, Cheung AL. Teg58, a small regulatory RNA, is involved in regulating arginine biosynthesis and biofilm formation in Staphylococcus aureus. Sci Rep 2022; 12:14963. [PMID: 36056144 PMCID: PMC9440087 DOI: 10.1038/s41598-022-18815-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Staphylococcus aureus adapts to different environments by sensing and responding to diverse environmental cues. The responses are coordinately regulated by regulatory proteins, and small regulatory RNAs at the transcriptional and translational levels. Here, we characterized teg58, a SarA repressed sRNA, using ChIP-Seq and RNA-Seq analysis of a sarA mutant. Phenotypic and genetic analyses indicated that inactivation of teg58 led to reduced biofilm formation in a process that is independent of SarA, agr, PIA, and PSMs. RNA-Seq analysis of teg58 mutant revealed up-regulation of arginine biosynthesis genes (i.e., argGH) as well as the ability of the mutant to grow in a chemical defined medium (CDM) lacking L-arginine. Exogenous L-arginine or endogenous induction of argGH led to decreased biofilm formation in parental strains. Further analysis in vitro and in vivo demonstrated that the specific interaction between teg58 and the argGH occurred at the post-transcriptional level to repress arginine synthesis. Biochemical and genetic analyses of various arginine catabolic pathway genes demonstrated that the catabolic pathway did not play a significant role in reduced biofilm formation in the teg58 mutant. Overall, results suggest that teg58 is a regulatory sRNA that plays an important role in modulating arginine biosynthesis and biofilm formation in S. aureus.
Collapse
Affiliation(s)
- Adhar C Manna
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.
| | - Stefano Leo
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals and University Medical Center, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Sergey Girel
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- University Medical Center, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Víctor González-Ruiz
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- University Medical Center, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- University Medical Center, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Patrice Francois
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals and University Medical Center, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Ambrose L Cheung
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| |
Collapse
|
5
|
Jouravleva K, Vega-Badillo J, Zamore PD. Principles and pitfalls of high-throughput analysis of microRNA-binding thermodynamics and kinetics by RNA Bind-n-Seq. CELL REPORTS METHODS 2022; 2:100185. [PMID: 35475222 PMCID: PMC9017153 DOI: 10.1016/j.crmeth.2022.100185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/18/2022] [Accepted: 02/25/2022] [Indexed: 12/24/2022]
Abstract
RNA Bind-n-Seq (RBNS) is a cost-effective, high-throughput method capable of identifying the sequence preferences of RNA-binding proteins and of qualitatively defining relative dissociation constants. Although RBNS is often described as an unbiased method, several factors may influence the outcome of the analysis. Here, we discuss these biases and present an analytical strategy to estimate absolute binding affinities from RBNS data, extend RBNS to kinetic studies, and develop a framework to compute relative association and dissociation rate constants. As proof of principle, we measured the equilibrium binding properties of mammalian Argonaute2 (AGO2) guided by eight microRNAs (miRNAs) and kinetic parameters for let-7a. The miRNA-binding site repertoires, dissociation constants, and kinetic parameters calculated from RBNS data using our methods correlate well with values measured by traditional ensemble and single-molecule approaches. Our data provide additional quantitative measurements for Argonaute-bound miRNA binding that should facilitate development of quantitative targeting rules for individual miRNAs.
Collapse
Affiliation(s)
- Karina Jouravleva
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Joel Vega-Badillo
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Phillip D. Zamore
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
- Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
6
|
Liu W, Li J, Xu Y, Yin D, Zhu X, Fu H, Su X, Guo X. Complete Mapping of DNA‐Protein Interactions at the Single‐Molecule Level. ADVANCED SCIENCE 2021; 8:2101383. [PMCID: PMC8655176 DOI: 10.1002/advs.202101383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
DNA–protein interaction plays an essential role in the storage, expression, and regulation of genetic information. A 1D/3D facilitated diffusion mechanism has been proposed to explain the extraordinarily rapid rate of DNA‐binding protein (DBP) searching for cognate sequence along DNA and further studied by single‐molecule experiments. However, direct observation of the detailed chronological protein searching image is still a formidable challenge. Here, for the first time, a single‐molecule electrical monitoring technique is utilized to realize label‐free detection of the DBP–DNA interaction process based on high‐gain silicon nanowire field‐effect transistors (SiNW FETs). The whole binding process of WRKY domain and DNA has been visualized with high sensitivity and single‐base resolution. Impressively, the swinging of hydrogen bonds between amino acid residues and bases in DNA induce the dynamic collective motion of DBP–DNA. This in situ, label‐free electrical detection platform provides a practical experimental methodology for dynamic studies of various biomolecules.
Collapse
Affiliation(s)
- Wenzhe Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesBeijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Jie Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesBeijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Shenzhen Bay LaboratoryShenzhen518132P. R. China
| | - Yongping Xu
- State Key Laboratory of Protein and Plant Gene ResearchBiomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijing100871P. R. China
| | - Dongbao Yin
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesBeijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Xin Zhu
- Center of Single‐Molecule SciencesFrontiers Science Center for New Organic MatterInstitute of Modern OpticsCollege of Electronic Information and Optical EngineeringNankai University38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| | - Huanyan Fu
- Center of Single‐Molecule SciencesFrontiers Science Center for New Organic MatterInstitute of Modern OpticsCollege of Electronic Information and Optical EngineeringNankai University38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| | - Xiaodong Su
- State Key Laboratory of Protein and Plant Gene ResearchBiomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijing100871P. R. China
| | - Xuefeng Guo
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesBeijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Center of Single‐Molecule SciencesFrontiers Science Center for New Organic MatterInstitute of Modern OpticsCollege of Electronic Information and Optical EngineeringNankai University38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| |
Collapse
|
7
|
Ferraz RAC, Lopes ALG, da Silva JAF, Moreira DFV, Ferreira MJN, de Almeida Coimbra SV. DNA-protein interaction studies: a historical and comparative analysis. PLANT METHODS 2021; 17:82. [PMID: 34301293 PMCID: PMC8299673 DOI: 10.1186/s13007-021-00780-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/11/2021] [Indexed: 05/05/2023]
Abstract
DNA-protein interactions are essential for several molecular and cellular mechanisms, such as transcription, transcriptional regulation, DNA modifications, among others. For many decades scientists tried to unravel how DNA links to proteins, forming complex and vital interactions. However, the high number of techniques developed for the study of these interactions made the choice of the appropriate technique a difficult task. This review intends to provide a historical context and compile the methods that describe DNA-protein interactions according to the purpose of each approach, summarise the respective advantages and disadvantages and give some examples of recent uses for each technique. The final aim of this work is to help in deciding which technique to perform according to the objectives and capacities of each research team. Considering the DNA-binding proteins characterisation, filter binding assay and EMSA are easy in vitro methods that rapidly identify nucleic acid-protein binding interactions. To find DNA-binding sites, DNA-footprinting is indeed an easier, faster and reliable approach, however, techniques involving base analogues and base-site selection are more precise. Concerning binding kinetics and affinities, filter binding assay and EMSA are useful and easy methods, although SPR and spectroscopy techniques are more sensitive. Finally, relatively to genome-wide studies, ChIP-seq is the desired method, given the coverage and resolution of the technique. In conclusion, although some experiments are easier and faster than others, when designing a DNA-protein interaction study several concerns should be taken and different techniques may need to be considered, since different methods confer different precisions and accuracies.
Collapse
Affiliation(s)
- Ricardo André Campos Ferraz
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Ana Lúcia Gonçalves Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Jessy Ariana Faria da Silva
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
- Universidade do Minho, Braga, Portugal
| | - Diana Filipa Viana Moreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Maria João Nogueira Ferreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Sílvia Vieira de Almeida Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
8
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
9
|
Cui TJ, Joo C. Facilitated diffusion of Argonaute-mediated target search. RNA Biol 2019; 16:1093-1107. [PMID: 31068066 PMCID: PMC6693542 DOI: 10.1080/15476286.2019.1616353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 10/26/2022] Open
Abstract
Argonaute (Ago) proteins are of key importance in many cellular processes. In eukaryotes, Ago can induce translational repression followed by deadenylation and degradation of mRNA molecules through base pairing of microRNAs (miRNAs) with a complementary target on a mRNA sequence. In bacteria, Ago eliminates foreign DNA through base pairing of siDNA (small interfering DNA) with a target on a DNA sequence. Effective targeting activities of Ago require fast recognition of the cognate target sequence among numerous off-target sites. Other target search proteins such as transcription factors (TFs) are known to rely on facilitated diffusion for this goal, but it is undetermined to what extent these small nucleic acid-guided proteins utilize this mechanism. Here, we review recent single-molecule studies on Ago target search. We discuss the consequences of the recent findings on the search mechanism. Furthermore, we discuss the open standing research questions that need to be addressed for a complete picture of facilitated target search by small nucleic acids.
Collapse
Affiliation(s)
- Tao Ju Cui
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| | - Chirlmin Joo
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
10
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Falcke M, Friedhoff VN. The stretch to stray on time: Resonant length of random walks in a transient. CHAOS (WOODBURY, N.Y.) 2018; 28:053117. [PMID: 29857685 DOI: 10.1063/1.5023164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
First-passage times in random walks have a vast number of diverse applications in physics, chemistry, biology, and finance. In general, environmental conditions for a stochastic process are not constant on the time scale of the average first-passage time or control might be applied to reduce noise. We investigate moments of the first-passage time distribution under an exponential transient describing relaxation of environmental conditions. We solve the Laplace-transformed (generalized) master equation analytically using a novel method that is applicable to general state schemes. The first-passage time from one end to the other of a linear chain of states is our application for the solutions. The dependence of its average on the relaxation rate obeys a power law for slow transients. The exponent ν depends on the chain length N like ν=-N/(N+1) to leading order. Slow transients substantially reduce the noise of first-passage times expressed as the coefficient of variation (CV), even if the average first-passage time is much longer than the transient. The CV has a pronounced minimum for some lengths, which we call resonant lengths. These results also suggest a simple and efficient noise control strategy and are closely related to the timing of repetitive excitations, coherence resonance, and information transmission by noisy excitable systems. A resonant number of steps from the inhibited state to the excitation threshold and slow recovery from negative feedback provide optimal timing noise reduction and information transmission.
Collapse
Affiliation(s)
- Martin Falcke
- Max Delbrück Center for Molecular Medicine, Robert Rössle Str. 10, 13125 Berlin, Germany
| | | |
Collapse
|
12
|
Structural basis for the substrate selectivity of Helicobacter pylori NucT nuclease activity. PLoS One 2017; 12:e0189049. [PMID: 29206236 PMCID: PMC5714352 DOI: 10.1371/journal.pone.0189049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/19/2017] [Indexed: 12/20/2022] Open
Abstract
The Phospholipase D (PLD) superfamily of proteins includes a group of enzymes with nuclease activity on various nucleic acid substrates. Here, with the aim of better understanding the substrate specificity determinants in this subfamily, we have characterised the enzymatic activity and the crystal structure of NucT, a nuclease implicated in Helicobacter pylori purine salvage and natural transformation and compared them to those of its bacterial and mammalian homologues. NucT exhibits an endonuclease activity with a strong preference for single stranded nucleic acids substrates. We identified histidine124 as essential for the catalytic activity of the protein. Comparison of the NucT crystal structure at 1.58 Å resolution reported here with those of other members of the sub-family suggests that the specificity of NucT for single-stranded nucleic acids is provided by the width of a positively charged groove giving access to the catalytic site.
Collapse
|
13
|
Garza de Leon F, Sellars L, Stracy M, Busby SJW, Kapanidis AN. Tracking Low-Copy Transcription Factors in Living Bacteria: The Case of the lac Repressor. Biophys J 2017; 112:1316-1327. [PMID: 28402875 PMCID: PMC5390046 DOI: 10.1016/j.bpj.2017.02.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/20/2017] [Accepted: 02/16/2017] [Indexed: 11/30/2022] Open
Abstract
Transcription factors control the expression of genes by binding to specific sites in DNA and repressing or activating transcription in response to stimuli. The lac repressor (LacI) is a well characterized transcription factor that regulates the ability of bacterial cells to uptake and metabolize lactose. Here, we study the intracellular mobility and spatial distribution of LacI in live bacteria using photoactivated localization microscopy combined with single-particle tracking. Since we track single LacI molecules in live cells by stochastically photoactivating and observing fluorescent proteins individually, there are no limitations on the copy number of the protein under study; as a result, we were able to study the behavior of LacI in bacterial strains containing the natural copy numbers (∼40 monomers), as well as in strains with much higher copy numbers due to LacI overexpression. Our results allowed us to determine the relative abundance of specific, near-specific, and non-specific DNA binding modes of LacI in vivo, showing that all these modes are operational inside living cells. Further, we examined the spatial distribution of LacI in live cells, confirming its specific binding to lac operator regions on the chromosome; we also showed that mobile LacI molecules explore the bacterial nucleoid in a way similar to exploration by other DNA-binding proteins. Our work also provides an example of applying tracking photoactivated localization microscopy to studies of low-copy-number proteins in living bacteria.
Collapse
Affiliation(s)
- Federico Garza de Leon
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Laura Sellars
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Mathew Stracy
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Stephen J W Busby
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Achillefs N Kapanidis
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
14
|
Davey J, Wilson CJ. Deconstruction of complex protein signaling switches: a roadmap toward engineering higher-order gene regulators. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [DOI: 10.1002/wnan.1461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/13/2016] [Accepted: 01/02/2017] [Indexed: 02/06/2023]
Affiliation(s)
- James A. Davey
- Georgia Institute of Technology; School of Chemical & Biomolecular Engineering; Atlanta GA USA
| | - Corey J. Wilson
- Georgia Institute of Technology; School of Chemical & Biomolecular Engineering; Atlanta GA USA
| |
Collapse
|
15
|
Wang J, Barnett JT, Pollard MR, Kad NM. Integrating Optical Tweezers, DNA Tightropes, and Single-Molecule Fluorescence Imaging: Pitfalls and Traps. Methods Enzymol 2016; 582:171-192. [PMID: 28062034 DOI: 10.1016/bs.mie.2016.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Fluorescence imaging is one of the cornerstone techniques for understanding how single molecules search for their targets on DNA. By tagging individual proteins, it is possible to track their position with high accuracy. However, to understand how proteins search for targets, it is necessary to elongate the DNA to avoid protein localization ambiguities. Such structures known as "DNA tightropes" are tremendously powerful for imaging target location; however, they lack information about how force and load affect protein behavior. The use of optically trapped microstructures offers the means to apply and measure force effects. Here we describe a system that we recently developed to enable individual proteins to be directly manipulated on DNA tightropes. Proteins bound to DNA can be conjugated with Qdot fluorophores for visualization and also directly manipulated by an optically trapped, manufactured microstructure. Together this offers a new approach to understanding the physical environment of molecules, and the combination with DNA tightropes presents opportunities to study complex biological phenomena.
Collapse
Affiliation(s)
- J Wang
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - J T Barnett
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | | | - N M Kad
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom.
| |
Collapse
|
16
|
Shvets AA, Kolomeisky AB. Sequence heterogeneity accelerates protein search for targets on DNA. J Chem Phys 2016; 143:245101. [PMID: 26723711 DOI: 10.1063/1.4937938] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The process of protein search for specific binding sites on DNA is fundamentally important since it marks the beginning of all major biological processes. We present a theoretical investigation that probes the role of DNA sequence symmetry, heterogeneity, and chemical composition in the protein search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis, which takes into account the most relevant physical-chemical processes, a full analytical description of the search dynamics is obtained. It is found that, contrary to existing views, the protein search is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics might be affected by the chemical composition near the target site. The physical origins of these phenomena are discussed. Our results suggest that biological processes might be effectively regulated by modifying chemical composition, symmetry, and heterogeneity of a genome.
Collapse
Affiliation(s)
- Alexey A Shvets
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Anatoly B Kolomeisky
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
17
|
Reithmann E, Reese L, Frey E. Nonequilibrium Diffusion and Capture Mechanism Ensures Tip Localization of Regulating Proteins on Dynamic Filaments. PHYSICAL REVIEW LETTERS 2016; 117:078102. [PMID: 27564001 DOI: 10.1103/physrevlett.117.078102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 06/06/2023]
Abstract
Diffusive motion of regulatory enzymes on biopolymers with eventual capture at a reaction site is a common feature in cell biology. Using a lattice gas model we study the impact of diffusion and capture for a microtubule polymerase and a depolymerase. Our results show that the capture mechanism localizes the proteins and creates large-scale spatial correlations. We develop an analytic approximation that globally accounts for relevant correlations and yields results that are in excellent agreement with experimental data. Our results show that diffusion and capture operates most efficiently at cellular enzyme concentrations which points to in vivo relevance.
Collapse
Affiliation(s)
- Emanuel Reithmann
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
| | - Louis Reese
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
| |
Collapse
|
18
|
Lange M, Kochugaeva M, Kolomeisky AB. Protein search for multiple targets on DNA. J Chem Phys 2016; 143:105102. [PMID: 26374061 DOI: 10.1063/1.4930113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein-DNA interactions are crucial for all biological processes. One of the most important fundamental aspects of these interactions is the process of protein searching and recognizing specific binding sites on DNA. A large number of experimental and theoretical investigations have been devoted to uncovering the molecular description of these phenomena, but many aspects of the mechanisms of protein search for the targets on DNA remain not well understood. One of the most intriguing problems is the role of multiple targets in protein search dynamics. Using a recently developed theoretical framework we analyze this question in detail. Our method is based on a discrete-state stochastic approach that takes into account most relevant physical-chemical processes and leads to fully analytical description of all dynamic properties. Specifically, systems with two and three targets have been explicitly investigated. It is found that multiple targets in most cases accelerate the search in comparison with a single target situation. However, the acceleration is not always proportional to the number of targets. Surprisingly, there are even situations when it takes longer to find one of the multiple targets in comparison with the single target. It depends on the spatial position of the targets, distances between them, average scanning lengths of protein molecules on DNA, and the total DNA lengths. Physical-chemical explanations of observed results are presented. Our predictions are compared with experimental observations as well as with results from a continuum theory for the protein search. Extensive Monte Carlo computer simulations fully support our theoretical calculations.
Collapse
Affiliation(s)
- Martin Lange
- Johannes Gutenberg University, Mainz 55122, Germany
| | - Maria Kochugaeva
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
19
|
Romaniuk PJ. Measuring Equilibrium Binding Constants for the WT1-DNA Interaction Using a Filter Binding Assay. Methods Mol Biol 2016; 1467:155-176. [PMID: 27417968 DOI: 10.1007/978-1-4939-4023-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Equilibrium binding of WT1 to specific sites in DNA and potentially RNA molecules is central in mediating the regulatory roles of this protein. In order to understand the functional effects of mutations in the nucleic acid-binding domain of WT1 proteins and/or mutations in the DNA- or RNA-binding sites, it is necessary to measure the equilibrium constant for formation of the protein-nucleic acid complex. This chapter describes the use of a filter binding assay to make accurate measurements of the binding of the WT1 zinc finger domain to the consensus WT1-binding site in DNA. The method described is readily adapted to the measurement of the effects of mutations in either the WT1 zinc finger domain or the putative binding sites within a promoter element or cellular RNA.
Collapse
Affiliation(s)
- Paul J Romaniuk
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada, V8P 5C2.
| |
Collapse
|
20
|
Zuo Z, Chang Y, Stormo GD. A quantitative understanding of lac repressor's binding specificity and flexibility. QUANTITATIVE BIOLOGY 2015; 3:69-80. [PMID: 26752632 DOI: 10.1007/s40484-015-0044-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Lac repressor, the first discovered transcriptional regulator, has been shown to confer multiple-modes of binding to its operator sites depending on the central spacer length. Other homolog members in the LacI/GalR family (PurR and YcjW) cannot bind their operator sites with similar structural flexibility. To decipher the underlying mechanism for this unique property, we used Spec-seq approach combined with site-directed mutagenesis to quantify the DNA binding specificity of multiple hybrids of lacI and PurR. We find that lac repressor's recognition di-residues YQ and its hinge helix loop regions are both critical for its structural flexibility. Also, specificity profiling of the whole lac operator suggests that a simple additive model from single variants suffice to predict other multivariant sites' energy reasonably well, and the genome occupancy model based on this specificity data correlates well with in vivo lac repressor binding profile.
Collapse
Affiliation(s)
- Zheng Zuo
- Department of Genetics and Center for Genomic Sciences and Systems Biology, School of Medicine, Washington University, St. Louis, MO 63108, USA
| | - Yiming Chang
- Department of Genetics and Center for Genomic Sciences and Systems Biology, School of Medicine, Washington University, St. Louis, MO 63108, USA
| | - Gary D Stormo
- Department of Genetics and Center for Genomic Sciences and Systems Biology, School of Medicine, Washington University, St. Louis, MO 63108, USA
| |
Collapse
|
21
|
Bak G, Han K, Kim KS, Lee Y. Electrophoretic mobility shift assay of RNA-RNA complexes. Methods Mol Biol 2015; 1240:153-63. [PMID: 25352144 DOI: 10.1007/978-1-4939-1896-6_12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A simple, rapid, and sensitive electrophoretic mobility shift assay (EMSA) can be successfully used to analyze RNA-RNA interactions. The EMSA of RNA-RNA complexes can be further used to evaluate the specificity of interactions using competitor RNAs in combination with their mutated versions or nonspecific RNAs, such as yeast tRNA. RNA is simply prepared by in vitro transcription from PCR product templates. Detailed experimental descriptions for EMSA-based analysis of specific RNA-RNA interactions between Sib RNAs and ibs mRNAs as a representative example are presented.
Collapse
Affiliation(s)
- Geunu Bak
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| | | | | | | |
Collapse
|
22
|
Harris LA, Williams LD, Koudelka GB. Specific minor groove solvation is a crucial determinant of DNA binding site recognition. Nucleic Acids Res 2014; 42:14053-9. [PMID: 25429976 PMCID: PMC4267663 DOI: 10.1093/nar/gku1259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The DNA sequence preferences of nearly all sequence specific DNA binding proteins are influenced by the identities of bases that are not directly contacted by protein. Discrimination between non-contacted base sequences is commonly based on the differential abilities of DNA sequences to allow narrowing of the DNA minor groove. However, the factors that govern the propensity of minor groove narrowing are not completely understood. Here we show that the differential abilities of various DNA sequences to support formation of a highly ordered and stable minor groove solvation network are a key determinant of non-contacted base recognition by a sequence-specific binding protein. In addition, disrupting the solvent network in the non-contacted region of the binding site alters the protein's ability to recognize contacted base sequences at positions 5–6 bases away. This observation suggests that DNA solvent interactions link contacted and non-contacted base recognition by the protein.
Collapse
Affiliation(s)
- Lydia-Ann Harris
- Department of Biological Sciences, 607 Cooke Hall, University at Buffalo, Buffalo, NY 14260, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Gerald B Koudelka
- Department of Biological Sciences, 607 Cooke Hall, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
23
|
Schmidt HG, Sewitz S, Andrews SS, Lipkow K. An integrated model of transcription factor diffusion shows the importance of intersegmental transfer and quaternary protein structure for target site finding. PLoS One 2014; 9:e108575. [PMID: 25333780 PMCID: PMC4204827 DOI: 10.1371/journal.pone.0108575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/30/2014] [Indexed: 11/30/2022] Open
Abstract
We present a computational model of transcription factor motion that explains both the observed rapid target finding of transcription factors, and how this motion influences protein and genome structure. Using the Smoldyn software, we modelled transcription factor motion arising from a combination of unrestricted 3D diffusion in the nucleoplasm, sliding along the DNA filament, and transferring directly between filament sections by intersegmental transfer. This presents a fine-grain picture of the way in which transcription factors find their targets two orders of magnitude faster than 3D diffusion alone allows. Eukaryotic genomes contain sections of nucleosome free regions (NFRs) around the promoters; our model shows that the presence and size of these NFRs can be explained as their acting as antennas on which transcription factors slide to reach their targets. Additionally, our model shows that intersegmental transfer may have shaped the quaternary structure of transcription factors: sequence specific DNA binding proteins are unusually enriched in dimers and tetramers, perhaps because these allow intersegmental transfer, which accelerates target site finding. Finally, our model shows that a ‘hopping’ motion can emerge from 3D diffusion on small scales. This explains the apparently long sliding lengths that have been observed for some DNA binding proteins observed in vitro. Together, these results suggest that transcription factor diffusion dynamics help drive the evolution of protein and genome structure.
Collapse
Affiliation(s)
- Hugo G. Schmidt
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (HS); (KL)
| | - Sven Sewitz
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Steven S. Andrews
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Karen Lipkow
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, United Kingdom
- * E-mail: (HS); (KL)
| |
Collapse
|
24
|
Paijmans J, ten Wolde PR. Lower bound on the precision of transcriptional regulation and why facilitated diffusion can reduce noise in gene expression. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032708. [PMID: 25314474 DOI: 10.1103/physreve.90.032708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 06/04/2023]
Abstract
The diffusive arrival of transcription factors at the promoter sites on DNA sets a lower bound on how accurately a cell can regulate its protein levels. Using results from the literature on diffusion-influenced reactions, we derive an analytical expression for the lower bound on the precision of transcriptional regulation. In our theory, transcription factors can perform multiple rounds of one-dimensional (1D) diffusion along the DNA and 3D diffusion in the cytoplasm before binding to the promoter. Comparing our expression for the lower bound on the precision against results from Green's function reaction dynamics simulations shows that the theory is highly accurate under biologically relevant conditions. Our results demonstrate that, to an excellent approximation, the promoter switches between the transcription-factor bound and unbound state in a Markovian fashion. This remains true even in the presence of sliding, i.e., with 1D diffusion along the DNA. This has two important implications: (1) Minimizing the noise in the promoter state is equivalent to minimizing the search time of transcription factors for their promoters; (2) the complicated dynamics of 3D diffusion in the cytoplasm and 1D diffusion along the DNA can be captured in a well-stirred model by renormalizing the promoter association and dissociation rates, making it possible to efficiently simulate the promoter dynamics using Gillespie simulations. Based on the recent experimental observation that sliding can speed up the promoter search by a factor of 4, our theory predicts that sliding can enhance the precision of transcriptional regulation by a factor of 2.
Collapse
Affiliation(s)
- Joris Paijmans
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | |
Collapse
|
25
|
Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases--a historical perspective and more. Nucleic Acids Res 2014; 42:7489-527. [PMID: 24878924 PMCID: PMC4081073 DOI: 10.1093/nar/gku447] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022] Open
Abstract
This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures.
Collapse
Affiliation(s)
- Alfred Pingoud
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Geoffrey G Wilson
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938-2723, USA
| | - Wolfgang Wende
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| |
Collapse
|
26
|
DNA looping-dependent autorepression of LEE1 P1 promoters by Ler in enteropathogenic Escherichia coli (EPEC). Proc Natl Acad Sci U S A 2014; 111:E2586-95. [PMID: 24920590 DOI: 10.1073/pnas.1322033111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ler, a homolog of H-NS in enteropathogenic Escherichia coli (EPEC), plays a critical role in the expression of virulence genes encoded by the pathogenic island, locus of enterocyte effacement (LEE). Although Ler acts as an antisilencer of multiple LEE operons by alleviating H-NS-mediated silencing, it represses its own expression from two LEE1 P1 promoters, P1A and P1B, that are separated by 10 bp. Various in vitro biochemical methods were used in this study to elucidate the mechanism underlying transcription repression by Ler. Ler acts through two AATT motifs, centered at position -111.5 on the coding strand and at +65.5 on the noncoding strand, by simultaneously repressing P1A and P1B through DNA-looping. DNA-looping was visualized using atomic force microscopy. It is intriguing that an antisilencing protein represses transcription, not by steric exclusion of RNA polymerase, but by DNA-looping. We propose that the DNA-looping prevents further processing of open promoter complex (RPO) at these promoters during transcription initiation.
Collapse
|
27
|
Hughes CD, Simons M, Mackenzie CE, Van Houten B, Kad NM. Single molecule techniques in DNA repair: a primer. DNA Repair (Amst) 2014; 20:2-13. [PMID: 24819596 DOI: 10.1016/j.dnarep.2014.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
A powerful new approach has become much more widespread and offers insights into aspects of DNA repair unattainable with billions of molecules. Single molecule techniques can be used to image, manipulate or characterize the action of a single repair protein on a single strand of DNA. This allows search mechanisms to be probed, and the effects of force to be understood. These physical aspects can dominate a biochemical reaction, where at the ensemble level their nuances are obscured. In this paper we discuss some of the many technical advances that permit study at the single molecule level. We focus on DNA repair to which these techniques are actively being applied. DNA repair is also a process that encompasses so much of what single molecule studies benefit--searching for targets, complex formation, sequential biochemical reactions and substrate hand-off to name just a few. We discuss how single molecule biophysics is poised to transform our understanding of biological systems, in particular DNA repair.
Collapse
Affiliation(s)
- Craig D Hughes
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Michelle Simons
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Cassidy E Mackenzie
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neil M Kad
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| |
Collapse
|
28
|
Grußmayer KS, Ehrhard T, Lymperopoulos K, Herten DP. Precise quantification of transcription factors in a surface-based single-molecule assay. Biophys Chem 2013; 184:1-7. [PMID: 24012911 DOI: 10.1016/j.bpc.2013.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 11/20/2022]
Abstract
Biosensors have recognized a rapid development the last years in both industry and science. Recently, a single-molecule assay based on alternating laser excitation has been established for the quantitative detection of transcription factors. These proteins specifically recognize and bind DNA and play an important role in controlling gene expression. We implemented this assay format on a total internal reflection fluorescence microscope to detect transcription factors with immobilized single-molecule DNA biosensors. We quantify transcription factors via colocalization of the two halves of their binding site with immobilized single molecules of a two-color DNA biosensor. We could detect a model transcription factor, the bacterial lactose repressor, at different concentrations down to 150pM. We found that robust modeling of stoichiometry derived TIRF data is achieved with Student's t-distributions and nonlinear least-squares estimation with weights equal to the inverse of the expected number of bin entries. This significantly improved transcription factor concentration estimates with respect to distribution modeling with Gaussians without adding notable computational effort. The proposed model may enhance the precision of other single-molecule assays quantifying molecular distributions. Our measurements reliably confirm that the immobilized biosensor format is more sensitive than a previously published solution based approach.
Collapse
Affiliation(s)
- Kristin S Grußmayer
- CellNetworks Cluster and Institute for Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
29
|
A proteome-wide visual screen identifies fission yeast proteins localizing to DNA double-strand breaks. DNA Repair (Amst) 2013; 12:433-43. [PMID: 23628481 DOI: 10.1016/j.dnarep.2013.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 03/18/2013] [Accepted: 04/03/2013] [Indexed: 11/23/2022]
Abstract
DNA double-strand breaks (DSBs) are a major threat to genome integrity. Proteins involved in DNA damage checkpoint signaling and DSB repair often relocalize and concentrate at DSBs. Here, we used an ORFeome library of the fission yeast Schizosaccharomyces pombe to systematically identify proteins targeted to DSBs. We found 51 proteins that, when expressed from a strong exogenous promoter on the ORFeome plasmids, were able to form a distinct nuclear focus at an HO endonuclease-induced DSB. The majority of these proteins have known connections to DNA damage response, but few have been visualized at a specific DSB before. Among the screen hits, 37 can be detected at DSBs when expressed from native promoters. We classified them according to the focus emergence timing of the endogenously tagged proteins. Eight of these 37 proteins are yet unnamed. We named these eight proteins DNA-break-localizing proteins (Dbls) and performed preliminary functional analysis on two of them, Dbl1 (SPCC2H8.05c) and Dbl2 (SPCC553.01c). We found that Dbl1 and Dbl2 contribute to the normal DSB targeting of checkpoint protein Rad26 (homolog of human ATRIP) and DNA repair helicase Fml1 (homolog of human FANCM), respectively. As the first proteome-wide inventory of DSB-localizing proteins, our screen result will be a useful resource for understanding the mechanisms of eukaryotic DSB response.
Collapse
|
30
|
Lewis M. Allostery and the lac Operon. J Mol Biol 2013; 425:2309-16. [PMID: 23500493 DOI: 10.1016/j.jmb.2013.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/01/2013] [Accepted: 03/02/2013] [Indexed: 10/27/2022]
Abstract
The ability to regulate gene expression is essential for controlling metabolic events in a cell. Proteins that function like molecular switches respond to fluctuations in the environment to maintain homeostasis. The operon model, proposed by Jacob and Monod, provides a cogent depiction for how gene expression is regulated. A molecular mechanism for the regulation followed shortly with the theory for allosteric transition. Over the past half-century, the details of the lac operon and the allosteric model have been tested using genetic, biochemical, and structural techniques. Remarkably, the principles originally put forward 50 years ago remain essentially unchanged. Models for the operon and the theory of allosteric transitions are two of the most profound discoveries of molecular biology.
Collapse
Affiliation(s)
- Mitchell Lewis
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, 37th and Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Abstract
The recognition of operator DNA by Tet repressor was analyzed by fluorescence stopped flow measurements. The main part of the fluorescence change observed for the reaction of the repressor with operator DNA reflects a second-order binding reaction including the expected concentration dependence. Global fitting of transients measured at different concentrations reveal at least one intramolecular step in addition to the bimolecular step. The rate constant for the bimolecular step is strongly salt dependent approaching the limit of diffusion control 2×10(8) M(-1) s(-1) at 50 mM NaCl and decreasing to 5×10(4) M(-1) s(-1) at 600 mM NaCl. These data are consistent with initial formation of a pre-equilibrium complex; electrostatic steering resulting from the high dipole moment of the repressor may contribute to the strong salt dependence. The rate constants of the intramolecular step are in the range of ~0.1 s(-1). Fluorescence quenching is salt dependent; the overall binding constant to operator O1 at 150 mM NaCl is 5×10(8) M(-1); binding constants at different salt concentrations indicate ~5 ion contacts for the specific complex of the Tet repressor dimer. The binding constant to operator O2 is higher than to O1 by a factor of ~2 at 400 mM NaCl.
Collapse
Affiliation(s)
- Christian Berens
- Department Biologie, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | | |
Collapse
|
32
|
van Aelst K, Šišáková E, Szczelkun MD. DNA cleavage by Type ISP Restriction-Modification enzymes is initially targeted to the 3'-5' strand. Nucleic Acids Res 2012; 41:1081-90. [PMID: 23221632 PMCID: PMC3553963 DOI: 10.1093/nar/gks1210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mechanism by which a double-stranded DNA break is produced following collision of two translocating Type I Restriction–Modification enzymes is not fully understood. Here, we demonstrate that the related Type ISP Restriction–Modification enzymes LlaGI and LlaBIII can cooperate to cleave DNA following convergent translocation and collision. When one of these enzymes is a mutant protein that lacks endonuclease activity, DNA cleavage of the 3′-5′ strand relative to the wild-type enzyme still occurs, with the same kinetics and at the same collision loci as for a reaction between two wild-type enzymes. The DNA nicking activity of the wild-type enzyme is still activated by a protein variant entirely lacking the Mrr nuclease domain and by a helicase mutant that cannot translocate. However, the helicase mutant cannot cleave the DNA despite the presence of an intact nuclease domain. Cleavage by the wild-type enzyme is not activated by unrelated protein roadblocks. We suggest that the nuclease activity of the Type ISP enzymes is activated following collision with another Type ISP enzyme and requires adenosine triphosphate binding/hydrolysis but, surprisingly, does not require interaction between the nuclease domains. Following the initial rapid endonuclease activity, additional DNA cleavage events then occur more slowly, leading to further processing of the initial double-stranded DNA break.
Collapse
Affiliation(s)
- Kara van Aelst
- DNA-Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
33
|
Goode DK, Elgar G. Capturing the regulatory interactions of eukaryote genomes. Brief Funct Genomics 2012; 12:142-60. [PMID: 23117864 DOI: 10.1093/bfgp/els041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A key finding from early genomics research is the remarkable consistency in the number of protein-coding regions across diverse species. This has led many researchers to look to the cis-regulatory elements of genes as the fundamental influence behind evolving gene function and subsequent species diversification. Historically, since these elements are often located in vast intergenic and intronic regions of the genome, their identification has been recalcitrant. Now, with the deluge of whole-genome data from representatives of numerous eukaryotic lineages, various approaches have enabled us to begin to recognize features that characterize regulatory regions of the genome. Here we endeavour to collate these approaches in order to give an overview of the complexities involved in extrapolating regulatory signatures. The resource provided by the escalating richness of whole-genome datasets enables more sophisticated modelling of these regulatory signatures yet at the same time introduces increasing potential for noise. While we are only at the advent of making these discoveries, the next decade promises to be a very exciting and rewarding time for genome researchers.
Collapse
Affiliation(s)
- Debbie K Goode
- Cambridge Institute for Medical Research, Deptartment of Haematology, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | | |
Collapse
|
34
|
Harris LA, Watkins D, Williams LD, Koudelka GB. Indirect readout of DNA sequence by p22 repressor: roles of DNA and protein functional groups in modulating DNA conformation. J Mol Biol 2012; 425:133-43. [PMID: 23085222 DOI: 10.1016/j.jmb.2012.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 12/24/2022]
Abstract
The repressor of bacteriophage P22 (P22R) discriminates between its various DNA binding sites by sensing the identity of non-contacted base pairs at the center of its binding site. The "indirect readout" of these non-contacted bases is apparently based on DNA's sequence-dependent conformational preferences. The structures of P22R-DNA complexes indicate that the non-contacted base pairs at the center of the binding site are in the B' state. This finding suggests that indirect readout and therefore binding site discrimination depend on P22R's ability to either sense and/or impose the B' state on the non-contacted bases of its binding sites. We show here that the affinity of binding sites for P22R depends on the tendency of the central bases to assume the B'-DNA state. Furthermore, we identify functional groups in the minor groove of the non-contacted bases as the essential modulators of indirect readout by P22R. In P22R-DNA complexes, the negatively charged E44 and E48 residues are provocatively positioned near the negatively charged DNA phosphates of the non-contacted nucleotides. The close proximity of the negatively charged groups on protein and DNA suggests that electrostatics may play a key role in the indirect readout process. Changing either of two negatively charged residues to uncharged residues eliminates the ability of P22R to impose structural changes on DNA and to recognize non-contacted base sequence. These findings suggest that these negatively charged amino acids function to force the P22R-bound DNA into the B' state and therefore play a key role in indirect readout by P22R.
Collapse
Affiliation(s)
- Lydia-Ann Harris
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | | | | | | |
Collapse
|
35
|
Reginsson GW, Shelke SA, Rouillon C, White MF, Sigurdsson ST, Schiemann O. Protein-induced changes in DNA structure and dynamics observed with noncovalent site-directed spin labeling and PELDOR. Nucleic Acids Res 2012; 41:e11. [PMID: 22941643 PMCID: PMC3592447 DOI: 10.1093/nar/gks817] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Site-directed spin labeling and pulsed electron-electron double resonance (PELDOR or DEER) have previously been applied successfully to study the structure and dynamics of nucleic acids. Spin labeling nucleic acids at specific sites requires the covalent attachment of spin labels, which involves rather complicated and laborious chemical synthesis. Here, we use a noncovalent label strategy that bypasses the covalent labeling chemistry and show that the binding specificity and efficiency are large enough to enable PELDOR or DEER measurements in DNA duplexes and a DNA duplex bound to the Lac repressor protein. In addition, the rigidity of the label not only allows resolution of the structure and dynamics of oligonucleotides but also the determination of label orientation and protein-induced conformational changes. The results prove that this labeling strategy in combination with PELDOR has a great potential for studying both structure and dynamics of oligonucleotides and their complexes with various ligands.
Collapse
Affiliation(s)
- Gunnar W Reginsson
- Biomedical Sciences Research Complex, Centre of Magnetic Resonance, University of St Andrews, St Andrews KY16 9ST, UK
| | | | | | | | | | | |
Collapse
|
36
|
Buratowski S, Chodosh LA. Mobility shift DNA-binding assay using gel electrophoresis. ACTA ACUST UNITED AC 2012; Chapter 6:Unit6.8. [PMID: 21959763 DOI: 10.1002/0471141755.ph0608s13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA-binding assay using nondenaturing polyacrylamide gel electrophoresis (PAGE) provides a simple, rapid, and extremely sensitive method for detecting sequence-specific DNA-binding proteins. Proteins that bind specifically to an end-labeled DNA fragment retard the mobility of the fragment during electrophoresis, resulting in discrete bands corresponding to the individual protein-DNA complexes. The assay described in this unit can be used to test binding of purified proteins or of uncharacterized factors found in crude extracts. This assay also permits quantitative determination of the affinity, abundance, association rate constants, dissociation rate constants, and binding specificity of DNA-binding proteins. Three additional protocols describe a competition assay using unlabeled competitor DNA, an antibody supershift assay, and multicomponent gel shift assays.
Collapse
Affiliation(s)
- S Buratowski
- Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
37
|
Normanno D, Dahan M, Darzacq X. Intra-nuclear mobility and target search mechanisms of transcription factors: a single-molecule perspective on gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:482-93. [PMID: 22342464 DOI: 10.1016/j.bbagrm.2012.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/26/2012] [Accepted: 02/03/2012] [Indexed: 12/26/2022]
Abstract
Precise expression of specific genes in time and space is at the basis of cellular viability as well as correct development of organisms. Understanding the mechanisms of gene regulation is fundamental and still one of the great challenges for biology. Gene expression is regulated also by specific transcription factors that recognize and bind to specific DNA sequences. Transcription factors dynamics, and especially the way they sample the nucleoplasmic space during the search for their specific target in the genome, are a key aspect for regulation and it has been puzzling researchers for forty years. The scope of this review is to give a state-of-the-art perspective over the intra-nuclear mobility and the target search mechanisms of specific transcription factors at the molecular level. Going through the seminal biochemical experiments that have raised the first questions about target localization and the theoretical grounds concerning target search processes, we describe the most recent experimental achievements and current challenges in understanding transcription factors dynamics and interactions with DNA using in vitro assays as well as in live prokaryotic and eukaryotic cells. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Davide Normanno
- Institut de Biologie de l'Ecole normale supérieure (IBENS), CNRS UMR 8197, Ecole normale supérieure, 46, Rue d'Ulm, 75005 Paris, France.
| | | | | |
Collapse
|
38
|
Sampath H, McCullough AK, Lloyd RS. Regulation of DNA glycosylases and their role in limiting disease. Free Radic Res 2012; 46:460-78. [PMID: 22300253 DOI: 10.3109/10715762.2012.655730] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review will present a current understanding of mechanisms for the initiation of base excision repair (BER) of oxidatively-induced DNA damage and the biological consequences of deficiencies in these enzymes in mouse model systems and human populations.
Collapse
Affiliation(s)
- Harini Sampath
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239 - 3098, USA
| | | | | |
Collapse
|
39
|
Sheinman M, Bénichou O, Kafri Y, Voituriez R. Classes of fast and specific search mechanisms for proteins on DNA. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:026601. [PMID: 22790348 DOI: 10.1088/0034-4885/75/2/026601] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Problems of search and recognition appear over different scales in biological systems. In this review we focus on the challenges posed by interactions between proteins, in particular transcription factors, and DNA and possible mechanisms which allow for fast and selective target location. Initially we argue that DNA-binding proteins can be classified, broadly, into three distinct classes which we illustrate using experimental data. Each class calls for a different search process and we discuss the possible application of different search mechanisms proposed over the years to each class. The main thrust of this review is a new mechanism which is based on barrier discrimination. We introduce the model and analyze in detail its consequences. It is shown that this mechanism applies to all classes of transcription factors and can lead to a fast and specific search. Moreover, it is shown that the mechanism has interesting transient features which allow for stability at the target despite rapid binding and unbinding of the transcription factor from the target.
Collapse
Affiliation(s)
- M Sheinman
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
40
|
Liu L, Abdel Motaal B, Schmidt-Supprian M, Pohl NLB. Multigram synthesis of isobutyl-β-C-galactoside as a substitute of isopropylthiogalactoside for exogenous gene induction in mammalian cells. J Org Chem 2012; 77:1539-46. [PMID: 22283618 DOI: 10.1021/jo2024569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein we report that isobutyl-β-C-galactoside (IBCG) is also a promising inducer of gene expression in mammalian cells and report a new synthetic route to the compound that should make obtaining the multigram quantities of material required for animal studies more feasible. A convenient synthesis of IBCG, an inducer of genes controlled by the lac operon system in bacterial cells, was achieved in 5 steps from galactose in 81% overall yield without any chromatographic separation steps. An optimized microwave-assisted reaction at high concentration was key to making the C-glycosidic linkage. A Wittig reaction on a per-O-silylated rather than per-O-acetylated or -benzylated substrate proved most effective in installing the final carbon atom.
Collapse
Affiliation(s)
- Lin Liu
- Department of Chemistry, Plant Sciences Institute, Hach Hall, Iowa State University, Ames, Iowa 50011-3111, USA
| | | | | | | |
Collapse
|
41
|
Dynamics of lesion processing by bacterial nucleotide excision repair proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:1-24. [PMID: 22749140 DOI: 10.1016/b978-0-12-387665-2.00001-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Single-molecule approaches permit an unrivalled view of how complex systems operate and have recently been used to understand DNA-protein interactions. These tools have enabled advances in a particularly challenging problem, the search for damaged sites on DNA. DNA repair proteins are present at the level of just a few hundred copies in bacterial cells to just a few thousand in human cells, and they scan the entire genome in search of their specific substrates. How do these proteins achieve this herculean task when their targets may differ from undamaged DNA by only a single hydrogen bond? Here we examine, using single-molecule approaches, how the prokaryotic nucleotide excision repair system balances the necessity for speed against specificity. We discuss issues at a theoretical, biological, and technical level and finally pose questions for future research.
Collapse
|
42
|
Sharp KA. Allostery in the lac operon: Population selection or induced dissociation? Biophys Chem 2011; 159:66-72. [DOI: 10.1016/j.bpc.2011.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/26/2011] [Accepted: 05/04/2011] [Indexed: 11/28/2022]
|
43
|
Mayo ML, Perkins EJ, Ghosh P. First-passage time analysis of a one-dimensional diffusion-reaction model: application to protein transport along DNA. BMC Bioinformatics 2011; 12 Suppl 10:S18. [PMID: 22165905 PMCID: PMC3236840 DOI: 10.1186/1471-2105-12-s10-s18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteins search along the DNA for targets, such as transcription initiation sequences, according to one-dimensional diffusion, which is interrupted by micro- and macro-hopping events and intersegmental transfers that occur under close packing conditions. RESULTS A one-dimensional diffusion-reaction model in the form of difference-differential equations is proposed to analyze the nonequilibrium protein sliding kinetics along a segment of bacterial DNA. A renormalization approach is used to derive an expression for the mean first-passage time to arrive at sites downstream of the origin from the occupation probabilities given by the individual transport equations. Monte Carlo simulations are employed to assess the validity of the proposed approach, and all results are interpreted within the context of bacterial transcription. CONCLUSIONS Mean first-passage times decrease with increasing reaction rates, indicating that, on average, surviving proteins more rapidly locate downstream targets than their reaction-free counterparts, but at the price of increasing rarity. Two qualitatively different screening regimes are identified according to whether the search process operates under "small" or "large" values for the dissociation rate of the protein-DNA complex. Lower bounds are placed on the overall search time for varying reactive conditions. Good agreement with experimental estimates requires the reaction rate reside near the transition between both screening regimes, suggesting that biology balances a need for rapid searches against maximum exploration during each round of the sliding phase.
Collapse
Affiliation(s)
- Michael L Mayo
- Environemental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS 39180, USA.
| | | | | |
Collapse
|
44
|
Stamatakis M, Zygourakis K. Deterministic and stochastic population-level simulations of an artificial lac operon genetic network. BMC Bioinformatics 2011; 12:301. [PMID: 21791088 PMCID: PMC3181209 DOI: 10.1186/1471-2105-12-301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 07/26/2011] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The lac operon genetic switch is considered as a paradigm of genetic regulation. This system has a positive feedback loop due to the LacY permease boosting its own production by the facilitated transport of inducer into the cell and the subsequent de-repression of the lac operon genes. Previously, we have investigated the effect of stochasticity in an artificial lac operon network at the single cell level by comparing corresponding deterministic and stochastic kinetic models. RESULTS This work focuses on the dynamics of cell populations by incorporating the above kinetic scheme into two Monte Carlo (MC) simulation frameworks. The first MC framework assumes stochastic reaction occurrence, accounts for stochastic DNA duplication, division and partitioning and tracks all daughter cells to obtain the statistics of the entire cell population. In order to better understand how stochastic effects shape cell population distributions, we develop a second framework that assumes deterministic reaction dynamics. By comparing the predictions of the two frameworks, we conclude that stochasticity can create or destroy bimodality, and may enhance phenotypic heterogeneity. CONCLUSIONS Our results show how various sources of stochasticity act in synergy with the positive feedback architecture, thereby shaping the behavior at the cell population level. Further, the insights obtained from the present study allow us to construct simpler and less computationally intensive models that can closely approximate the dynamics of heterogeneous cell populations.
Collapse
Affiliation(s)
- Michail Stamatakis
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Kyriacos Zygourakis
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
45
|
Kirkilionis M, Janus U, Sbano L. Multi-scale genetic dynamic modelling II: application to synthetic biology: an algorithmic Markov chain based approach. Theory Biosci 2011; 130:183-201. [PMID: 21509695 DOI: 10.1007/s12064-011-0126-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
We model in detail a simple synthetic genetic clock that was engineered in Atkinson et al. (Cell 113(5):597-607, 2003) using Escherichia coli as a host organism. Based on this engineered clock its theoretical description uses the modelling framework presented in Kirkilionis et al. (Theory Biosci. doi: 10.1007/s12064-011-0125-0 , 2011, this volume). The main goal of this accompanying article was to illustrate that parts of the modelling process can be algorithmically automatised once the model framework we called 'average dynamics' is accepted (Sbano and Kirkilionis, WMI Preprint 7/2007, 2008c; Kirkilionis and Sbano, Adv Complex Syst 13(3):293-326, 2010). The advantage of the 'average dynamics' framework is that system components (especially in genetics) can be easier represented in the model. In particular, if once discovered and characterised, specific molecular players together with their function can be incorporated. This means that, for example, the 'gene' concept becomes more clear, for example, in the way the genetic component would react under different regulatory conditions. Using the framework it has become a realistic aim to link mathematical modelling to novel tools of bioinformatics in the future, at least if the number of regulatory units can be estimated. This should hold in any case in synthetic environments due to the fact that the different synthetic genetic components are simply known (Elowitz and Leibler, Nature 403(6767):335-338, 2000; Gardner et al., Nature 403(6767):339-342, 2000; Hasty et al., Nature 420(6912):224-230, 2002). The paper illustrates therefore as a necessary first step how a detailed modelling of molecular interactions with known molecular components leads to a dynamic mathematical model that can be compared to experimental results on various levels or scales. The different genetic modules or components are represented in different detail by model variants. We explain how the framework can be used for investigating other more complex genetic systems in terms of regulation and feedback.
Collapse
|
46
|
Newell CA, Gray JC. Binding of lac repressor-GFP fusion protein to lac operator sites inserted in the tobacco chloroplast genome examined by chromatin immunoprecipitation. Nucleic Acids Res 2010; 38:e145. [PMID: 20484380 PMCID: PMC2919732 DOI: 10.1093/nar/gkq413] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/29/2010] [Accepted: 05/04/2010] [Indexed: 11/12/2022] Open
Abstract
Chromatin immunoprecipitation (ChIP) has been used to detect binding of DNA-binding proteins to sites in nuclear and mitochondrial genomes. Here, we describe a method for detecting protein-binding sites on chloroplast DNA, using modifications to the nuclear ChIP procedures. The method was developed using the lac operator (lacO)/lac repressor (LacI) system from Escherichia coli. The lacO sequences were integrated into a single site between the rbcL and accD genes in tobacco plastid DNA and homoplasmic transplastomic plants were crossed with transgenic tobacco plants expressing a nuclear-encoded plastid-targeted GFP-LacI fusion protein. In the progeny, the GFP-LacI fusion protein could be visualized in living tissues using confocal microscopy, and was found to co-localize with plastid nucleoids. Isolated chloroplasts from the lacO/GFP-LacI plants were lysed, treated with micrococcal nuclease to digest the DNA to fragments of approximately 600 bp and incubated with antibodies to GFP and protein A-Sepharose. PCR analysis on DNA extracted from the immunoprecipitate demonstrated IPTG (isopropylthiogalactoside)-sensitive binding of GFP-LacI to lacO. Binding of GFP-LacI to endogenous sites in plastid DNA showing sequence similarity to lacO was also detected, but required reversible cross-linking with formaldehyde. This may provide a general method for the detection of binding sites on plastid DNA for specific proteins.
Collapse
Affiliation(s)
| | - John C. Gray
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
47
|
Matsumoto Y, Xu Q, Miyazaki S, Kaito C, Farr CL, Axelrod HL, Chiu HJ, Klock HE, Knuth MW, Miller MD, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Sekimizu K, Wilson IA. Structure of a virulence regulatory factor CvfB reveals a novel winged helix RNA binding module. Structure 2010; 18:537-47. [PMID: 20399190 DOI: 10.1016/j.str.2010.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 02/04/2010] [Accepted: 02/06/2010] [Indexed: 12/01/2022]
Abstract
CvfB is a conserved regulatory protein important for the virulence of Staphylococcus aureus. We show here that CvfB binds RNA. The crystal structure of the CvfB ortholog from Streptococcus pneumoniae at 1.4 A resolution reveals a unique RNA binding protein that is formed from a concatenation of well-known structural modules that bind nucleic acids: three consecutive S1 RNA binding domains and a winged helix (WH) domain. The third S1 and the WH domains are required for cooperative RNA binding and form a continuous surface that likely contributes to the RNA interaction. The WH domain is critical to CvfB function and contains a unique sequence motif. Thus CvfB represents a novel assembly of modules for binding RNA.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kaplan HB, Greenberg EP. Overproduction and purification of the luxR gene product: Transcriptional activator of the Vibrio fischeri luminescence system. Proc Natl Acad Sci U S A 2010; 84:6639-43. [PMID: 16578817 PMCID: PMC299138 DOI: 10.1073/pnas.84.19.6639] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression of Vibrio fischeri luminescence genes requires an inducer, termed autoinducer, and a positive regulatory element, the luxR gene product. A plasmid containing luxR under control of a tac promoter was engineered to overproduce this gene product. The overproduced luxR gene product was active in vivo, and its apparent monomeric molecular weight was indistinguishable from that of the protein encoded by luxR under control of its own promoter (M(r) 27,000). The new tac-luxR construct directed the synthesis of large quantities of the luxR gene product in induced Escherichia coli cells lacking other lux genes. In the presence of the other lux genes, overexpression of the tac-luxR construct was not detected. The overproduced luxR gene product, which formed cytoplasmic inclusion bodies, was purified and used in subsequent studies. Nonequilibrium pH gradient electrophoresis indicated that the protein was basic, and the amino-terminal 15 amino acids were sequenced. DNA-binding activity was detected by membrane filter binding assays; under the conditions used, the binding was not lux DNA-specific. Binding of tritium-labeled autoinducer to the luxR gene product was not detected, and autoinducer enhancement of the binding of the luxR gene product to DNA could not be detected reproducibly.
Collapse
Affiliation(s)
- H B Kaplan
- Department of Microbiology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
| | | |
Collapse
|
49
|
Ogata RT, Gilbert W. An amino-terminal fragment of lac repressor binds specifically to lac operator. Proc Natl Acad Sci U S A 2010; 75:5851-4. [PMID: 16592594 PMCID: PMC393073 DOI: 10.1073/pnas.75.12.5851] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have examined the effect of an aminoterminal peptide from the lac repressor (residues 1-59) on the methylation of purines in the lac operator with dimethyl sulfate. The peptide perturbs the methylation of the operator, and the peptide-induced pattern of inhibition and enhancement of methylation, across the operator, closely resembles the pattern induced by intact repressor. This demonstrates that this small amino-terminal peptide binds specifically to the lac operator and that the mechanism of recognition and binding is basically the same as that of intact repressor.
Collapse
Affiliation(s)
- R T Ogata
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
50
|
Zabel P, Jongen-Neven I, van Kammen A. In Vitro Replication of Cowpea Mosaic Virus RNA III. Template Recognition by Cowpea Mosaic Virus RNA Replicase. J Virol 2010; 29:21-33. [PMID: 16789172 PMCID: PMC353065 DOI: 10.1128/jvi.29.1.21-33.1979] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cowpea mosaic virus (CPMV) RNA replicase has been purified about 200-fold from CPMV-infected Vigna unguiculata leaves. Optimal reaction conditions for replicase activity have been established that allow RNA synthesis to proceed for at least 15 h. Using a polymerase assay under conditions optimal for CPMV RNA-directed RNA synthesis, all natural RNA species tested appeared to be able to direct the incorporation of labeled ribonucleotides, whereas synthetic homoribopolymers were either inactive or only slightly active. Using a nitrocellulose membrane filter assay to measure complex formation between the replicase preparation and various RNA species, all natural RNA species tested, except that of the comovirus radish mosaic virus, appeared to be unable to compete with (32)P-labeled CPMV RNA in binding to replicase. We propose that CPMV replicase is actually template specific but does not display this property in a polymerase assay, since labile complexes between heterologous templates and replicase become stabilized by the formation of phosphodiester bonds. From homoribopolymer competition binding experiments we conclude that the polyadenylic acid on the CPMV genome might be a part of the replicase binding site.
Collapse
Affiliation(s)
- P Zabel
- Department of Molecular Biology, Agricultural University, Wageningen, The Netherlands
| | | | | |
Collapse
|