1
|
Kwiatek L, Landry-Voyer AM, Latour M, Yague-Sanz C, Bachand F. PABPN1 prevents the nuclear export of an unspliced RNA with a constitutive transport element and controls human gene expression via intron retention. RNA (NEW YORK, N.Y.) 2023; 29:644-662. [PMID: 36754576 PMCID: PMC10158996 DOI: 10.1261/rna.079294.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/12/2023] [Indexed: 05/06/2023]
Abstract
Intron retention is a type of alternative splicing where one or more introns remain unspliced in a polyadenylated transcript. Although many viral systems are known to translate proteins from mRNAs with retained introns, restriction mechanisms generally prevent export and translation of incompletely spliced mRNAs. Here, we provide evidence that the human nuclear poly(A)-binding protein, PABPN1, functions in such restrictions. Using a reporter construct in which nuclear export of an incompletely spliced mRNA is enhanced by a viral constitutive transport element (CTE), we show that PABPN1 depletion results in a significant increase in export and translation from the unspliced CTE-containing transcript. Unexpectedly, we find that inactivation of poly(A)-tail exosome targeting by depletion of PAXT components had no effect on export and translation of the unspliced reporter mRNA, suggesting a mechanism largely independent of nuclear RNA decay. Interestingly, a PABPN1 mutant selectively defective in stimulating poly(A) polymerase elongation strongly enhanced the expression of the unspliced, but not of intronless, reporter transcripts. Analysis of RNA-seq data also revealed that PABPN1 controls the expression of many human genes via intron retention. Notably, PABPN1-dependent intron retention events mostly affected 3'-terminal introns and were insensitive to PAXT and NEXT deficiencies. Our findings thus disclose a role for PABPN1 in restricting nuclear export of intron-retained transcripts and reinforce the interdependence between terminal intron splicing, 3' end processing, and polyadenylation.
Collapse
Affiliation(s)
- Lauren Kwiatek
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Anne-Marie Landry-Voyer
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Mélodie Latour
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Carlo Yague-Sanz
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Francois Bachand
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| |
Collapse
|
2
|
Brouze A, Krawczyk PS, Dziembowski A, Mroczek S. Measuring the tail: Methods for poly(A) tail profiling. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1737. [PMID: 35617484 PMCID: PMC10078590 DOI: 10.1002/wrna.1737] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/31/2023]
Abstract
The 3'-end poly(A) tail is an important and potent feature of most mRNA molecules that affects mRNA fate and translation efficiency. Polyadenylation is a posttranscriptional process that occurs in the nucleus by canonical poly(A) polymerases (PAPs). In some specific instances, the poly(A) tail can also be extended in the cytoplasm by noncanonical poly(A) polymerases (ncPAPs). This epitranscriptomic regulation of mRNA recently became one of the most interesting aspects in the field. Advances in RNA sequencing technologies and software development have allowed the precise measurement of poly(A) tails, identification of new ncPAPs, expansion of the function of known enzymes, discovery and a better understanding of the physiological role of tail heterogeneity, and recognition of a correlation between tail length and RNA translatability. Here, we summarize the development of polyadenylation research methods, including classic low-throughput approaches, Illumina-based genome-wide analysis, and advanced state-of-art techniques that utilize long-read third-generation sequencing with Pacific Biosciences and Oxford Nanopore Technologies platforms. A boost in technical opportunities over recent decades has allowed a better understanding of the regulation of gene expression at the mRNA level. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico.
Collapse
Affiliation(s)
- Aleksandra Brouze
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paweł Szczepan Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Seweryn Mroczek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
3
|
Nicholson-Shaw AL, Kofman ER, Yeo GW, Pasquinelli A. Nuclear and cytoplasmic poly(A) binding proteins (PABPs) favor distinct transcripts and isoforms. Nucleic Acids Res 2022; 50:4685-4702. [PMID: 35438785 PMCID: PMC9071453 DOI: 10.1093/nar/gkac263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/14/2022] Open
Abstract
The poly(A)-tail appended to the 3'-end of most eukaryotic transcripts plays a key role in their stability, nuclear transport, and translation. These roles are largely mediated by Poly(A) Binding Proteins (PABPs) that coat poly(A)-tails and interact with various proteins involved in the biogenesis and function of RNA. While it is well-established that the nuclear PABP (PABPN) binds newly synthesized poly(A)-tails and is replaced by the cytoplasmic PABP (PABPC) on transcripts exported to the cytoplasm, the distribution of transcripts for different genes or isoforms of the same gene on these PABPs has not been investigated on a genome-wide scale. Here, we analyzed the identity, splicing status, poly(A)-tail size, and translation status of RNAs co-immunoprecipitated with endogenous PABPN or PABPC in human cells. At steady state, many protein-coding and non-coding RNAs exhibit strong bias for association with PABPN or PABPC. While PABPN-enriched transcripts more often were incompletely spliced and harbored longer poly(A)-tails and PABPC-enriched RNAs had longer half-lives and higher translation efficiency, there are curious outliers. Overall, our study reveals the landscape of RNAs bound by PABPN and PABPC, providing new details that support and advance the current understanding of the roles these proteins play in poly(A)-tail synthesis, maintenance, and function.
Collapse
Affiliation(s)
| | - Eric R Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- UCSD Stem Cell Program, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- UCSD Stem Cell Program, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Amy E Pasquinelli
- Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
The Dynamics of Cytoplasmic mRNA Metabolism. Mol Cell 2020; 77:786-799.e10. [PMID: 31902669 DOI: 10.1016/j.molcel.2019.12.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 11/23/2022]
Abstract
For all but a few mRNAs, the dynamics of metabolism are unknown. Here, we developed an experimental and analytical framework for examining these dynamics for mRNAs from thousands of genes. mRNAs of mouse fibroblasts exit the nucleus with diverse intragenic and intergenic poly(A)-tail lengths. Once in the cytoplasm, they have a broad (1000-fold) range of deadenylation rate constants, which correspond to cytoplasmic lifetimes. Indeed, with few exceptions, degradation appears to occur primarily through deadenylation-linked mechanisms, with little contribution from either endonucleolytic cleavage or deadenylation-independent decapping. Most mRNA molecules degrade only after their tail lengths fall below 25 nt. Decay rate constants of short-tailed mRNAs vary broadly (1000-fold) and are larger for short-tailed mRNAs that have previously undergone more rapid deadenylation. This coupling helps clear rapidly deadenylated mRNAs, enabling the large range in deadenylation rate constants to impart a similarly large range in stabilities.
Collapse
|
5
|
Nicholson AL, Pasquinelli AE. Tales of Detailed Poly(A) Tails. Trends Cell Biol 2018; 29:191-200. [PMID: 30503240 DOI: 10.1016/j.tcb.2018.11.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 11/18/2022]
Abstract
Poly(A) tails are non-templated additions of adenosines at the 3' ends of most eukaryotic mRNAs. In the nucleus, these RNAs are co-transcriptionally cleaved at a poly(A) site and then polyadenylated before being exported to the cytoplasm. In the cytoplasm, poly(A) tails play pivotal roles in the translation and stability of the mRNA. One challenge in studying poly(A) tails is that they are difficult to sequence and accurately measure. However, recent advances in sequencing technology, computational algorithms, and other assays have enabled a more detailed look at poly(A) tail length genome-wide throughout many developmental stages and organisms. With the help of these advances, our understanding of poly(A) tail length has evolved over the past 5 years with the recognition that highly expressed genes can have short poly(A) tails and the elucidation of the seemingly contradictory roles for poly(A)-binding protein (PABP) in facilitating both protection and deadenylation.
Collapse
Affiliation(s)
- Angela L Nicholson
- Division of Biology, University of California, San Diego (USCD), La Jolla, CA 92093-0349, USA
| | - Amy E Pasquinelli
- Division of Biology, University of California, San Diego (USCD), La Jolla, CA 92093-0349, USA.
| |
Collapse
|
6
|
Short poly(A) tails are a conserved feature of highly expressed genes. Nat Struct Mol Biol 2017; 24:1057-1063. [PMID: 29106412 PMCID: PMC5877826 DOI: 10.1038/nsmb.3499] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/10/2017] [Indexed: 12/19/2022]
Abstract
Poly(A) tails are important elements in mRNA translation and stability. However, recent genome-wide studies concluded that poly(A) tail length was generally not associated with translational efficiency in non-embryonic cells. To investigate if poly(A) tail size might be coupled to gene expression in an intact organism, we used an adapted TAIL-seq protocol to measure poly(A) tails in Caenorhabditis elegans. Surprisingly, we found that well-expressed transcripts contain relatively short, well-defined tails. This attribute appears dependent on translational efficiency, as transcripts enriched for optimal codons and ribosome association had the shortest tail sizes, while non-coding RNAs retained long tails. Across eukaryotes, short tails were a feature of abundant and well-translated mRNAs. Although this seems to contradict the dogma that deadenylation induces translational inhibition and mRNA decay, it instead suggests that well-expressed mRNAs accumulate with pruned tails that accommodate a minimal number of poly(A) binding proteins, which may be ideal for protective and translational functions.
Collapse
|
7
|
Gohin M, Fournier E, Dufort I, Sirard MA. Discovery, identification and sequence analysis of RNAs selected for very short or long poly A tail in immature bovine oocytes. Mol Hum Reprod 2013; 20:127-38. [PMID: 24233545 DOI: 10.1093/molehr/gat080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A major challenge in applying genomics to oocyte physiology is that many RNAs are present but will not be translated into proteins, making it difficult to draw conclusions from RNAseq and array data. Oocyte maturation and early embryo development rely on maternal storage of specific RNAs with a short poly(A) tail, which must be elongated for translation. To resolve the role of key genes during that period, we aimed to characterize both extremes of mRNA: deadenylated RNA and long polyA tails mRNA population in immature bovine oocytes. Using magnetic beads coupled to oligodT, we isolated deadenylated (A-, 20-50 adenosines) from polyadenylated (A+, up to 200 adenosines) RNAs. After transcriptomic analysis, we observed that A+ candidates are associated with short-term processes required for immediate cell survival (translation or protein transport) or meiotic resumption, while several A- candidates are involved in processes (chromatin modification, gene transcription and post-transcriptional modifications) that will be extremely important in the development of the early embryo. In addition to a list of candidates probably translated early or late, sequence analysis revealed that cytoplasmic polyadenylation element (CPE) and U(3)GU(3) were enriched in A- sequences. Moreover, a motif associated with polyadenylation signals (MAPS, U(5)CU(2)) appeared to be enriched in 3'untranslated regions (UTR) with CPE or U(3)GU(3) sequences in bovine but also in zebrafish and Xenopus tropicalis. To further validate our methodology, we measured specific tail length of known candidates (AURKA, PTTG1, H2A1) but also determined the poly(A) tail length of other candidate RNAs (H3F3A, H1FOO, DAZAP2, ATF1, ATF2, KAT5, DAZL, ELAVL2). In conclusion, we have reported a methodology to isolate deadenylated from polyadenylated RNAs in samples with small total RNA quantities such as mammals. Moreover, we identified deadenylated RNAs in bovine oocytes that may be stored for the long-term process of early embryo development and described a conserved motif enriched in the 3'UTR of deadenylated RNAs.
Collapse
Affiliation(s)
- Maella Gohin
- Centre de Recherche en Biologie de la Reproduction, Faculté des Sciences de L'Agriculture et de L'Alimentation, Département des Sciences Animales, 2440 Bl. Hochelaga, Pavillon INAF, Université Laval, Québec, QC, Canada G1V 0A6
| | | | | | | |
Collapse
|
8
|
Abstract
Nearly all eukaryotic mRNAs terminate in a poly(A) tail that serves important roles in mRNA utilization. In the cytoplasm, the poly(A) tail promotes both mRNA stability and translation, and these functions are frequently regulated through changes in tail length. To identify the scope of poly(A) tail length control in a transcriptome, we developed the polyadenylation state microarray (PASTA) method. It involves the purification of mRNA based on poly(A) tail length using thermal elution from poly(U) sepharose, followed by microarray analysis of the resulting fractions. In this chapter we detail our PASTA approach and describe some methods for bulk and mRNA-specific poly(A) tail length measurements of use to monitor the procedure and independently verify the microarray data.
Collapse
Affiliation(s)
- Traude H Beilharz
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | | |
Collapse
|
9
|
Beilharz TH, Preiss T. Transcriptome-wide measurement of mRNA polyadenylation state. Methods 2009; 48:294-300. [PMID: 19233282 DOI: 10.1016/j.ymeth.2009.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/09/2009] [Accepted: 02/09/2009] [Indexed: 10/21/2022] Open
Abstract
The 3' poly(A) tail has important roles throughout the eukaryotic mRNA life cycle. A characteristic aspect of poly(A) tail function is furthermore that it can be modulated by changes in its length. This is in turn a well-recognised cellular means to regulate both, mRNA translation and stability, and a positive correlation has often been found between the efficiency of mRNA translation and the length of its poly(A) tail. Here we describe methodology to measure mRNA polyadenylation state in a transcriptome-wide manner, using separation of cellular mRNA populations on poly(U) sepharose in combination with microarray analysis of the resulting fractions. We further detail methods for bulk and mRNA-specific poly(A) tail length measurements to monitor the efficiency of initial mRNA separation and to verify candidates selected from the microarray data. Although detailed here for the study of yeast mRNAs, these methods are adaptable to the investigation of any cellular context in which poly(A) tail length control is known or suspected to operate.
Collapse
Affiliation(s)
- Traude H Beilharz
- Molecular Genetics Division, Victor Chang Cardiac Research Institute (VCCRI), Lowy Packer Building, 405 Liverpool Street, Darlinghurst (Sydney), NSW 2010, Australia.
| | | |
Collapse
|
10
|
Beilharz TH, Preiss T. Widespread use of poly(A) tail length control to accentuate expression of the yeast transcriptome. RNA (NEW YORK, N.Y.) 2007; 13:982-97. [PMID: 17586758 PMCID: PMC1894919 DOI: 10.1261/rna.569407] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Control of poly(A) tail length can affect translation and stability of eukaryotic mRNAs. Although well established for individual cases, it was not known to what extent this type of adjustable gene control is used to shape expression of eukaryotic transcriptomes. Here we report on microarray-based measurements of mRNA poly(A) tail lengths and association with the poly(A)-binding protein Pab1 in S. cerevisiae, revealing extensive correlation between tail length and other physical and functional mRNA characteristics. Gene ontology analyses and further directed experiments indicate coregulation of tail length on functionally and cytotopically related mRNAs to coordinate cell-cycle progression, ribosome biogenesis, and retrotransposon expression. We show that the 3'-untranslated region drives transcript-specific adenylation control and translational efficiency of multiple mRNAs. Our findings suggest a wide-spread interdependence between 3'-untranslated region-mediated poly(A) tail length control, Pab1 binding, and mRNA translation in budding yeast. They further provide a molecular explanation for deadenylase function in the cell cycle and suggest additional cellular processes that depend on control of mRNA polyadenylation.
Collapse
Affiliation(s)
- Traude H Beilharz
- Molecular Genetics Program, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, Australia
| | | |
Collapse
|
11
|
|
12
|
Abstract
We have cloned and sequenced ponticulin, a 17,000-dalton integral membrane glycoprotein that binds F-actin and nucleates actin assembly. A single copy gene encodes a developmentally regulated message that is high during growth and early development, but drops precipitously during cell streaming at approximately 8 h of development. The deduced amino acid sequence predicts a protein with a cleaved NH2-terminal signal sequence and a COOH-terminal glycosyl anchor. These predictions are supported by amino acid sequencing of mature ponticulin and metabolic labeling with glycosyl anchor components. Although no alpha-helical membrane-spanning domains are apparent, several hydrophobic and/or sided beta-strands, each long enough to traverse the membrane, are predicted. Although its location on the primary sequence is unclear, an intracellular domain is indicated by the existence of a discontinuous epitope that is accessible to antibody in plasma membranes and permeabilized cells, but not in intact cells. Such a cytoplasmically oriented domain also is required for the demonstrated role of ponticulin in binding actin to the plasma membrane in vivo and in vitro (Hitt, A. L., J. H. Hartwig, and E. J. Luna. 1994. Ponticulin is the major high affinity link between the plasma membrane and the cortical actin network in Dictyostelium. J. Cell Biol. 126:1433-1444). Thus, ponticulin apparently represents a new category of integral membrane proteins that consists of proteins with both a glycosyl anchor and membrane-spanning peptide domain(s).
Collapse
Affiliation(s)
- A L Hitt
- Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | | | |
Collapse
|
13
|
Abstract
Column chromatography utilizing polynucleotides immobilized on solid support is reviewed. This form of affinity chromatography is used for the isolation of polynucleotides and polynucleotide binding proteins, and to a lesser extent for analysis. Several specific applications within these categories have been widely used in the biomedical sciences. Poly(A) mRNA is routinely isolated using oligo(dT) or oligo(dU) supports. Many DNA binding proteins, including transcription factors, restriction endonucleases, and proteins involved in DNA repair, replication, recombination, and transposition have been purified using DNA affinity chromatography. Recently, DNA supports suitable for use in high-performance liquid chromatography have been described and utilized. The current usage of DNA affinity chromatography is reviewed and potential future uses for this technology are speculated upon.
Collapse
Affiliation(s)
- H W Jarrett
- Department of Biochemistry, University of Tennessee, Memphis 38168
| |
Collapse
|
14
|
Alfonso A, Grundahl K, Duerr JS, Han HP, Rand JB. The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science 1993; 261:617-9. [PMID: 8342028 DOI: 10.1126/science.8342028] [Citation(s) in RCA: 282] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mutations in the unc-17 gene of the nematode Caenorhabditis elegans produce deficits in neuromuscular function. This gene was cloned and complementary DNAs were sequenced. On the basis of sequence similarity to mammalian vesicular transporters of biogenic amines and of localization to synaptic vesicles of cholinergic neurons in C. elegans, unc-17 likely encodes the vesicular transporter of acetylcholine. Mutations that eliminated all unc-17 gene function were lethal, suggesting that the acetylcholine transporter is essential. Molecular analysis of unc-17 mutations will allow the correlation of specific parts of the gene (and the protein) with observed functional defects. The mutants will also be useful for the isolation of extragenic suppressors, which could identify genes encoding proteins that interact with UNC-17.
Collapse
Affiliation(s)
- A Alfonso
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104
| | | | | | | | | |
Collapse
|
15
|
Abstract
Most eukaryotic messenger RNA (mRNA) species contain a 3'-poly(A) tract. The histone mRNAs are a notable exception although a subclass of histone-encoding mRNAs is polyadenylated. A class of mRNAs lacking a poly(A) tail would be expected to be less stable than poly(A)+ mRNAs and might, like the histones, have a half-life that varied in response to changes in the intracellular milieu. Brain mRNA exhibits an unusually high degree of sequence complexity; studies published ten years ago suggested that a large component of this complexity might be present in a poly(A)- mRNA population that was expressed postnatally. The question of the existence of a complex class of poly(A)- brain mRNAs is particularly tantalizing in light of the heterogeneity of brain cells and the possibility that the stability of these poly(A)- mRNAs might vary with changes in synaptic function, changing hormonal stimulation or with other modulations of neuronal function. The mRNA complexity analyses, although intriguing, did not prove the existence of the complex class of poly(A)- brain mRNAs. The observed mRNA complexity could have resulted from a variety of artifacts, discussed in more detail below. Several attempts have been made to clone members of this class of mRNA. This search for specific poly(A)- brain mRNAs has met with only limited success. Changes in mRNA polyadenylation state do occur in brain in response to specific physiologic stimuli; however, both the role of polyadenylation and de-adenylation in specific neuronal activities and the existence and significance of poly(A)- mRNAs in brain remain unclear.
Collapse
Affiliation(s)
- B J Snider
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas 75235
| | | |
Collapse
|
16
|
Richardson DL, Hong CB, Loomis WF. A prespore gene, Dd31, expressed during culmination of Dictyostelium discoideum. Dev Biol 1991; 144:269-80. [PMID: 2010032 DOI: 10.1016/0012-1606(91)90421-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During culmination of Dictyostelium fruiting bodies, prespore and prestalk cells undergo terminal differentiation to form spores and a cellular stalk. A genomic fragment was isolated by random cloning that hybridizes to a 1.4-kb mRNA present during culmination. Cell type separations at culmination showed that the mRNA is present in prespore cells and spores, but not in prestalk or stalk cells. After genomic mapping, an additional 3 kb of DNA surrounding the original 1-kb fragment was cloned. The gene was sequenced and named Dd31 after the size of the predicted protein product in kilodaltons. Accumulation of Dd31 mRNA occurs immediately prior to sporulation. Addition of 20 mM 8-Br-cAMP to cells dissociated from Mexican hat stage culminants induced sporulation and the accumulation of Dd31 mRNA, while 20 mM cAMP did not. Dd31 mRNA does not accumulate in the homeotic mutant stalky in which prespore cells are converted to stalk cells rather than spores. Characterization of Dd31 extends the known temporal dependent sequence of molecular differentiations to sporulation.
Collapse
Affiliation(s)
- D L Richardson
- Department of Biology, University of California, San Diego, La Jolla 92093-0322
| | | | | |
Collapse
|
17
|
The extrachromosomal replication of Dictyostelium plasmid Ddp2 requires a cis-acting element and a plasmid-encoded trans-acting factor. Mol Cell Biol 1990. [PMID: 2192261 DOI: 10.1128/mcb.10.7.3727] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dictyostelium discoideum plasmid Ddp2 from the wild strain WS380B is a 5.8-kilobase (kb) supercoiled circle with a copy number of 300 per haploid genome. We previously described the construction of an extrachromosomally replicating transformation vector pnDeI carrying 4.7 kb of Ddp2 sequences (B. Leiting, and A. Noegel, Plasmid 20:241-248, 1988). In order to reduce the sequences required for extrachromosomal maintenance in D. discoideum, we characterized Ddp2 by sequence analysis, by deletion experiments, by transcription mapping, by electrophoretic mobility shift assays, and by expression of its single open reading frame in Escherichia coli. Two elements were involved in replication of Ddp2: a cis-acting sequence located on a 592-base-pair (bp) fragment that consisted of 220 bp of essential and 372 bp of auxiliary sequences, and a 2.7-kb open reading frame which most likely encodes a trans-acting factor. The cis- and trans-acting elements did not overlap and were shown to act independently from the location of the sequences encoding the trans-acting factor.
Collapse
|
18
|
Abstract
To evaluate the hypothesis that the 3' poly(A) tract of mRNA plays a role in translational initiation, we constructed derivatives of pSP65 which direct the in vitro synthesis of mRNAs with different poly(A) tail lengths and compared, in reticulocyte extracts, the relative efficiencies with which such mRNAs were translated, degraded, recruited into polysomes, and assembled into messenger ribonucleoproteins or intermediates in the translational initiation pathway. Relative to mRNAs which were polyadenylated, we found that nonpolyadenylated [poly(A)-]mRNAs had a reduced translational capacity which was not due to an increase in their decay rates, but was attributable to a reduction in their efficiency of recruitment into polysomes. The defect in poly(A)- mRNAs affected a late step in translational initiation, was distinct from the phenotype associated with cap-deficient mRNAs, and resulted in a reduced ability to form 80S initiation complexes. Moreover, poly(A) added in trans inhibited translation from capped polyadenylated mRNAs but stimulated translation from capped poly(A)- mRNAs. We suggest that the presence of a 3' poly(A) tail may facilitate the binding of an initiation factor or ribosomal subunit at the mRNA 5' end.
Collapse
|
19
|
Leiting B, Lindner IJ, Noegel AA. The extrachromosomal replication of Dictyostelium plasmid Ddp2 requires a cis-acting element and a plasmid-encoded trans-acting factor. Mol Cell Biol 1990; 10:3727-36. [PMID: 2192261 PMCID: PMC360823 DOI: 10.1128/mcb.10.7.3727-3736.1990] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dictyostelium discoideum plasmid Ddp2 from the wild strain WS380B is a 5.8-kilobase (kb) supercoiled circle with a copy number of 300 per haploid genome. We previously described the construction of an extrachromosomally replicating transformation vector pnDeI carrying 4.7 kb of Ddp2 sequences (B. Leiting, and A. Noegel, Plasmid 20:241-248, 1988). In order to reduce the sequences required for extrachromosomal maintenance in D. discoideum, we characterized Ddp2 by sequence analysis, by deletion experiments, by transcription mapping, by electrophoretic mobility shift assays, and by expression of its single open reading frame in Escherichia coli. Two elements were involved in replication of Ddp2: a cis-acting sequence located on a 592-base-pair (bp) fragment that consisted of 220 bp of essential and 372 bp of auxiliary sequences, and a 2.7-kb open reading frame which most likely encodes a trans-acting factor. The cis- and trans-acting elements did not overlap and were shown to act independently from the location of the sequences encoding the trans-acting factor.
Collapse
Affiliation(s)
- B Leiting
- Abteilung Zellbiologie, Max-Planck-Institut fuer Biochemie, Martinsried bei Muenchen, Federal Republic of Germany
| | | | | |
Collapse
|
20
|
Abstract
To evaluate the hypothesis that the 3' poly(A) tract of mRNA plays a role in translational initiation, we constructed derivatives of pSP65 which direct the in vitro synthesis of mRNAs with different poly(A) tail lengths and compared, in reticulocyte extracts, the relative efficiencies with which such mRNAs were translated, degraded, recruited into polysomes, and assembled into messenger ribonucleoproteins or intermediates in the translational initiation pathway. Relative to mRNAs which were polyadenylated, we found that nonpolyadenylated [poly(A)-]mRNAs had a reduced translational capacity which was not due to an increase in their decay rates, but was attributable to a reduction in their efficiency of recruitment into polysomes. The defect in poly(A)- mRNAs affected a late step in translational initiation, was distinct from the phenotype associated with cap-deficient mRNAs, and resulted in a reduced ability to form 80S initiation complexes. Moreover, poly(A) added in trans inhibited translation from capped polyadenylated mRNAs but stimulated translation from capped poly(A)- mRNAs. We suggest that the presence of a 3' poly(A) tail may facilitate the binding of an initiation factor or ribosomal subunit at the mRNA 5' end.
Collapse
Affiliation(s)
- D Munroe
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | |
Collapse
|
21
|
Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol Cell Biol 1990. [PMID: 2183028 DOI: 10.1128/mcb.10.5.2269] [Citation(s) in RCA: 198] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a procedure to measure mRNA decay rates in the yeast Saccharomyces cerevisiae and applied it to the determination of half-lives for 20 mRNAs encoded by well-characterized genes. The procedure utilizes Northern (RNA) or dot blotting to quantitate the levels of individual mRNAs after thermal inactivation of RNA polymerase II in an rpb1-1 temperature-sensitive mutant. We compared the results of this procedure with results obtained by two other procedures (approach to steady-state labeling and inhibition of transcription with Thiolutin) and also evaluated whether heat shock alter mRNA decay rates. We found that there are no significant differences in the mRNA decay rates measured in heat-shocked and non-heat-shocked cells and that, for most mRNAs, different procedures yield comparable relative decay rates. Of the 20 mRNAs studied, 11, including those encoded by HIS3, STE2, STE3, and MAT alpha 1, were unstable (t1/2 less than 7 min) and 4, including those encoded by ACT1 and PGK1, were stable (t1/2 greater than 25 min). We have begun to assess the basis and significance of such differences in the decay rates of these two classes of mRNA. Our results indicate that (i) stable and unstable mRNAs do not differ significantly in their poly(A) metabolism; (ii) deadenylation does not destabilize stable mRNAs; (iii) there is no correlation between mRNA decay rate and mRNA size; (iv) the degradation of both stable and unstable mRNAs depends on concomitant translational elongation; and (v) the percentage of rare codons present in most unstable mRNAs is significantly higher than in stable mRNAs.
Collapse
|
22
|
Herrick D, Parker R, Jacobson A. Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol Cell Biol 1990; 10:2269-84. [PMID: 2183028 PMCID: PMC360574 DOI: 10.1128/mcb.10.5.2269-2284.1990] [Citation(s) in RCA: 185] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We developed a procedure to measure mRNA decay rates in the yeast Saccharomyces cerevisiae and applied it to the determination of half-lives for 20 mRNAs encoded by well-characterized genes. The procedure utilizes Northern (RNA) or dot blotting to quantitate the levels of individual mRNAs after thermal inactivation of RNA polymerase II in an rpb1-1 temperature-sensitive mutant. We compared the results of this procedure with results obtained by two other procedures (approach to steady-state labeling and inhibition of transcription with Thiolutin) and also evaluated whether heat shock alter mRNA decay rates. We found that there are no significant differences in the mRNA decay rates measured in heat-shocked and non-heat-shocked cells and that, for most mRNAs, different procedures yield comparable relative decay rates. Of the 20 mRNAs studied, 11, including those encoded by HIS3, STE2, STE3, and MAT alpha 1, were unstable (t1/2 less than 7 min) and 4, including those encoded by ACT1 and PGK1, were stable (t1/2 greater than 25 min). We have begun to assess the basis and significance of such differences in the decay rates of these two classes of mRNA. Our results indicate that (i) stable and unstable mRNAs do not differ significantly in their poly(A) metabolism; (ii) deadenylation does not destabilize stable mRNAs; (iii) there is no correlation between mRNA decay rate and mRNA size; (iv) the degradation of both stable and unstable mRNAs depends on concomitant translational elongation; and (v) the percentage of rare codons present in most unstable mRNAs is significantly higher than in stable mRNAs.
Collapse
Affiliation(s)
- D Herrick
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | | | |
Collapse
|
23
|
Baker EJ, Diener DR, Rosenbaum JL. Accelerated poly(A) loss on alpha-tubulin mRNAs during protein synthesis inhibition in Chlamydomonas. J Mol Biol 1989; 207:771-81. [PMID: 2760930 DOI: 10.1016/0022-2836(89)90243-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Detachment of flagella in Chlamydomonas reinhardii stimulates a rapid accumulation of tubulin mRNAs. The induced tubulin mRNAs are normally rapidly degraded following flagellar regeneration, but inhibition of protein synthesis with cycloheximide prevents their degradation. alpha-Tubulin poly(A) tail lengths were measured during normal accumulation and degradation, and in cycloheximide-treated cells. To measure alpha-tubulin mRNA poly(A) chain lengths with high resolution, specific 3' fragments of alpha 1- and alpha 2-tubulin mRNAs, generated by RNase H digestion of mRNA-oligonucleotide hybrids, were sized by Northern analysis. Both alpha-tubulin mRNAs have a newly synthesized poly(A) chain of about 110 adenylate residues. The poly(A) tails shorten with time, and show an average length of 40 to 60 adenylate residues by 90 minutes after deflagellation, at which time induced alpha-tubulin mRNA is being rapidly degraded. Poly(A) loss is significantly accelerated in cycloheximide-treated cells, and this loss is not attributible simply to the longer time the stabilized molecules spend in the cytoplasm. A large fraction of alpha-tubulin mRNA accumulates as mRNA with very short poly(A) tails (less than 10 residues) in the presence of cycloheximide, indicating that deadenylated alpha-tubulin mRNAs can be stable in vivo, at least in the absence of protein synthesis. The rate and extent of poly(A) loss in cycloheximide are greater for alpha 2-tubulin mRNA than for alpha 1-tubulin mRNA. This difference cannot be attributed to differential ribosome loading. This finding is interesting in that the two mRNAs are very similar in sequence with the exception of their 3' untranslated regions.
Collapse
Affiliation(s)
- E J Baker
- Department of Biology, Yale University, New Haven, CT 06511
| | | | | |
Collapse
|
24
|
Parsons M, Hill T. Elevated phosphoglycerate kinase mRNA but not protein in monomorphic Trypanosoma brucei: implications for stage-regulation and post-transcriptional control. Mol Biochem Parasitol 1989; 33:215-27. [PMID: 2704387 DOI: 10.1016/0166-6851(89)90083-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Phosphoglycerate kinase (PGK) is present in high levels in the glycosomes of bloodstream stage Trypanosoma brucei, but is virtually absent in procyclic stage glycosomes. Glycosomes isolated from slender and stumpy stage bloodforms show similar levels of PGK, although levels are slightly lower in stumpy forms. Lower levels of glycosomal PGK transcripts are observed in stumpy form RNA, paralleling the decrease in glycosomal PGK activity. Monomorphic strains and pleiomorphic strains show similar glycosomal PGK activity, but monomorphic strains have much higher levels of the glycosomal PGK transcript. In three separate cases, predominantly monomorphic strains derived from highly pleiomorphic strains showed increased levels of glycosomal PGK (gPGK) mRNA. gPGK synthesis rates in monomorphic and pleiomorphic strains were similar, and no significant differences in turnover were observed. These data suggest the possibility of translational control of gPGK protein levels in trypanosome bloodforms. The data also indicate that the metabolism of gPGK mRNA in highly passaged laboratory strains is altered, and counsel caution when attributing differences in transcript levels to stage-specific regulation.
Collapse
Affiliation(s)
- M Parsons
- Seattle Biomedical Research Institute, WA 98109
| | | |
Collapse
|
25
|
mRNA decay rates in late-developing Dictyostelium discoideum cells are heterogeneous, and cyclic AMP does not act directly to stabilize cell-type-specific mRNAs. Mol Cell Biol 1988. [PMID: 2847029 DOI: 10.1128/mcb.8.10.4088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We reevaluated the use of 32PO4 pulse-chases for analyzing mRNA decay rates in late-developing Dictyostelium cells. We found that completely effective PO4 chases could not be obtained in developing cells and that, as a consequence, the decay rates exhibited by some mRNAs were influenced by the rates at which they were transcribed. In developing cells disaggregated in the presence of cyclic AMP, the poly(A)+ mRNA population turned over with an apparent half-life of 4 h, individual mRNA decay rates were heterogeneous, and some prestalk and prespore mRNAs appeared to decay with biphasic kinetics. In cells disaggregated in the absence of cyclic AMP, all prestalk and prespore mRNAs decayed with biphasic kinetics. During the first 1 to 1.5 h after disaggregation in the absence of cyclic AMP, the cell-type-specific mRNAs were selectively degraded, decaying with half-lives of 20 to 30 min; thereafter, the residual prestalk and prespore mRNA molecules decayed at rates that were similar to those measured in the presence of cyclic AMP. This short-term labilization of cell-type-specific mRNAs was observed even for those species not requiring cyclic AMP for their accumulation in developing cells. The observation that cell-type specific mRNAs can decay at similar rates in disaggregated cells with or without cyclic AMP indicates that this compound does not act directly to stabilize prestalk and prespore mRNAs during development and that its primary role in the maintenance of cyclic-AMP-dependent mRNAs is likely to be transcriptional.
Collapse
|
26
|
Abstract
RNAs of full-grown mouse oocytes, ovulated eggs, embryos, and somatic tissues have been analyzed on Northern blots for the presence of small transcripts homologous to the B2 element, a repetitive 180-nucleotide (N) sequence in the genome, using a single stranded RNA probe. In addition to the heterogeneous 200- to 600-N polyadenylated group reported by others, cytoplasmic RNA contains discrete nonadenylated species of B2-related RNA, approximately 100, 120, 155, and 180 N in length. During meiotic maturation of oocytes, the 200- to 600-N group declines and the 155-N species becomes more prominent. Upon hybridization to oligo(dT) and cleavage with RNase H to remove poly(A) regions, the 200- to 600-N group is removed, the 180-N species increased greatly, and the 155-N species increased slightly. Essentially all of the 200- to 600-N species bind to poly(U) sepharose. We conclude that polyadenylation rather than run-on transcription of B2 elements accounts for most of the heterogeneity of the 200- to 600-N group and that some deadenylation and cleavage take place during maturation. Small B2 RNAs make up 0.04% of total RNA in oocytes and eggs, 6- to 9-fold more than in brain. For comparison, a known small RNA, 4.5 S RNA, is relatively sparse in oocytes and almost absent in eggs. The 100-N B2-related species has been tentatively identified as 4.5 SI RNA; relative to total RNA, it remains approximately constant in oocytes and somatic tissues. During development to the blastocyst stage, small B2 RNAs per embryo increase severalfold, but decline as a fraction of total RNA. In postimplantation development, they continue to decline toward the level found in brain. Expression of B2 transcripts in hnRNA rises around 10 days of development to the level found in brain. The time course of expression of small B2 RNAs suggests an important role in development.
Collapse
Affiliation(s)
- R Bachvarova
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021
| |
Collapse
|
27
|
Manrow RE, Jacobson A. mRNA decay rates in late-developing Dictyostelium discoideum cells are heterogeneous, and cyclic AMP does not act directly to stabilize cell-type-specific mRNAs. Mol Cell Biol 1988; 8:4088-97. [PMID: 2847029 PMCID: PMC365478 DOI: 10.1128/mcb.8.10.4088-4097.1988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We reevaluated the use of 32PO4 pulse-chases for analyzing mRNA decay rates in late-developing Dictyostelium cells. We found that completely effective PO4 chases could not be obtained in developing cells and that, as a consequence, the decay rates exhibited by some mRNAs were influenced by the rates at which they were transcribed. In developing cells disaggregated in the presence of cyclic AMP, the poly(A)+ mRNA population turned over with an apparent half-life of 4 h, individual mRNA decay rates were heterogeneous, and some prestalk and prespore mRNAs appeared to decay with biphasic kinetics. In cells disaggregated in the absence of cyclic AMP, all prestalk and prespore mRNAs decayed with biphasic kinetics. During the first 1 to 1.5 h after disaggregation in the absence of cyclic AMP, the cell-type-specific mRNAs were selectively degraded, decaying with half-lives of 20 to 30 min; thereafter, the residual prestalk and prespore mRNA molecules decayed at rates that were similar to those measured in the presence of cyclic AMP. This short-term labilization of cell-type-specific mRNAs was observed even for those species not requiring cyclic AMP for their accumulation in developing cells. The observation that cell-type specific mRNAs can decay at similar rates in disaggregated cells with or without cyclic AMP indicates that this compound does not act directly to stabilize prestalk and prespore mRNAs during development and that its primary role in the maintenance of cyclic-AMP-dependent mRNAs is likely to be transcriptional.
Collapse
Affiliation(s)
- R E Manrow
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | |
Collapse
|
28
|
Paynton BV, Rempel R, Bachvarova R. Changes in state of adenylation and time course of degradation of maternal mRNAs during oocyte maturation and early embryonic development in the mouse. Dev Biol 1988; 129:304-14. [PMID: 2458285 DOI: 10.1016/0012-1606(88)90377-6] [Citation(s) in RCA: 228] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous work has shown that more than 50% or about 50 pg of polyadenylated RNA found in the full-grown mouse oocyte is deadenylated or degraded during meiotic maturation. Here we show that rRNA declines by 60 pg during this period, accounting for most of the 80-pg decline in total RNA and indicating that a significant amount of mRNA is deadenylated but not degraded during maturation. Actin mRNA is deadenylated at about 7 hr of in vitro maturation, following the decline in its translation. The poly(A) tail on hypoxanthine phosphoribosyltransferase (HPRT) mRNA is elongated at 7 hr of maturation, preceding an increase in HPRT activity. Actin mRNA is partially degraded in the one-cell embryo and falls to near the limit of detection in the late two-cell stage, while HPRT mRNA shows no change in early two-cell embryos, but is deadenylated and declines greatly during the two-cell stage. In aging unfertilized eggs, most of these changes occur on a delayed schedule. The various species of alpha-tubulin mRNA are largely deadenylated and more than half are degraded during maturation. Taken together with other published results, we conclude that each mRNA has its own pattern of changes in the length of the poly(A) tail (correlated with translation) and degradation during the period of maternal control of protein synthesis, and, for those examined, the maternal mRNAs remaining in the early two-cell embryo are degraded to low levels by the late two-cell stage.
Collapse
Affiliation(s)
- B V Paynton
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021
| | | | | |
Collapse
|
29
|
Determinants of mRNA stability in Dictyostelium discoideum amoebae: differences in poly(A) tail length, ribosome loading, and mRNA size cannot account for the heterogeneity of mRNA decay rates. Mol Cell Biol 1988. [PMID: 2898728 DOI: 10.1128/mcb.8.5.1957] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an approach to understanding the structures and mechanisms which determine mRNA decay rates, we have cloned and begun to characterize cDNAs which encode mRNAs representative of the stability extremes in the poly(A)+ RNA population of Dictyostelium discoideum amoebae. The cDNA clones were identified in a screening procedure which was based on the occurrence of poly(A) shortening during mRNA aging. mRNA half-lives were determined by hybridization of poly(A)+ RNA, isolated from cells labeled in a 32PO4 pulse-chase, to dots of excess cloned DNA. Individual mRNAs decayed with unique first-order decay rates ranging from 0.9 to 9.6 h, indicating that the complex decay kinetics of total poly(A)+ RNA in D. discoideum amoebae reflect the sum of the decay rates of individual mRNAs. Using specific probes derived from these cDNA clones, we have compared the sizes, extents of ribosome loading, and poly(A) tail lengths of stable, moderately stable, and unstable mRNAs. We found (i) no correlation between mRNA size and decay rate; (ii) no significant difference in the number of ribosomes per unit length of stable versus unstable mRNAs, and (iii) a general inverse relationship between mRNA decay rates and poly(A) tail lengths. Collectively, these observations indicate that mRNA decay in D. discoideum amoebae cannot be explained in terms of random nucleolytic events. The possibility that specific 3'-structural determinants can confer mRNA instability is suggested by a comparison of the labeling and turnover kinetics of different actin mRNAs. A correlation was observed between the steady-state percentage of a given mRNA found in polysomes and its degree of instability; i.e., unstable mRNAs were more efficiently recruited into polysomes than stable mRNAs. Since stable mRNAs are, on average, "older" than unstable mRNAs, this correlation may reflect a translational role for mRNA modifications that change in a time-dependent manner. Our previous studies have demonstrated both a time-dependent shortening and a possible translational role for the 3' poly(A) tracts of mRNA. We suggest, therefore, that the observed differences in the translational efficiency of stable and unstable mRNAs may, in part, be attributable to differences in steady-state poly(A) tail lengths.
Collapse
|
30
|
Shapiro RA, Herrick D, Manrow RE, Blinder D, Jacobson A. Determinants of mRNA stability in Dictyostelium discoideum amoebae: differences in poly(A) tail length, ribosome loading, and mRNA size cannot account for the heterogeneity of mRNA decay rates. Mol Cell Biol 1988; 8:1957-69. [PMID: 2898728 PMCID: PMC363374 DOI: 10.1128/mcb.8.5.1957-1969.1988] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
As an approach to understanding the structures and mechanisms which determine mRNA decay rates, we have cloned and begun to characterize cDNAs which encode mRNAs representative of the stability extremes in the poly(A)+ RNA population of Dictyostelium discoideum amoebae. The cDNA clones were identified in a screening procedure which was based on the occurrence of poly(A) shortening during mRNA aging. mRNA half-lives were determined by hybridization of poly(A)+ RNA, isolated from cells labeled in a 32PO4 pulse-chase, to dots of excess cloned DNA. Individual mRNAs decayed with unique first-order decay rates ranging from 0.9 to 9.6 h, indicating that the complex decay kinetics of total poly(A)+ RNA in D. discoideum amoebae reflect the sum of the decay rates of individual mRNAs. Using specific probes derived from these cDNA clones, we have compared the sizes, extents of ribosome loading, and poly(A) tail lengths of stable, moderately stable, and unstable mRNAs. We found (i) no correlation between mRNA size and decay rate; (ii) no significant difference in the number of ribosomes per unit length of stable versus unstable mRNAs, and (iii) a general inverse relationship between mRNA decay rates and poly(A) tail lengths. Collectively, these observations indicate that mRNA decay in D. discoideum amoebae cannot be explained in terms of random nucleolytic events. The possibility that specific 3'-structural determinants can confer mRNA instability is suggested by a comparison of the labeling and turnover kinetics of different actin mRNAs. A correlation was observed between the steady-state percentage of a given mRNA found in polysomes and its degree of instability; i.e., unstable mRNAs were more efficiently recruited into polysomes than stable mRNAs. Since stable mRNAs are, on average, "older" than unstable mRNAs, this correlation may reflect a translational role for mRNA modifications that change in a time-dependent manner. Our previous studies have demonstrated both a time-dependent shortening and a possible translational role for the 3' poly(A) tracts of mRNA. We suggest, therefore, that the observed differences in the translational efficiency of stable and unstable mRNAs may, in part, be attributable to differences in steady-state poly(A) tail lengths.
Collapse
Affiliation(s)
- R A Shapiro
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | | | |
Collapse
|
31
|
Manrow RE, Shapiro RA, Herrick D, Steel LF, Blinder D, Jacobson A. Regulation of mRNA stability and the poly(A) problem in Dictyostelium discoideum. DEVELOPMENTAL GENETICS 1988; 9:403-19. [PMID: 2468435 DOI: 10.1002/dvg.1020090420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This paper reviews our studies of three aspects of post-transcriptional regulation in Dictyostelium discoideum: 1) the determinants of mRNA stability in vegetative amoebae; 2) the effects of disaggregation and cyclic AMP on the decay rates of cell-type-specific mRNAs in late developing cells; and 3) the cytoplasmic function of the 3' poly(A) tracts present on most mRNAs. We find that: 1) mRNA stability in vegetative amoebae is not dependent on mRNA size, ribosome loading, or poly(A) tract length, but may be determined by specific 3'-untranslated sequences within a given mRNA; 2) mRNA decay rates in late developing cells are heterogeneous, and cyclic AMP does not act directly to stabilize cell-type-specific mRNAs; and 3) poly(A) is most likely involved in the initiation of protein synthesis via an interaction with cytoplasmic poly(A)-binding proteins.
Collapse
Affiliation(s)
- R E Manrow
- Dept. of Molecular Genetics and Microbiology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | | | |
Collapse
|
32
|
Bethards LA, Skadsen RW, Scandalios JG. Isolation and characterization of a cDNA clone for the Cat2 gene in maize and its homology with other catalases. Proc Natl Acad Sci U S A 1987; 84:6830-4. [PMID: 2821546 PMCID: PMC299178 DOI: 10.1073/pnas.84.19.6830] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A 230-base-pair cDNA representing the 3' end of the Cat2 gene in maize was isolated and used to screen a lambda gt11 cDNA library made from scutellar poly(A)+ RNA. Several clones were subcloned into a pUC12 vector; one of the subclones, pCat2.1c, appears to represent a near-complete sequence of the Cat2 coding region. Immunological screening, hybridization-selection translation, and RNA blot analysis confirmed that pCat2.1c was derived from the Cat2 transcript. The DNA sequence of pCat2.1c was determined. The deduced amino acid sequence shows homology with catalase amino acid sequences from rat liver, bovine liver, human kidney, and yeast.
Collapse
Affiliation(s)
- L A Bethards
- Department of Genetics, North Carolina State University, Raleigh 27695
| | | | | |
Collapse
|
33
|
Bozzaro S, Hagmann J, Noegel A, Westphal M, Calautti E, Bogliolo E. Cell differentiation in the absence of intracellular and extracellular cyclic AMP pulses in Dictyostelium discoideum. Dev Biol 1987. [DOI: 10.1016/0012-1606(87)90412-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Parets Soler A, Gozalbo D, Zueco J, Sentandreu R. Contribution of polyadenylate sequences to the translational efficiency of globin messenger RNAs. Biochem J 1987; 246:575-81. [PMID: 3689323 PMCID: PMC1148319 DOI: 10.1042/bj2460575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
mRNAs from reticulocyte polysomes were fractionated by chromatography on poly(U)-Sepharose and thermal elution. The molar ratio of alpha- to beta-globin mRNA was found to be 2:1 and 1:1 respectively in short- and long-poly(A) size classes. Translational analyses indicated that the globin mRNAs containing long poly(A) tracts (with a mean length of about 70 nucleotides) directed protein synthesis with higher rates than did mRNA containing short poly(A) tracts (15-35 nucleotides). Experiments performed with sub-saturating mRNA concentrations showed that the digestion with RNAase H induced a decrease in the translational capacity of both globin mRNAs and an increase in the alpha- to beta-globin synthesis ratio. No correlation was observed between the size of the poly(A) tail in mRNA and the optimal K+ requirement for translation.
Collapse
Affiliation(s)
- A Parets Soler
- Departament de Microbiologia, Facultat de Farmacia, Universitat de València, Spain
| | | | | | | |
Collapse
|
35
|
Translational control of ribosomal protein synthesis during early Dictyostelium discoideum development. Mol Cell Biol 1987. [PMID: 2882416 DOI: 10.1128/mcb.7.3.965] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Throughout the developmental program of Dictyostelium discoideum there are substantial changes in the rates of both ribosome utilization and rRNA transcription and processing. We examined the regulation of ribosomal protein (r-protein) gene expression and found that, at the start of development, expression of these genes was drastically and specifically reduced by a block to translational initiation. An apparently separate event signals a sudden decrease in the relative amount of r-protein mRNA at about 10 h of development, a time when aggregated amoebae are forming tight cell-cell contacts. For the first 9 h of development, the relative amount of r-protein mRNA remained essentially unchanged and comparable to levels detected in growing cells. While the r-protein mRNAs were almost fully loaded on polysomes during vegetative growth, they were specifically excluded from polysomes at the start of development. The translational block was not the result of irreversible structural changes which inactivate the r-protein mRNAs since they remained translatable both in vitro, in wheat germ extracts, and in vivo, where they were recruited onto polysomes in the presence of the elongation inhibitor cycloheximide. In addition, precise measurements of poly(A) tail lengths on individual hybrid-selected mRNA species showed that there is no difference in the poly(A) tail length of r-protein mRNA isolated from growing cells and 1-h developing cells. Therefore, changes in translational efficiency cannot be attributed to cleavage of poly(A) tails.
Collapse
|
36
|
Rosenthal ET, Ruderman JV. Widespread changes in the translation and adenylation of maternal messenger RNAs following fertilization of Spisula oocytes. Dev Biol 1987; 121:237-46. [PMID: 3569660 DOI: 10.1016/0012-1606(87)90155-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have reported previously that sequence-specific adenylations and deadenylations accompany changes in the translation of maternal mRNA following fertilization of Spisula oocytes (E.T. Rosenthal, T.R. Tansey, and J.V. Ruderman, 1983, J. Mol. Biol. 166, 309-327). The data presented here confirm and extend those observations. We have identified four classes of maternal mRNA with respect to translation: Class 1-not translated in oocytes and translated at very high efficiency immediately after fertilization, Class 2-not translated in oocytes and partially utilized for translation following fertilization, Class 3-translated in oocytes and not translated in embryos, and Class 4-not translated either before or after fertilization. There is an excellent, although not perfect, correlation between the translation of an mRNA and its polyadenylation status. The poly(A) tails of all the mRNAs which are translated in oocytes and untranslated in embryos are shortened at fertilization, and the poly(A) tails of those mRNAs which are untranslated in oocytes and translated in embryos are lengthened at fertilization. These adenylations and deadenylations occur simultaneously during the first 20 min following fertilization.
Collapse
|
37
|
Santiago TC, Bettany AJ, Purvis IJ, Brown AJ. Messenger RNA stability in Saccharomyces cerevisiae: the influence of translation and poly(A) tail length. Nucleic Acids Res 1987; 15:2417-29. [PMID: 3550698 PMCID: PMC340660 DOI: 10.1093/nar/15.6.2417] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A comparison between the half-lives of 10 specific yeast mRNAs and their distribution within polysomes (fractionated on sucrose density gradients) was used to test the relationship between mRNA translation and degradation in the eukaryote Saccharomyces cerevisiae. Although the mRNAs vary in their distribution across the same polysome gradients, there is no obvious correlation between the stability of an mRNA and the number of ribosomes it carries in vivo. This suggests that ribosomal protection against nucleolytic attack is not a major factor in determining the stability of an mRNA in yeast. The relative lengths of the poly(A) tails of 9 yeast mRNAs were analysed using thermal elution from poly(U)-Sepharose. No dramatic differences in poly(A) tail length were observed amongst the mRNAs which could account for their wide ranging half-lives. Minor differences were consistent with shortening of the poly(A) tail as an mRNA ages.
Collapse
|
38
|
Steel LF, Jacobson A. Translational control of ribosomal protein synthesis during early Dictyostelium discoideum development. Mol Cell Biol 1987; 7:965-72. [PMID: 2882416 PMCID: PMC365165 DOI: 10.1128/mcb.7.3.965-972.1987] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Throughout the developmental program of Dictyostelium discoideum there are substantial changes in the rates of both ribosome utilization and rRNA transcription and processing. We examined the regulation of ribosomal protein (r-protein) gene expression and found that, at the start of development, expression of these genes was drastically and specifically reduced by a block to translational initiation. An apparently separate event signals a sudden decrease in the relative amount of r-protein mRNA at about 10 h of development, a time when aggregated amoebae are forming tight cell-cell contacts. For the first 9 h of development, the relative amount of r-protein mRNA remained essentially unchanged and comparable to levels detected in growing cells. While the r-protein mRNAs were almost fully loaded on polysomes during vegetative growth, they were specifically excluded from polysomes at the start of development. The translational block was not the result of irreversible structural changes which inactivate the r-protein mRNAs since they remained translatable both in vitro, in wheat germ extracts, and in vivo, where they were recruited onto polysomes in the presence of the elongation inhibitor cycloheximide. In addition, precise measurements of poly(A) tail lengths on individual hybrid-selected mRNA species showed that there is no difference in the poly(A) tail length of r-protein mRNA isolated from growing cells and 1-h developing cells. Therefore, changes in translational efficiency cannot be attributed to cleavage of poly(A) tails.
Collapse
|
39
|
Ernst D, Pfeiffer F, Schefbeck K, Weyrauch C, Oesterhelt D. Phytochrome regulation of mRNA levels of ribulose-1,5-bisphosphate carboxylase in etiolated rye seedlings (Secale cereale). PLANT MOLECULAR BIOLOGY 1987; 10:21-33. [PMID: 24277460 DOI: 10.1007/bf00014183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/1986] [Accepted: 09/07/1987] [Indexed: 06/02/2023]
Abstract
The effect of red light and far-red light on the appearance of mRNA for the small and large subunit of ribulose-1,5-bisphosphate carboxylase in rye seedlings has been analysed. Irradiation of etiolated seedlings with a pulse of red light increased the mRNA level of the small subunit by a factor of 7-10 and that of the large subunit by a factor of 3. A pulse of far-red light resulted in a much lower, but measurable increase. The effect of red light is reverted by an immediate far-red pulse, demonstrating the classical phytochrome response.In vitro transcription experiments with nuclei isolated from red light-treated seedlings showed that the transcription rate of the small subunit mRNA was increased only by a factor of 1.5-2.5, indicating posttranscriptional as wells as transcriptional regulations of the small subunit of ribulose-1,5-bisphosphate carboxylase.
Collapse
Affiliation(s)
- D Ernst
- Max-Planck-Institut für Biochemie, 8033, Martinsried, FRG
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Tsaftaris AS, Scandalios JG. Spatial pattern of catalase (Cat2) gene activation in scutella during postgerminative development in maize. Proc Natl Acad Sci U S A 1986; 83:5549-53. [PMID: 3526334 PMCID: PMC386325 DOI: 10.1073/pnas.83.15.5549] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The scutellum of maize is a fully differentiated, nondividing, diploid embryonic tissue. Two distinct structural genes (Cat1 and Cat2) encoding the enzyme catalase (CAT) are differentially expressed in this tissue during postgerminative development. As development proceeds, the expression of Cat1 diminishes, while that of Cat2 is enhanced, leading to the disappearance of the CAT-1 protein and the gradual accumulation of the CAT-2 protein. The present investigation was undertaken to determine whether all scutellar cells may be genetically programmed to activate expression of Cat2 synchronously or whether there is an asynchronous spatial gradient of Cat2 activation. By using immunofluorescence microscopy and anti-CAT-2 IgG, we have found that a gradient of Cat2 activation occurs within the scutellar cell mass during postgerminative development. The gradient of Cat2 activation occurs from the outer perimeter of the tissue inward toward the embryonic axis. To determine a potential site of origin for any putative "triggering signal" for Cat2 activation, we demonstrated that Cat2 is expressed in the single layer of aleurone cells prior to its expression in any other tissue during kernel development. To our knowledge, this is the first observation of a gradient-type spatial pattern of a eukaryote gene activation occurring in a stable, virtually nondividing tissue such as the maize scutellum. The significance of these results with respect to developmental gene regulation is discussed.
Collapse
|
42
|
Manrow RE, Jacobson A. Identification and characterization of developmentally regulated mRNP proteins of Dictyostelium discoideum. Dev Biol 1986; 116:213-27. [PMID: 2426146 DOI: 10.1016/0012-1606(86)90058-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The isolation of poly(A)+ polysomal and nonpolysomal RNPs by oligo(dT)-cellulose chromatography has led to the identification of more than 20 polypeptides that bind to the poly(A)+ mRNA in growing Dictyostelium cells. Most of these polypeptides were identified in experiments using short-wave UV light (254 nm) to crosslink specifically bound proteins to the RNA. Digestion of the RNPs with ribonucleases A and T1 prior to their application to oligo(dT)-cellulose permitted the isolation of the 3' poly(A)-protein complexes. In polysomal RNPs, two major polypeptides, with molecular weights of 31,000 (p31) and 31,500 (p31.5), are bound to poly(A). These proteins can also be purified from cytoplasmic extracts by affinity chromatography on poly(A)-Sepharose. Partial proteolytic digestion of p31 and p31.5 indicates that they are closely related. The UV-crosslinking experiments established that p31 and p31.5 bind to the non-poly(A) segments of mRNA as well. In nonpolysomal RNPs, p31 and a polypeptide with a molecular weight of 29,500 (p29.5) are the major species associated with poly(A). Partial proteolytic digestion of p29.5 indicates that it is closely related to p31 and p31.5. Only small amounts of p29.5 were observed in the polysomal poly(A)-protein complexes. Early in Dictyostelium development, when cellular translation activity is sharply reduced, most of the p29.5, p31 and p31.5 present is selectively degraded. These observations are consistent with a translational role for these proteins.
Collapse
|
43
|
Kopczynski CC, Scandalios JG. Cat-2 gene expression. Developmental control of translatable CAT-2 mRNA levels in maize scutellum. MOLECULAR & GENERAL GENETICS : MGG 1986; 203:185-8. [PMID: 2423849 DOI: 10.1007/bf00330401] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Poly(A)+ RNA was isolated from maize scutella of different stages of post-germinative development and translated in vitro in a rabbit reticulocyte translation system. Immunoprecipitation of the translation products with CAT-2-specific antibody was used to quantitate the relative levels of translatable CAT-2 mRNA at each stage. The results show a close correlation between the developmental profile of Cat2 gene expression and the profile of CAT-2 mRNA levels. Evidence that the levels of CAT-2 mRNA are regulated by a temporal regulatory gene (Car1) is presented and the possible mechanism(s) of this regulation discussed.
Collapse
|
44
|
Abstract
Five recombinant plasmids which encode ribosomal proteins (r-proteins) from Dictyostelium discoideum have been isolated. Poly(A) + RNA was size-fractionated by preparative agarose gel electrophoresis and a fraction encoding proteins of less than 35 kDa was used to construct a cDNA library in the plasmid vector pBR322. Individual clones from the library were screened by hybrid-selected translation and those encoding r-proteins were identified by co-migration of the translation products in two-dimensional gel electrophoresis with marker proteins purified from Dictyostelium ribosomes. Initial characterization using the five cDNA plasmids indicates that these r-proteins are encoded by single copy genes and that they are not tightly clustered in the genome.
Collapse
|
45
|
Fleig UN, Pridmore RD, Philippsen P. Construction of LYS2 cartridges for use in genetic manipulations of Saccharomyces cerevisiae. Gene X 1986; 46:237-45. [PMID: 3542721 DOI: 10.1016/0378-1119(86)90408-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Linker arrays were added to the 5' and 3' boundaries of the Saccharomyces cerevisiae LYS2 gene, which allow the generation of 18 LYS2 cartridges with different sticky ends. As it was necessary to define the beginning and the end of the approx. 4.5-kb LYS2 gene, we sequenced 1 kb of its 5' and 1.5 kb of its 3' region and mapped the mRNA start point. The open reading frame (ORF) found by this analysis was proven to be the LYS2 ORF by exchanging the sequences upstream from the presumptive ATG with the S. cerevisiae CYC1 promoter and subsequent demonstration of LYS2 expression in vivo. The proper functioning of the LYS2 cartridges was demonstrated by the transformation of lys2 mutant strains to Lys+ prototrophy using plasmids furnished with a LYS2 cartridge.
Collapse
|
46
|
Geoghegan TE, McCoy L. Biogenesis and cell cycle relationship of poly(A)- actin mRNA in mouse ascites cells. Exp Cell Res 1986; 162:175-82. [PMID: 2866105 DOI: 10.1016/0014-4827(86)90436-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A variety of rapidly growing mammalian cells contain a substantial portion of their actin mRNA in a poly(A)- form. We have used DNA-driven hybridization of a cloned actin cDNA-containing plasmid with pulse-labeled RNA from mouse S-180 ascites cells to examine newly synthesized actin mRNA. Our results indicate that the same proportion of newly synthesized and steady-state actin mRNA (approx. 40%) exists in a poly(A)- deficient form. This suggests that the poly(A)- form arises by some process other than slow cytoplasmic de-adenylation of a poly(A)+ precursor. We have also examined cell cycle-enriched populations of S-180 ascites cells for the presence of poly(A)- actin mRNA. Results from these experiments indicate that cells in G1 phase of the cell cycle contain predominantly poly(A)+ actin mRNA, while the poly(A)- form is restricted to late-S and post-S phase cells.
Collapse
|
47
|
Kopachik W, Bergen LG, Barclay SL. Genes selectively expressed in proliferating Dictyostelium amoebae. Proc Natl Acad Sci U S A 1985; 82:8540-4. [PMID: 3866239 PMCID: PMC390952 DOI: 10.1073/pnas.82.24.8540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Few eukaryotic genes are expressed only during cell growth and division. We found that the slime mold Dictyostelium discoideum is unusual in that it expresses many genes only during proliferation. Thirty-two percent (304/950) of the sequences in a cDNA library made from vegetative mRNA were homologous to RNAs that are present at high levels during growth but at low or undetectable levels during differentiation when no cell growth occurs. In vitro translation assays confirmed that one-third of the vegetative cell mRNAs decreased in steady-state levels during differentiation. These vegetative cell-specific transcripts identified a diverse coordinately regulated class of genes: (i) 9 of the 10 cDNAs tested hybridized to unique small transcripts ranging from 400 to 620 bases long; (ii) the sequences showed various degrees of homology to related species; (iii) transcript levels synchronously fell by a factor of greater than 20 during development and synchronously increased during germination. This class of genes may play important roles in normal cell proliferation.
Collapse
|
48
|
Kleene KC, Distel RJ, Hecht NB. Translational regulation and deadenylation of a protamine mRNA during spermiogenesis in the mouse. Dev Biol 1984; 105:71-9. [PMID: 6468765 DOI: 10.1016/0012-1606(84)90262-8] [Citation(s) in RCA: 282] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The distribution of the mRNA for one of the two mouse protamines, the cysteine-rich, tyrosine-containing protamine (MP1), was examined in the polysomal and nonpolysomal compartments of total testis and purified populations of round and elongating spermatids using Northern blots. In postmitochondrial supernatants prepared from total testis, about 10-15% of MP1-mRNA sediments with the small polysomes. The nonpolysomal molecules of MP1-mRNA are homogeneous in size, about 580 bases, while the polysomal molecules are heterogeneous with a mode of about 450 bases. Digestion with RNase H and thermal chromatography on poly(U) Sepharose reveals that the difference in size of polysomal and nonpolysomal MP1-mRNA is due to a shortening of the poly(A) from about 160 to 30 bases. In round spermatids, essentially all of MP1-mRNA is 580 bases long and is in the nonpolysomal fraction. Elongating spermatids contain roughly equal proportions of the homogeneous, 580 base form in the nonpolysomal compartment, and the heterogeneous 450 base form solely in the polysomal compartment. These results indicate that mRNA for one of the mouse protamines is stored as an untranslated RNP in round spermatids, and that it is partially deadenylated when it is translated in elongating spermatids.
Collapse
|
49
|
Palatnik CM, Wilkins C, Jacobson A. Translational control during early Dictyostelium development: possible involvement of poly(A) sequences. Cell 1984; 36:1017-25. [PMID: 6142768 DOI: 10.1016/0092-8674(84)90051-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A rapid decrease in the translational efficiency of mRNA synthesized during vegetative growth is associated with the initiation of development in Dictyostelium discoideum. In contrast, newly synthesized mRNA associates with polysomes with high efficiency. Discrimination between these two mRNA populations correlates with a rapid shortening of the poly(A) tract on the preexisting mRNA. A model is proposed in which a critical poly(A) length regulates the pattern of protein synthesis by affecting the efficiency with which mRNAs can interact with the translational machinery. The model suggests that transcriptional and translational controls can be coupled by altering the state of adenylation of the preexisting mRNA population. The model allows radical changes in the pattern of protein synthesis without wholesale destruction of preexisting mRNA.
Collapse
|
50
|
Saccharomyces cerevisiae killer virus transcripts contain template-coded polyadenylate tracts. Mol Cell Biol 1984. [PMID: 6199660 DOI: 10.1128/mcb.4.1.101] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The M double-stranded RNA component of type 1 killer strains of the yeast Saccharomyces cerevisiae contains an internal 200-base pair adenine- and uracil-rich region. The plus strands of this viral genomic RNA contain an internal adenine-rich region which allows these strands to bind to polyuridylate-Sepharose as tightly as do polyadenylated RNAs with 3'-terminal polyadenylated tracts of 70 to 100 residues. Internal template coding of an adenine-rich tract in positive polarity in vivo and in vitro transcripts of M double-stranded RNA may serve as an alternate method of transcript polyadenylation. The 3'-terminal residue of the in vitro m transcript is a non-template-encoded purine residue. The 5' terminus of this transcript is involved in a stem-and-loop structure which includes an AUG initiation codon, along with potential 18S and 5.8S rRNA binding sites. Except for the 3'-terminal residue, transcription in in vitro shows complete fidelity.
Collapse
|