1
|
Obara P, Wolski P, Pańczyk T. Insights into the Molecular Structure, Stability, and Biological Significance of Non-Canonical DNA Forms, with a Focus on G-Quadruplexes and i-Motifs. Molecules 2024; 29:4683. [PMID: 39407611 PMCID: PMC11477922 DOI: 10.3390/molecules29194683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This article provides a comprehensive examination of non-canonical DNA structures, particularly focusing on G-quadruplexes (G4s) and i-motifs. G-quadruplexes, four-stranded structures formed by guanine-rich sequences, are stabilized by Hoogsteen hydrogen bonds and monovalent cations like potassium. These structures exhibit diverse topologies and are implicated in critical genomic regions such as telomeres and promoter regions of oncogenes, playing significant roles in gene expression regulation, genome stability, and cellular aging. I-motifs, formed by cytosine-rich sequences under acidic conditions and stabilized by hemiprotonated cytosine-cytosine (C:C+) base pairs, also contribute to gene regulation despite being less prevalent than G4s. This review highlights the factors influencing the stability and dynamics of these structures, including sequence composition, ionic conditions, and environmental pH. Molecular dynamics simulations and high-resolution structural techniques have been pivotal in advancing our understanding of their folding and unfolding mechanisms. Additionally, the article discusses the therapeutic potential of small molecules designed to selectively bind and stabilize G4s and i-motifs, with promising implications for cancer treatment. Furthermore, the structural properties of these DNA forms are explored for applications in nanotechnology and molecular devices. Despite significant progress, challenges remain in observing these structures in vivo and fully elucidating their biological functions. The review underscores the importance of continued research to uncover new insights into the genomic roles of G4s and i-motifs and their potential applications in medicine and technology. This ongoing research promises exciting developments in both basic science and applied fields, emphasizing the relevance and future prospects of these intriguing DNA structures.
Collapse
Affiliation(s)
| | | | - Tomasz Pańczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland; (P.O.); (P.W.)
| |
Collapse
|
2
|
Khan S, Singh A, Nain N, Kukreti S. Alkali cation-mediated topology displayed by an exonic G-rich sequence of TRPA1 gene. J Biomol Struct Dyn 2023; 41:9997-10008. [PMID: 36458452 DOI: 10.1080/07391102.2022.2150686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022]
Abstract
G-rich sequences are intrinsic parts of the genome, widespread in promoters, telomeres, or other regulatory regions. The in vivo existence and biological significance have established the functional aspect of G-quadruplex structures and thus have developed immense interest in exploring their therapeutic aspects. Herein, using biophysical methods, we examined the structural status and comprehensive cation-dependence of a 17-bp G-rich genomic sequence (SKGT17) located in the coding region of the human TRPA1 gene, known to be associated with various neurovascular, cardiovascular, and respiratory conditions. TRPA1 is primarily seen as a therapeutic target for the development of novel analgesics. Bioinformatics analysis has suggested that 17-bp quadruplex motif is a binding site for transcription factor 'Sp1'. The formation and recognition of SKGT17 G-quadruplex might impact its regulatory functioning. Biophysical studies confirmed that the presence of alkali metal ions facilitated the formation of G-quadruplex in parallel topology. Native gel further substantiated the formation of a biomolecular species. Circular dichroism (CD), UV-thermal melting (Tm), and CD melting confirmed the formation of parallel G-quadruplex with metal ion-dependent stability. The stability of the G-quadruplex formed is found to be significantly high in the presence of K+ ions than that of other ions. Intriguingly, we have also established that this segment of the TRAP1 gene favors G-quadruplex formation over its participation in the corresponding duplex formation under K+ ions conditions. This study attempts to explain the rationale for the stabilization of G-quadruplex in the presence of alkali metal ions and may add to a better understanding and insights into DNA-metal ions interactions.
Collapse
Affiliation(s)
- Shoaib Khan
- Nucleic Acid Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Anju Singh
- Department of Chemistry, Ramjas College, University of Delhi, Delhi, India
| | - Nishu Nain
- Nucleic Acid Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acid Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
3
|
Yutong Huang F, Kumar Lat P, Sen D. Unusual Paradigm for DNA-DNA Recognition and Binding: "Socket-Plug" Complementarity. J Am Chem Soc 2023; 145:3146-3157. [PMID: 36706227 DOI: 10.1021/jacs.2c12514] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DNA is the key informational polymer in biology by virtue of its precisely defined self-assembling properties. Watson-Crick complementarity, which underlies DNA's self-assembly, is required not only in biology but has also proved powerful in the field of nanoscience, where it has been utilized to assemble complex 2D and 3D architectures and nanodevices built from the DNA double-helix. Aside from Watson-Crick base-pairing, however, DNA also participates in alternative base pairing schemes, giving rise to DNA triplexes and G-quadruplexes. Herein, we describe "sticky-ended" DNA triplex-quadruplex composites that specifically recognize and bind to each other using a wholly different logic, "socket-plug" complementarity, a shape-sensing fitting of guanine "prongs" into guanine-lacking "cavities." A remarkable property of this kind of complementarity is the key role played in it by specific counter-cations: thus, exclusive "self" socket-plug recognition occurs over "other" in sodium salt solutions while precisely the reverse occurs in potassium salt solutions. We have used gel electrophoresis, Förster resonance energy transfer, alkylation protection, and structural modeling to study this remarkable fundamental property of DNA, that we anticipate will find wide practical application.
Collapse
Affiliation(s)
- Fiona Yutong Huang
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Prince Kumar Lat
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Dipankar Sen
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
4
|
Zheng BX, Yu J, Long W, Chan KH, Leung ASL, Wong WL. Structurally diverse G-quadruplexes as the noncanonical nucleic acid drug target for live cell imaging and antibacterial study. Chem Commun (Camb) 2023; 59:1415-1433. [PMID: 36636928 DOI: 10.1039/d2cc05945b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The formation of G-quadruplex structures (G4s) in vitro from guanine (G)-rich nucleic acid sequences of DNA and RNA stabilized with monovalent cations, typically K+ and Na+, under physiological conditions, has been verified experimentally and some of them have high-resolution NMR or X-ray crystal structures; however, the biofunction of these special noncanonical secondary structures of nucleic acids has not been fully understood and their existence in vivo is still controversial at present. It is generally believed that the folding and unfolding of G4s in vivo is a transient process. Accumulating evidence has shown that G4s may play a role in the regulation of certain important cellular functions including telomere maintenance, replication, transcription and translation. Therefore, both DNA and RNA G4s of human cancer hallmark genes are recognized as the potential anticancer drug target for the investigation in cancer biology, chemical biology and drug discovery. The relationship between the sequence, structure and stability of G4s, the interaction of G4s with small molecules, and insights into the rational design of G4-selective binding ligands have been intensively studied over the decade. At present, some G4-ligands have achieved a new milestone and successfully entered the human clinical trials for anticancer therapy. Over the past few decades, numerous efforts have been devoted to anticancer therapy; however, G4s for molecular recognition and live cell imaging and for application as antibacterial agents and antibiofilms against antibiotic resistance have been obviously underexplored. The recent advances in G4-ligands in these areas are thus selected and discussed concentratedly in this article in order to shed light on the emerging role of G4s in chemical biology and therapeutic prospects against bacterial infections. In addition, the recently published molecular scaffolds for designing small ligands selectively targeting G4s in live cell imaging, bacterial biofilm imaging, and antibacterial studies are discussed. Furthermore, a number of underexplored G4-targets from the cytoplasmic membrane-associated DNA, the conserved promoter region of K. pneumoniae genomes, the RNA G4-sites in the transcriptome of E. coli and P. aeruginosa, and the mRNA G4-sites in the sequence for coding the vital bacterial FtsZ protein are highlighted to further explore in G4-drug development against human diseases.
Collapse
Affiliation(s)
- Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Jie Yu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Wei Long
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Ka Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
5
|
Lee J, Sung K, Joo SY, Jeong JH, Kim SK, Lee H. Dynamic interaction of BRCA2 with telomeric G-quadruplexes underlies telomere replication homeostasis. Nat Commun 2022; 13:3396. [PMID: 35697743 PMCID: PMC9192595 DOI: 10.1038/s41467-022-31156-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
BRCA2-deficient cells precipitate telomere shortening upon collapse of stalled replication forks. Here, we report that the dynamic interaction between BRCA2 and telomeric G-quadruplex (G4), the non-canonical four-stranded secondary structure, underlies telomere replication homeostasis. We find that the OB-folds of BRCA2 binds to telomeric G4, which can be an obstacle during replication. We further demonstrate that BRCA2 associates with G-triplex (G3)-derived intermediates, which are likely to form during direct interconversion between parallel and non-parallel G4. Intriguingly, BRCA2 binding to G3 intermediates promoted RAD51 recruitment to the telomere G4. Furthermore, MRE11 resected G4-telomere, which was inhibited by BRCA2. Pathogenic mutations at the OB-folds abrogated the binding with telomere G4, indicating that the way BRCA2 associates with telomere is innate to its tumor suppressor activity. Collectively, we propose that BRCA2 binding to telomeric G4 remodels it and allows RAD51-mediated restart of the G4-driven replication fork stalling, simultaneously preventing MRE11-mediated breakdown of telomere. G-quadruplex (G4) can be formed in telomeric DNA. Here the authors show that BRCA2 interacts with telomere G4 structure generated during telomere replication, protecting telomere from nuclease attack.
Collapse
Affiliation(s)
- Junyeop Lee
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Keewon Sung
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - So Young Joo
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Jun-Hyeon Jeong
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea.
| | - Hyunsook Lee
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
6
|
Dutta N, Deb I, Sarzynska J, Lahiri A. Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:21-52. [PMID: 35065168 DOI: 10.1016/j.pbiomolbio.2022.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 05/21/2023]
Abstract
Inosine is one of the most common post-transcriptional modifications. Since its discovery, it has been noted for its ability to contribute to non-Watson-Crick interactions within RNA. Rapidly accumulating evidence points to the widespread generation of inosine through hydrolytic deamination of adenosine to inosine by different classes of adenosine deaminases. Three naturally occurring methyl derivatives of inosine, i.e., 1-methylinosine, 2'-O-methylinosine and 1,2'-O-dimethylinosine are currently reported in RNA modification databases. These modifications are expected to lead to changes in the structure, folding, dynamics, stability and functions of RNA. The importance of the modifications is indicated by the strong conservation of the modifying enzymes across organisms. The structure, binding and catalytic mechanism of the adenosine deaminases have been well-studied, but the underlying mechanism of the catalytic reaction is not very clear yet. Here we extensively review the existing data on the occurrence, biogenesis and functions of inosine and its methyl derivatives in RNA. We also included the structural and thermodynamic aspects of these modifications in our review to provide a detailed and integrated discussion on the consequences of A-to-I editing in RNA and the contribution of different structural and thermodynamic studies in understanding its role in RNA. We also highlight the importance of further studies for a better understanding of the mechanisms of the different classes of deamination reactions. Further investigation of the structural and thermodynamic consequences and functions of these modifications in RNA should provide more useful information about their role in different diseases.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India.
| |
Collapse
|
7
|
Jiang J, Teunens T, Tisaun J, Denuit L, Moucheron C. Ruthenium(II) Polypyridyl Complexes and Their Use as Probes and Photoreactive Agents for G-quadruplexes Labelling. Molecules 2022; 27:1541. [PMID: 35268640 PMCID: PMC8912042 DOI: 10.3390/molecules27051541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their optical and electrochemical properties, ruthenium(II) polypyridyl complexes have been used in a wide array of applications. Since the discovery of the light-switch ON effect of [Ru(bpy)2dppz]2+ when interacting with DNA, the design of new Ru(II) complexes as light-up probes for specific regions of DNA has been intensively explored. Amongst them, G-quadruplexes (G4s) are of particular interest. These structures formed by guanine-rich parts of DNA and RNA may be associated with a wide range of biological events. However, locating them and understanding their implications in biological pathways has proven challenging. Elegant approaches to tackle this challenge relies on the use of photoprobes capable of marking, reversibly or irreversibly, these G4s. Indeed, Ru(II) complexes containing ancillary π-deficient TAP ligands can create a covalently linked adduct with G4s after a photoinduced electron transfer from a guanine residue to the excited complex. Through careful design of the ligands, high selectivity of interaction with G4 structures can be achieved. This allows the creation of specific Ru(II) light-up probes and photoreactive agents for G4 labelling, which is at the core of this review composed of an introduction dedicated to a brief description of G-quadruplex structures and two main sections. The first one will provide a general picture of ligands and metal complexes interacting with G4s. The second one will focus on an exhaustive and comprehensive overview of the interactions and (photo)reactions of Ru(II) complexes with G4s.
Collapse
Affiliation(s)
- Julie Jiang
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
- Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Tisaun
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Laura Denuit
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| |
Collapse
|
8
|
Kaufmann B, Willinger O, Kikuchi N, Navon N, Kermas L, Goldberg S, Amit R. An Oligo-Library-Based Approach for Mapping DNA-DNA Triplex Interactions In Vitro. ACS Synth Biol 2021; 10:1808-1820. [PMID: 34374529 DOI: 10.1021/acssynbio.1c00122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We present Triplex-seq, a deep-sequencing method that systematically maps the interaction space between an oligo library of ssDNA triplex-forming oligos (TFOs) and a particular dsDNA triplex target site (TTS). We demonstrate the method using a randomized oligo library comprising 67 million variants, with five TTSs that differ in guanine (G) content, at two different buffer conditions, denoted pH 5 and pH 7. Our results show that G-rich triplexes form at both pH 5 and pH 7, with the pH 5 set being more stable, indicating that there is a subset of TFOs that form triplexes only at pH 5. In addition, using information analysis, we identify triplex-forming motifs (TFMs), which correspond to minimal functional TFO sequences. We demonstrate, in single-variant verification experiments, that TFOs with these TFMs indeed form a triplex with G-rich TTSs, and that a single mutation in the TFM motif can alleviate binding. Our results show that deep-sequencing platforms can substantially expand our understanding of triplex binding rules and aid in refining the DNA triplex code.
Collapse
Affiliation(s)
- Beate Kaufmann
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Or Willinger
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Nanami Kikuchi
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Noa Navon
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Lisa Kermas
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Sarah Goldberg
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Roee Amit
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
- Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
9
|
G-Quadruplex Structures in Bacteria: Biological Relevance and Potential as an Antimicrobial Target. J Bacteriol 2021; 203:e0057720. [PMID: 33649149 DOI: 10.1128/jb.00577-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA strands consisting of multiple runs of guanines can adopt a noncanonical, four-stranded DNA secondary structure known as G-quadruplex or G4 DNA. G4 DNA is thought to play an important role in transcriptional and translational regulation of genes, DNA replication, genome stability, and oncogene expression in eukaryotic genomes. In other organisms, including several bacterial pathogens and some plant species, the biological roles of G4 DNA and G4 RNA are starting to be explored. Recent investigations showed that G4 DNA and G4 RNA are generally conserved across plant species. In silico analyses of several bacterial genomes identified putative guanine-rich, G4 DNA-forming sequences in promoter regions. The sequences were particularly abundant in certain gene classes, suggesting that these highly diverse structures can be employed to regulate the expression of genes involved in secondary metabolite synthesis and signal transduction. Furthermore, in the pathogen Mycobacterium tuberculosis, the distribution of G4 motifs and their potential role in the regulation of gene transcription advocate for the use of G4 ligands to develop novel antitubercular therapies. In this review, we discuss the various roles of G4 structures in bacterial DNA and the application of G4 DNA as inhibitors or therapeutic agents to address bacterial pathogens.
Collapse
|
10
|
Beyond the double helix: DNA structural diversity and the PDB. J Biol Chem 2021; 296:100553. [PMID: 33744292 PMCID: PMC8063756 DOI: 10.1016/j.jbc.2021.100553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/15/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The determination of the double helical structure of DNA in 1953 remains the landmark event in the development of modern biological and biomedical science. This structure has also been the starting point for the determination of some 2000 DNA crystal structures in the subsequent 68 years. Their structural diversity has extended to the demonstration of sequence-dependent local structure in duplex DNA, to DNA bending in short and long sequences and in the DNA wound round the nucleosome, and to left-handed duplex DNAs. Beyond the double helix itself, in circumstances where DNA sequences are or can be induced to unwind from being duplex, a wide variety of topologies and forms can exist. Quadruplex structures, based on four-stranded cores of stacked G-quartets, are prevalent though not randomly distributed in the human and other genomes and can play roles in transcription, translation, and replication. Yet more complex folds can result in DNAs with extended tertiary structures and enzymatic/catalytic activity. The Protein Data Bank is the depository of all these structures, and the resource where structures can be critically examined and validated, as well as compared one with another to facilitate analysis of conformational and base morphology features. This review will briefly survey the major structural classes of DNAs and illustrate their significance, together with some examples of how the use of the Protein Data Bank by for example, data mining, has illuminated DNA structural concepts.
Collapse
|
11
|
Sengupta A, Roy SS, Chowdhury S. Non-duplex G-Quadruplex DNA Structure: A Developing Story from Predicted Sequences to DNA Structure-Dependent Epigenetics and Beyond. Acc Chem Res 2021; 54:46-56. [PMID: 33347280 DOI: 10.1021/acs.accounts.0c00431] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The story of the non-duplex DNA form known as the G-quadruplex (G4) has traversed a winding path. From initial skepticism followed by debate to a surge in interest, the G4 story intertwines many threads. Starting with computational predictions of a gene regulatory role, which now include epigenetic functions, our group was involved in many of these advances along with many other laboratories. Following a brief background, set in the latter half of the last century when the concept of the G4 as a structure took ground, here we account the developments. This is through a lens that though focused on our groups' research presents work from many other groups that played significant roles. Together these provide a broad perspective to the G4 story. Initially we were intrigued on seeing potential G4 (pG4)-forming sequences, then known to be found primarily at the telomeres and immunoglobin switch regions, occurring throughout the genome and being particularly prevalent in promoters of bacteria. We further observed that pG4s were not only prevalent but also conserved through evolution in promoters of human, chimpanzee, mouse and rat genomes. This was between 2005 and 2007. Encouraged by these partly and partly in response to the view held by many that genome-wide presence of G4s were genomic "accidents", the focus shifted to seeking experimental evidence.In the next year, 2008, two independent findings showed promise. First, on treating human cancer cells with G4-binding ligands, we observed widespread change in gene expression. Second, our search for the missing G4-specific transcription factor, without which, importantly, G4s in promoters posed only half the story, yielded results. We determined how NM23-H2 (also known as NME2 or NDPK-B) interacts with G4s and how interaction of NM23-H2 with a G4 in the promoter of the oncogene c-myc was important for regulation of c-myc transcription. NM23-H2, and subsequently many other similar factors discovered by multiple groups, is possibly giving shape to what might be the "G4-transcriptome". Later, a close look at NM23-H2-G4 interaction in regulation of the human reverse transcriptase gene (hTERT) revealed the role of G4s in local epigenetic modifications. Meanwhile work from others showed how G4s impact histone modifications following replication. Together these show the intrinsic role of DNA sequence, through formation of DNA structure, in epigenetics.More recent work, however, was waiting to reveal aspects that tend to bring forth a completely new understanding of G4s. We observed that the telomere-repeat-binding-factor-2 (TRF2), known canonically to be telomere-associated, binds extensively outside telomeres throughout the genome. Moreover, a large fraction of the non-telomeric TRF2 sites comprise G4s. Second, the extent of non-telomeric TRF2 binding at promoters was dependent on telomere length. Thereby TRF2-induced epigenetic gene regulation was telomere-dependent. Together these implicate underlying connections that show signs of addressing an intriguing unanswered question that takes us back to the beginning: Why are G4s prevalent in two distinct regions, the telomeres and gene promoters?
Collapse
Affiliation(s)
- Antara Sengupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shuvra Shekhar Roy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shantanu Chowdhury
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
|
13
|
Reina C, Cavalieri V. Epigenetic Modulation of Chromatin States and Gene Expression by G-Quadruplex Structures. Int J Mol Sci 2020; 21:E4172. [PMID: 32545267 PMCID: PMC7312119 DOI: 10.3390/ijms21114172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes are four-stranded helical nucleic acid structures formed by guanine-rich sequences. A considerable number of studies have revealed that these noncanonical structural motifs are widespread throughout the genome and transcriptome of numerous organisms, including humans. In particular, G-quadruplexes occupy strategic locations in genomic DNA and both coding and noncoding RNA molecules, being involved in many essential cellular and organismal functions. In this review, we first outline the fundamental structural features of G-quadruplexes and then focus on the concept that these DNA and RNA structures convey a distinctive layer of epigenetic information that is critical for the complex regulation, either positive or negative, of biological activities in different contexts. In this framework, we summarize and discuss the proposed mechanisms underlying the functions of G-quadruplexes and their interacting factors. Furthermore, we give special emphasis to the interplay between G-quadruplex formation/disruption and other epigenetic marks, including biochemical modifications of DNA bases and histones, nucleosome positioning, and three-dimensional organization of chromatin. Finally, epigenetic roles of RNA G-quadruplexes in post-transcriptional regulation of gene expression are also discussed. Undoubtedly, the issues addressed in this review take on particular importance in the field of comparative epigenetics, as well as in translational research.
Collapse
Affiliation(s)
- Chiara Reina
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
14
|
Abstract
Guanine-rich DNA sequences can fold into four-stranded, noncanonical secondary structures called G-quadruplexes (G4s). G4s were initially considered a structural curiosity, but recent evidence suggests their involvement in key genome functions such as transcription, replication, genome stability, and epigenetic regulation, together with numerous connections to cancer biology. Collectively, these advances have stimulated research probing G4 mechanisms and consequent opportunities for therapeutic intervention. Here, we provide a perspective on the structure and function of G4s with an emphasis on key molecules and methodological advances that enable the study of G4 structures in human cells. We also critically examine recent mechanistic insights into G4 biology and protein interaction partners and highlight opportunities for drug discovery.
Collapse
Affiliation(s)
- Jochen Spiegel
- Cancer Research UK, Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Santosh Adhikari
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Shankar Balasubramanian
- Cancer Research UK, Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK
| |
Collapse
|
15
|
Neckles C, Boer RE, Aboreden N, Cross AM, Walker RL, Kim BH, Kim S, Schneekloth JS, Caplen NJ. HNRNPH1-dependent splicing of a fusion oncogene reveals a targetable RNA G-quadruplex interaction. RNA (NEW YORK, N.Y.) 2019; 25:1731-1750. [PMID: 31511320 PMCID: PMC6859848 DOI: 10.1261/rna.072454.119] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/08/2019] [Indexed: 05/05/2023]
Abstract
The primary oncogenic event in ∼85% of Ewing sarcomas is a chromosomal translocation that generates a fusion oncogene encoding an aberrant transcription factor. The exact genomic breakpoints within the translocated genes, EWSR1 and FLI1, vary; however, in EWSR1, breakpoints typically occur within introns 7 or 8. We previously found that in Ewing sarcoma cells harboring EWSR1 intron 8 breakpoints, the RNA-binding protein HNRNPH1 facilitates a splicing event that excludes EWSR1 exon 8 from the EWS-FLI1 pre-mRNA to generate an in-frame mRNA. Here, we show that the processing of distinct EWS-FLI1 pre-mRNAs by HNRNPH1, but not other homologous family members, resembles alternative splicing of transcript variants of EWSR1 We demonstrate that HNRNPH1 recruitment is driven by guanine-rich sequences within EWSR1 exon 8 that have the potential to fold into RNA G-quadruplex structures. Critically, we demonstrate that an RNA mimetic of one of these G-quadruplexes modulates HNRNPH1 binding and induces a decrease in the growth of an EWSR1 exon 8 fusion-positive Ewing sarcoma cell line. Finally, we show that EWSR1 exon 8 fusion-positive cell lines are more sensitive to treatment with the pan-quadruplex binding molecule, pyridostatin (PDS), than EWSR1 exon 8 fusion-negative lines. Also, the treatment of EWSR1 exon 8 fusion-positive cells with PDS decreases EWS-FLI1 transcriptional activity, reversing the transcriptional deregulation driven by EWS-FLI1. Our findings illustrate that modulation of the alternative splicing of EWS-FLI1 pre-mRNA is a novel strategy for future therapeutics against the EWSR1 exon 8 containing fusion oncogenes present in a third of Ewing sarcoma.
Collapse
Affiliation(s)
- Carla Neckles
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Robert E Boer
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Nicholas Aboreden
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Allison M Cross
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Robert L Walker
- Molecular Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Bong-Hyun Kim
- CCR Collaborative Bioinformatics Resource, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, USA
| | - Suntae Kim
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
O'Hagan MP, Morales JC, Galan MC. Binding and Beyond: What Else Can G-Quadruplex Ligands Do? European J Org Chem 2019. [DOI: 10.1002/ejoc.201900692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Juan C. Morales
- Instituto de Parasitología y Biomedicina “López Neyra”; Consejo Superior de Investigaciones Científicas (CSIC); PTS Granada; Avenida del Conocimiento 17 18016 Armilla, Granada Spain
| | - M. Carmen Galan
- School of Chemistry; University of Bristol; Cantock's Close BS8 1TS UK
| |
Collapse
|
17
|
Bulged and Canonical G-Quadruplex Conformations Determine NDPK Binding Specificity. Molecules 2019; 24:molecules24101988. [PMID: 31126138 PMCID: PMC6572678 DOI: 10.3390/molecules24101988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 11/17/2022] Open
Abstract
Guanine-rich DNA strands can adopt tertiary structures known as G-quadruplexes (G4s) that form when Hoogsteen base-paired guanines assemble as planar stacks, stabilized by a central cation like K+. In this study, we investigated the conformational heterogeneity of a G-rich sequence from the 5′ untranslated region of the Zea mayshexokinase4 gene. This sequence adopted an extensively polymorphic G-quadruplex, including non-canonical bulged G-quadruplex folds that co-existed in solution. The nature of this polymorphism depended, in part, on the incorporation of different sets of adjacent guanines into a quadruplex core, which permitted the formation of the different conformations. Additionally, we showed that the maize homolog of the human nucleoside diphosphate kinase (NDPK) NM23-H2 protein—ZmNDPK1—specifically recognizes and promotes formation of a subset of these conformations. Heteromorphic G-quadruplexes play a role in microorganisms’ ability to evade the host immune system, so we also discuss how the underlying properties that determine heterogeneity of this sequence could apply to microorganism G4s.
Collapse
|
18
|
Non-duplex G-Quadruplex Structures Emerge as Mediators of Epigenetic Modifications. Trends Genet 2018; 35:129-144. [PMID: 30527765 DOI: 10.1016/j.tig.2018.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
Abstract
The role of non-duplex DNA, the guanine-quadruplex structure in particular, is becoming widely appreciated. Increasing evidence in the last decade implicates quadruplexes in important processes such as transcription and replication. Interestingly, more recent work suggests roles for quadruplexes, in association with quadruplex-interacting proteins, in epigenetics through both DNA and histone modifications. Here, we review the effect of the quadruplex structure on post-replication epigenetic memory and quadruplex-induced promoter DNA/histone modifications. Furthermore, we highlight the epigenetic state of the telomerase promoter where quadruplexes could play a key regulatory role. Finally, we discuss the possibility that DNA structures such as quadruplexes, within a largely duplex DNA background, could act as molecular anchors for locally induced epigenetic modifications.
Collapse
|
19
|
Zarudnaya MI, Kolomiets IM, Potyahaylo AL, Hovorun DM. Structural transitions in poly(A), poly(C), poly(U), and poly(G) and their possible biological roles. J Biomol Struct Dyn 2018; 37:2837-2866. [PMID: 30052138 DOI: 10.1080/07391102.2018.1503972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The homopolynucleotide (homo-oligonucleotide) tracts function as regulatory elements at various stages of mRNAs life cycle. Numerous cellular proteins specifically bind to these tracts. Among them are the different poly(A)-binding proteins, poly(C)-binding proteins, multifunctional fragile X mental retardation protein which binds specifically both to poly(G) and poly(U) and others. Molecular mechanisms of regulation of gene expression mediated by homopolynucleotide tracts in RNAs are not fully understood and the structural diversity of these tracts can contribute substantially to this regulation. This review summarizes current knowledge on different forms of homoribopolynucleotides, in particular, neutral and acidic forms of poly(A) and poly(C), and also biological relevance of homoribopolynucleotide (homoribo-oligonucleotide) tracts is discussed. Under physiological conditions, the acidic forms of poly(A) and poly(C) can be induced by proton transfer from acidic amino acids of proteins to adenine and cytosine bases. Finally, we present potential mechanisms for the regulation of some biological processes through the formation of intramolecular poly(A) duplexes.
Collapse
Affiliation(s)
- Margarita I Zarudnaya
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Iryna M Kolomiets
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Andriy L Potyahaylo
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , Kyiv , Ukraine
| |
Collapse
|
20
|
Rajasekhar B, Kumar C, Premkumar G, Riyaz MAB, Lakshmi PTV, Swu T. Computational studies on G-quadruplex DNA-stabilizing property of novel Wittig-based Schiff-Base ligands and their copper(II) complexes. Struct Chem 2018. [DOI: 10.1007/s11224-018-1229-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Abstract
Minima of the electric field and positions of K+ and Na+ (zero of the x-coordinate is the center of the cavity).
Collapse
Affiliation(s)
- Giovanni Villani
- Istituto di Chimica dei Composti OrganoMetallici
- ICCOM – UOS Pisa
- Area della Ricerca del CNR
- I-56124 Pisa
- Italy
| |
Collapse
|
22
|
He L, Meng Z, Xie YQ, Chen X, Li T, Shao F. Aza-bridged bisphenanthrolinyl Pt(II) complexes: Efficient stabilization and topological selectivity on telomeric G-quadruplexes. J Inorg Biochem 2017; 166:135-140. [DOI: 10.1016/j.jinorgbio.2016.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/30/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022]
|
23
|
Abstract
Quadruplex-forming sequences are widely prevalent in human and other genomes, including bacterial ones. These sequences are over-represented in eukaryotic telomeres, promoters, and 5' untranslated regions. They can form quadruplex structures, which may be transient in many situations in normal cells since they can be effectively resolved by helicase action. Mutated helicases in cancer cells are unable to unwind quadruplexes, which are impediments to transcription, translation, or replication, depending on their location within a particular gene. Small molecules that can stabilize quadruplex structures augment these effects and produce cell and proliferation growth inhibition. This article surveys the chemical biology of quadruplexes. It critically examines the major classes of quadruplex-binding small molecules that have been developed to date and the various approaches to discovering selective agents. The challenges of requiring (and achieving) small-molecule targeted selectivity for a particular quadruplex are discussed in relation to the potential of these small molecules as clinically useful therapeutic agents.
Collapse
Affiliation(s)
- Stephen Neidle
- UCL School of Pharmacy, University College London , 29-39 Brunswick Square, London WC1N 1AX, U.K
| |
Collapse
|
24
|
Largy E, Mergny JL, Gabelica V. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability. Met Ions Life Sci 2016; 16:203-58. [PMID: 26860303 DOI: 10.1007/978-3-319-21756-7_7] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G-quadruplexes are guanine-rich nucleic acids that fold by forming successive quartets of guanines (the G-tetrads), stabilized by intra-quartet hydrogen bonds, inter-quartet stacking, and cation coordination. This specific although highly polymorphic type of secondary structure deviates significantly from the classical B-DNA duplex. G-quadruplexes are detectable in human cells and are strongly suspected to be involved in a number of biological processes at the DNA and RNA levels. The vast structural polymorphism exhibited by G-quadruplexes, together with their putative biological relevance, makes them attractive therapeutic targets compared to canonical duplex DNA. This chapter focuses on the essential and specific coordination of alkali metal cations by G-quadruplex nucleic acids, and most notably on studies highlighting cation-dependent dissimilarities in their stability, structure, formation, and interconversion. Section 1 surveys G-quadruplex structures and their interactions with alkali metal ions while Section 2 presents analytical methods used to study G-quadruplexes. The influence of alkali cations on the stability, structure, and kinetics of formation of G-quadruplex structures of quadruplexes will be discussed in Sections 3 and 4. Section 5 focuses on the cation-induced interconversion of G-quadruplex structures. In Sections 3 to 5, we will particularly emphasize the comparisons between cations, most often K(+) and Na(+) because of their prevalence in the literature and in cells.
Collapse
Affiliation(s)
- Eric Largy
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France.,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France
| | - Jean-Louis Mergny
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| | - Valérie Gabelica
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| |
Collapse
|
25
|
Kinoshita M, Takaya S, Shibata T, Hemmi H, Yamamoto Y. NMR Detection and Characterization of I-quartets in Parallel DNA Quadruplexes. CHEM LETT 2015. [DOI: 10.1246/cl.150383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | - Hikaru Hemmi
- National Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | | |
Collapse
|
26
|
Bazzi S, Novotný J, Yurenko YP, Marek R. Designing a New Class of Bases for Nucleic Acid Quadruplexes and Quadruplex-Active Ligands. Chemistry 2015; 21:9414-25. [PMID: 26032561 DOI: 10.1002/chem.201500743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 01/13/2023]
Abstract
A new class of quadruplex nucleobases, derived from 3-deazaguanine, has been designed for various applications as smart quadruplex ligands as well as quadruplex-based aptamers, receptors, and sensors. An efficient strategy for modifying the guanine quadruplex core has been developed and tested by using quantum chemistry methods. Several potential guanine derivatives modified at the 3- or 8-position or both are analyzed, and the results compared to reference systems containing natural guanine. Analysis of the formation energies (BLYP-D3(BJ)/def2-TZVPP level of theory, in combination with the COSMO model for water) in model systems consisting of two and three stacked tetrads with Na(+) /K(+) ion(s) inside the internal channel indicates that the formation of structures with 3-halo-3-deazaguanine bases leads to a substantial gain in energy, as compared to the corresponding reference guanine complexes. The results cast light on changes in the noncovalent interactions (hydrogen bonding, stacking, and ion coordination) in a quadruplex stem upon modification of the guanine core. In particular, the enhanced stability of the modified quadruplexes was shown to originate mainly from increased π-π stacking. Our study suggests the 3-halo-3-deazaguanine skeleton as a potential building unit for quadruplex systems and smart G-quadruplex ligands.
Collapse
Affiliation(s)
- Sophia Bazzi
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic).,National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic)
| | - Jan Novotný
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic)
| | - Yevgen P Yurenko
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic)
| | - Radek Marek
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic). .,National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic).
| |
Collapse
|
27
|
Huang YC, Yu HZ, Sen D. DNA mechatronic devices switched by K+and by Sr2+are structurally, topologically, and electronically distinct. Biopolymers 2015; 103:460-8. [DOI: 10.1002/bip.22595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Yu Chuan Huang
- Department of Molecular Biology & Biochemistry; Simon Fraser University; Burnaby B C V5A 1S6 Canada
| | - Hua-Zhong Yu
- Department of Molecular Biology & Biochemistry; Simon Fraser University; Burnaby B C V5A 1S6 Canada
- Department of Chemistry; Simon Fraser University; Burnaby British Columbia V5A 1S6 Canada
| | - Dipankar Sen
- Department of Molecular Biology & Biochemistry; Simon Fraser University; Burnaby B C V5A 1S6 Canada
- Department of Chemistry; Simon Fraser University; Burnaby British Columbia V5A 1S6 Canada
| |
Collapse
|
28
|
Chaubey AK, Dubey KD, Ojha RP. MD simulation of LNA-modified human telomeric G-quadruplexes: a free energy calculation. Med Chem Res 2015. [DOI: 10.1007/s00044-014-1182-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Ilyinsky NS, Varizhuk AM, Beniaminov AD, Puzanov MA, Shchyolkina AK, Kaluzhny DN. G-quadruplex ligands: Mechanisms of anticancer action and target binding. Mol Biol 2014. [DOI: 10.1134/s0026893314060077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Mechatronic DNA devices driven by a G-quadruplex-binding platinum ligand. Bioorg Med Chem 2014; 22:4376-83. [PMID: 24909681 DOI: 10.1016/j.bmc.2014.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 01/18/2023]
Abstract
Contractile duplexes are DNA double helices that incorporate two strategically placed patches of guanine-guanine (G·G) base mismatches. Such duplexes are cation-driven mechatronic devices, able to toggle between states with distinct mechanical and charge conduction properties. In aqueous lithium chloride solution contractile duplexes have an extended (E) and poorly conductive conformation; however, potassium ions drive them to a relatively conductive and structurally contracted (C) conformation, via intramolecular G-quadruplex formation. Here, we report that even in the absence of K(+) ions, a known G-quadruplex binding ligand, Pt-PIP [phenylphenanthroimidazole ethylenediamine platinum(II)] efficiently promotes the E→C transition, while a poor binder, Pt-bpy [bipyridine ethylenediamine platinum(II)], does not promote this transition. An examination of E→C transitions within two different designs for DNA contractile helices found an unexpected complexity: the formation of distinct C states, both electrically conductive, but possessing dissimilar DNA topologies. Ligand-driven DNA mechatronic devices such as these may constitute prototypes for electronic biosensors that identify G-quadruplex binding ligands.
Collapse
|
31
|
G-quadruplexes as sensing probes. Molecules 2013; 18:14760-79. [PMID: 24288003 PMCID: PMC6270327 DOI: 10.3390/molecules181214760] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/13/2013] [Accepted: 11/13/2013] [Indexed: 01/09/2023] Open
Abstract
Guanine-rich sequences of DNA are able to create tetrastranded structures known as G-quadruplexes; they are formed by the stacking of planar G-quartets composed of four guanines paired by Hoogsteen hydrogen bonding. G-quadruplexes act as ligands for metal ions and aptamers for various molecules. Interestingly, the G-quadruplexes form a complex with anionic porphyrin hemin and exhibit peroxidase-like activity. This review focuses on overview of sensing techniques based on G-quadruplex complexes with anionic porphyrins for detection of various analytes, including metal ions such as K+, Ca2+, Ag+, Hg2+, Cu2+, Pb2+, Sr2+, organic molecules, nucleic acids, and proteins. Principles of G-quadruplex-based detection methods involve DNA conformational change caused by the presence of analyte which leads to a decrease or an increase in peroxidase activity, fluorescence, or electrochemical signal of the used probe. The advantages of various detection techniques are also discussed.
Collapse
|
32
|
Interactions of G-quadruplex DNA binding site with berberine derivatives and construct a structure-based QSAR using docking descriptors. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0733-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Molecular basis of recognition of quadruplexes human telomere and c-myc promoter by the putative anticancer agent sanguinarine. Biochim Biophys Acta Gen Subj 2013; 1830:4189-201. [DOI: 10.1016/j.bbagen.2013.03.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/19/2013] [Accepted: 03/26/2013] [Indexed: 01/24/2023]
|
34
|
Müller S, Sanders DA, Di Antonio M, Matsis S, Riou JF, Rodriguez R, Balasubramanian S. Pyridostatin analogues promote telomere dysfunction and long-term growth inhibition in human cancer cells. Org Biomol Chem 2012; 10:6537-46. [PMID: 22790277 PMCID: PMC3700226 DOI: 10.1039/c2ob25830g] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/21/2012] [Indexed: 01/10/2023]
Abstract
The synthesis, biophysical and biological evaluation of a series of G-quadruplex interacting small molecules based on a N,N'-bis(quinolinyl)pyridine-2,6-dicarboxamide scaffold is described. The synthetic analogues were evaluated for their ability to stabilize telomeric G-quadruplex DNA, some of which showed very high stabilization potential associated with high selectivity over double-stranded DNA. The compounds exhibited growth arrest of cancer cells with detectable selectivity over normal cells. Long-time growth arrest was accompanied by senescence, where telomeric dysfunction is a predominant mechanism together with the accumulation of restricted DNA damage sites in the genome. Our data emphasize the potential of a senescence-mediated anticancer therapy through the use of G-quadruplex targeting small molecules based on the molecular framework of pyridostatin.
Collapse
Affiliation(s)
- Sebastian Müller
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336347
| | - Deborah A. Sanders
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336347
| | - Marco Di Antonio
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336347
| | - Stephanos Matsis
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336347
| | - Jean-François Riou
- Regulation et Dynamique des Genomes , Museum National d'Histoire Naturelle , INSERM U565 , CNRS UMR 7196 , Paris , France
| | - Raphaël Rodriguez
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336347
| | - Shankar Balasubramanian
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336347
- Cancer Research UK , Cambridge Research Institute , Li Ka Shing Center , Cambridge , CB2 0RE , UK
- School of Clinical Medicine , University of Cambridge , Cambridge , CB2 0SP , UK
| |
Collapse
|
35
|
Wu G, Zhu J. NMR studies of alkali metal ions in organic and biological solids. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2012; 61:1-70. [PMID: 22340207 DOI: 10.1016/j.pnmrs.2011.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 05/31/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada.
| | | |
Collapse
|
36
|
Kwan IC, She YM, Wu G. Nuclear magnetic resonance and mass spectrometry studies of 2′,3′,5′-O-triacetylguanosine self-assembly in the presence of alkaline earth metal ions (Ca2+, Sr2+, Ba2+). CAN J CHEM 2011. [DOI: 10.1139/v10-179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report structural determination of cation-templated self-assembly of a guanosine derivative, 2′,3′,5′-O-triacetylguanosine (TAG), in the presence of three alkaline earth metal ions (Ca2+, Sr2+, and Ba2+) in CDCl3. Using a combination of nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (ESI-MS) methods, we have found that TAG molecules form discrete octamers in the form of [TAG]8M2+ (M2+ = Ca2+, Sr2+, and Ba2+), which is composed of two G-quartets and a sandwiched metal ion. We have determined the ability of the three alkaline earth metal ions to promote TAG self-assembly (relative binding affinity) to be Sr2+ ≫ Ba2+ > Ca2+. More importantly, we have used two-dimensional (2D) NMR methods to determine the structural details of [TAG]8Sr2+. In particular, we found that each octamer consists of an all-anti G-quartet stacking on top of an all-syn G-quartet in a tail-to-head fashion with a twist angle of 45° between the two G-quartets. This TAG octamer structure represents a unique case quite different from other lipophilic guanosine octamers reported in the literature.
Collapse
Affiliation(s)
- Irene C.M. Kwan
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Yi-Min She
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Gang Wu
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
37
|
Ji X, Sun H, Zhou H, Xiang J, Tang Y, Zhao C. Research Progress of RNA Quadruplex. Nucleic Acid Ther 2011; 21:185-200. [DOI: 10.1089/nat.2010.0272] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xiaohui Ji
- Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, Beijing Key Laboratory of Gene Engineering Drugs and Biological Technology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hongxia Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Huaxi Zhou
- Department of Systems Science, School of Management, Beijing Normal University, Beijing, China
| | - Junfeng Xiang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Changqi Zhao
- Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, Beijing Key Laboratory of Gene Engineering Drugs and Biological Technology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
38
|
Ji X, Sun H, Zhou H, Xiang J, Tang Y, Zhao C. Research Progress of RNA Quadruplex. Oligonucleotides 2011:121102072334007. [PMID: 21574857 DOI: 10.1089/oli.2010.0272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
RNA/DNA sequences rich in guanine (G) can form a 4-strand structure, G-quadruplex, which has been extensively researched and observed in mammalian, fungi, and plants, with in vivo existence in eukaryotic cells. Compared with DNA quadruplex, the potential existence of RNA quadruplex appears to be generally rare; however, it is believed by some researchers to be more inevitable in vivo and speculated to play an important role where it exists. Recently, researches concerning the function of G-quadruplexes in RNAs commence, making much progress. However, there is no available review particularly focusing on RNA quadruplex till now as we know. Therefore, we decide to give a review to comprehensively summarize research progress on it. This review highlights the diverse topologies for RNA quadruplex structure and its effect factors; outlines the current knowledge of RNA quadruplex's physiological functions in biological systems, especially in gene expression; and presents the prospects of RNA quadruplex.
Collapse
Affiliation(s)
- Xiaohui Ji
- 1 Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, Beijing Key Laboratory of Gene Engineering Drugs and Biological Technology, College of Life Sciences, Beijing Normal University , Beijing, China
| | | | | | | | | | | |
Collapse
|
39
|
Shapiro AB, Hajec L, Gao N. High-throughput, homogeneous, fluorescence intensity-based measurement of adenosine diphosphate and other ribonucleoside diphosphates with nanomolar sensitivity. Anal Biochem 2011; 415:190-6. [PMID: 21570943 DOI: 10.1016/j.ab.2011.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
A new, homogeneous, high-throughput-compatible assay method is described for the fluorescence-based quantitation of nanomolar concentrations of ribonucleoside diphosphates (rNDPs). The principle of the method is the conversion of the rNDPs to RNA by the enzyme polynucleotide phosphorylase (EC 2.7.7.8) and detection of the RNA by the increased fluorescence of a commercial nucleic acid detection dye. A commercial RNA homopolymer complementary to the RNA product is included to increase the sensitivity for ADP and UDP. Standard curves for nanomolar concentrations of ADP, UDP, GDP, and CDP are shown. The assay detected 75 nM ADP produced by the pyruvate kinase-catalyzed phosphorylation of pyruvate with a signal-to-baseline ratio of 2.8. The assay may be used in either a continuous or a discontinuous mode.
Collapse
Affiliation(s)
- Adam B Shapiro
- Bioscience Department, Infection Innovative Medicines, AstraZeneca R&D Boston, Waltham, MA 02451, USA.
| | | | | |
Collapse
|
40
|
Zhou W, Brand NJ, Ying L. G-quadruplexes-novel mediators of gene function. J Cardiovasc Transl Res 2011; 4:256-70. [PMID: 21302011 DOI: 10.1007/s12265-011-9258-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 01/24/2011] [Indexed: 11/30/2022]
Abstract
Since the famous double-helix model was proposed, chromosomal DNA has been regarded as a rigid molecule containing the genetic information of an organism. It is clear now that DNA can adopt many transient, complex structures that can perform different biological functions. The G4 DNA (also called DNA G-quadruplex or G-tetraplex), a four-stranded DNA structure composed of stacked G-tetrads (guanine tetrads), has attracted much attention during the past two decades due to its ability to adopt a variety of structures and its possible biological functions. This review gives a glimpse on the structural diversity and biophysical properties of these fascinating DNA structures. Common methods that are widely used in investigating biophysical properties and biological functions of G4 DNA are described briefly. Next, bioinformatics studies that indicate evidence of evolutionary selection and potential functions of G4 DNA are discussed. Finally, examples of various biological functions of different G4 DNA are given, and potential roles of G4 DNA in respect of cardiovascular science are discussed.
Collapse
Affiliation(s)
- Wenhua Zhou
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, UK.
| | | | | |
Collapse
|
41
|
González V, Hurley LH. The C-terminus of nucleolin promotes the formation of the c-MYC G-quadruplex and inhibits c-MYC promoter activity. Biochemistry 2010; 49:9706-14. [PMID: 20932061 PMCID: PMC2976822 DOI: 10.1021/bi100509s] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleolin, the most abundant nucleolar phosphoprotein of eukaryotic cells, is known primarily for its role in ribosome biogenesis and cell proliferation. It is, however, a multifunctional protein that, depending on the cellular context, can drive either cell proliferation or apoptosis. Our laboratory recently demonstrated that nucleolin can function as a repressor of c-MYC transcription by binding to and stabilizing the formation of a G-quadruplex structure in a region of the c-MYC promoter responsible for controlling 85-90% of c-MYC's transcriptional activity. In this study, we investigate the structural elements of nucleolin that are required for c-MYC repression. The effect of nucleolin deletion mutants on the formation and stability of the c-MYC G-quadruplex, as well as c-MYC transcriptional activity, was assessed by circular dichroism spectropolarimetry, thermal stability, and in vitro transcription. Here we report that nucleolin's RNA binding domains 3 and 4, as well as the arginine-glycine-glycine (RGG) domain, are required to repress c-MYC transcription.
Collapse
Affiliation(s)
- Verónica González
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Laurence H. Hurley
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
- University of Arizona, BIO5 Institute, Tucson, Arizona 85721
- University of Arizona, Arizona Cancer Center, Tucson, Arizona 85724
| |
Collapse
|
42
|
|
43
|
|
44
|
Lena S, Masiero S, Pieraccini S, Spada GP. Guanosine hydrogen-bonded scaffolds: a new way to control the bottom-up realisation of well-defined nanoarchitectures. Chemistry 2009; 15:7792-7806. [PMID: 19421976 DOI: 10.1002/chem.200802506] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Over the last two decades, guanosine-related molecules have been of interest in different areas, ranging from structural biology to medicinal chemistry, supramolecular chemistry and nanotechnology. The guanine base is a multiple hydrogen-bonding unit, capable also of binding to cations, and fits very well with contemporary studies in supramolecular chemistry, self-assembly and non-covalent synthesis. This Concepts article, after reviewing on the diversification of self-organised assemblies from guanosine-based low-molecular-weight molecules, will mainly focus on the use of guanine moiety as a potential scaffold for designing functional materials of tailored physical properties.
Collapse
Affiliation(s)
- Stefano Lena
- Dipartimento di Chimica Organica A. Mangini, Alma Mater Studiorum-Università di Bologna, Via San Giacomo 11, 40126 Bologna, Italy
| | | | | | | |
Collapse
|
45
|
Nikan M, Sherman JC. Cation-Complexation Behavior of Template-Assembled Synthetic G-Quartets. J Org Chem 2009; 74:5211-8. [DOI: 10.1021/jo9001245] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mehran Nikan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, Canada V6T 1Z1
| | - John C. Sherman
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, Canada V6T 1Z1
| |
Collapse
|
46
|
Chakraborty S, Sharma S, Maiti PK, Krishnan Y. The poly dA helix: a new structural motif for high performance DNA-based molecular switches. Nucleic Acids Res 2009; 37:2810-7. [PMID: 19279188 PMCID: PMC2685084 DOI: 10.1093/nar/gkp133] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report a pH-dependent conformational transition in short, defined homopolymeric deoxyadenosines (dA15) from a single helical structure with stacked nucleobases at neutral pH to a double-helical, parallel-stranded duplex held together by AH+-H+A base pairs at acidic pH. Using native PAGE, 2D NMR, circular dichroism (CD) and fluorescence spectroscopy, we have characterized the two different pH dependent forms of dA15. The pH-triggered transition between the two defined helical forms of dA15 is characterized by CD and fluorescence. The kinetics of this conformational switch is found to occur on a millisecond time scale. This robust, highly reversible, pH-induced transition between the two well-defined structured states of dA15 represents a new molecular building block for the construction of quick-response, pH-switchable architectures in structural DNA nanotechnology.
Collapse
|
47
|
Drewe WC, Nanjunda R, Gunaratnam M, Beltran M, Parkinson GN, Reszka AP, Wilson WD, Neidle S. Rational design of substituted diarylureas: a scaffold for binding to G-quadruplex motifs. J Med Chem 2009; 51:7751-67. [PMID: 19053833 DOI: 10.1021/jm801245v] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The design and synthesis of a series of urea-based nonpolycyclic aromatic ligands with alkylaminoanilino side chains as telomeric and genomic G-quadruplex DNA interacting agents are described. Their interactions with quadruplexes have been examined by means of fluorescent resonance energy transfer melting, circular dichroism, and surface plasmon resonance-based assays. These validate the design concept for such urea-based ligands and also show that they have significant selectivity over duplex DNA, as well as for particular G-quadruplexes. The ligand-quadruplex complexes were investigated by computational molecular modeling, providing further information on structure-activity relationships. Preliminary biological studies using short-term cell growth inhibition assays show that some of the ligands have cancer cell selectivity, although they appear to have low potency for intracellular telomeric G-quadruplex structures, suggesting that their cellular targets may be other, possibly oncogene-related quadruplexes.
Collapse
Affiliation(s)
- William C Drewe
- The Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Neidle S, Parkinson GN. Quadruplex DNA crystal structures and drug design. Biochimie 2008; 90:1184-96. [DOI: 10.1016/j.biochi.2008.03.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
|
49
|
Torigoe H. Fission yeast telomeric DNA binding protein Pot1 has the ability to unfold tetraplex structure of telomeric DNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:1255-60. [PMID: 18066763 DOI: 10.1080/15257770701528230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To understand the regulation mechanism of fission yeast telomeric DNA, we analyzed the structural properties of 4Gn: d(G(n)TTAC)(4) (n = 3, 4) and their interaction with the single-stranded telomeric DNA binding domain of telomere-binding protein Pot1 (Pot1DBD). 4G4 adopted only an antiparallel tetraplex in spite of a mixture of parallel and antiparallel tetraplexes of 4G3. The antiparallel tetraplex of 4G4 became unfolded upon the interaction with Pot1DBD. Considering that the antiparallel tetraplex inhibits telomerase-mediated telomere elongation, we conclude that the ability of Pot1 to unfold the antiparallel tetraplex is required for telomerase-mediated telomere regulation.
Collapse
Affiliation(s)
- Hidetaka Torigoe
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
50
|
Petrovic AG, Polavarapu PL. The quadruplex-duplex structural transition of polyriboguanylic acid. J Phys Chem B 2008; 112:2245-54. [PMID: 18225881 DOI: 10.1021/jp0758723] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vibrational infrared (IR) absorption and vibrational circular dichroism (VCD) spectral changes of polyriboguanylic acid (polyG) as a function of time, temperature and pH have been investigated to establish how changes in spectral features relate to the structural modifications of polyG. From the progression of IR and VCD spectral features with respect to time, it is observed that stabilization of the quadruplex structure at pH 6.4 (near-neutral environment) takes place within 5 days. This stabilization process is most clearly evidenced by a downshift of the carbonyl absorption band and the corresponding positive VCD couplet, from 1689 to approximately 1682 cm(-1) in time. Time-induced spectral modifications also indicated that, in an acidic environment (pH 3.1) and within a 5 day waiting period, polyG develops a duplex structure. An additional positive VCD couplet associated with an absorption band at 1589 cm(-1) is identified as a marker of the polyG duplex structure. From the progression of spectral features with respect to temperature at pH 6.4, it is found that heating induces structural changes that favor the formation of a duplex structure. This duplex structure, at pH 6.4, would not form at room temperature simply by the passage of time. When polyG is in an acidic environment (pH 3.1), heating accelerates the conversion to the duplex structure that could also be obtained with passage of time at that pH. On the basis of the comparison of experimental and quantum theoretical VCD spectra for polyG, the key spectral signature for the quadruplex form is considered to be a single positive VCD couplet, while the spectral signature for a duplex form is considered to contain an additional positive VCD couplet at a lower frequency.
Collapse
Affiliation(s)
- Ana G Petrovic
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|