1
|
Villa TG, Abril AG, Sánchez-Pérez A. Mastering the control of the Rho transcription factor for biotechnological applications. Appl Microbiol Biotechnol 2021; 105:4053-4071. [PMID: 33963893 DOI: 10.1007/s00253-021-11326-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022]
Abstract
The present review represents an update on the fundamental role played by the Rho factor, which facilitates the process of Rho-dependent transcription termination in the prokaryotic world; it also provides a summary of relevant mutations in the Rho factor and the insights they provide into the functions carried out by this protein. Furthermore, a section is dedicated to the putative future use of Rho (the 'taming' of Rho) to facilitate biotechnological processes and adapt them to different technological contexts. Novel bacterial strains can be designed, containing mutations in the rho gene, that are better suited for different biotechnological applications. This process can obtain novel microbial strains that are adapted to lower temperatures of fermentation, shorter production times, exhibit better nutrient utilization, or display other traits that are beneficial in productive Biotechnology. Additional important issues reviewed here include epistasis, the design of TATA boxes, the role of small RNAs, and the manipulation of clathrin-mediated endocytosis, by some pathogenic bacteria, to invade eukaryotic cells. KEY POINTS: • It is postulated that controlling the action of the prokaryotic Rho factor could generate major biotechnological improvements, such as an increase in bacterial productivity or a reduction of the microbial-specific growth rate. • The review also evaluates the putative impact of epistatic mechanisms on Biotechnology, both as possible responsible for unexpected failures in gene cloning and more important for the genesis of new strains for biotechnological applications • The use of clathrin-coated vesicles by intracellular bacterial microorganisms is included too and proposed as a putative delivery mechanism, for drugs and vaccines.
Collapse
Affiliation(s)
- Tomás G Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, La Coruña, 15706, Santiago de Compostela, Spain.
| | - Ana G Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, La Coruña, 15706, Santiago de Compostela, Spain.
| | - Angeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
3
|
Chiurazzi M, Pulitzer JF. Characterisation of the bacteriophage T4 comC alpha 55.6 and comCJ mutants. A possible role in an antitermination process. FEMS Microbiol Lett 1998; 166:187-95. [PMID: 9770273 DOI: 10.1111/j.1574-6968.1998.tb13889.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have performed a new screen for T4 mutants (comC) that overcome the phage growth restriction caused by the Escherichia coli rho/tabC mutants. We show that one such mutant (comCJ) identifies a different gene from that identified by canonical comC mutants. We compare the regulation of T4 prereplicative transcription in a rho/tabC mutant infected by T4 wild-type, by a canonical comC mutant (comC alpha 55.6) and by comCJ. The transcription rates of the two prereplicative genes 39 and 43 is depressed in a T4 wild-type infected tabC host mutant. When comC alpha 55.6 and/or comCJ single and double mutants are the infecting phages, transcription of genes 39 and 43 is resumed to different extents; in particular, in the double mutant infections there appears to be a synergistic effect on transcription. Furthermore, we find that the comC alpha 55.6 phage mutant affects the transcription rate of the gene rIIA in a wild-type host.
Collapse
Affiliation(s)
- M Chiurazzi
- International Institute of Genetics and Biophysics, Naples, Italy.
| | | |
Collapse
|
4
|
Miller ES, Shih GC, Chang SK, Ballard DN. An E. coli B mutation, rpoB5081, that prevents growth of phage T4 strains defective in host DNA degradation. FEMS Microbiol Lett 1997; 157:109-16. [PMID: 9418245 DOI: 10.1111/j.1574-6968.1997.tb12760.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
An E. coli B Tab strain, EM121, was isolated that restricts T4 denA (DNA endonuclease II) mutants at 37 degrees C and above, but is permissive for wild-type T4 at all temperatures examined. At 42 degrees C, other mutants affected in nucleic acid metabolism (T4 dexA, regA and uvsW strains) are also restricted. Genetic analysis revealed that one mutation (rpoB5081) in the RNA polymerase beta subunit gene is sufficient for restricting all denA mutants. rpoB5081, together with a second linked mutation, is also required for restricting the other T4 mutants, rpoB5081 (P806S), previously shown to increase transcription termination in E. coli K-12, causes delayed synthesis of T4 late proteins and reduced DNA synthesis in denA infections. Thus, T4 DNA synthesis and gene expression are impaired by the rpoB5081 beta subunit when degradation of host DNA is reduced. Because the restricted T4 mutants are not readily distinguished from wild-type phage under typical plating conditions, EM121 is an important host for screening and mapping T4 denA mutations.
Collapse
Affiliation(s)
- E S Miller
- Department of Microbiology, North Carolina State University, Raleigh 27606-7615, USA.
| | | | | | | |
Collapse
|
5
|
Sozhamannan S, Stitt BL. Effects on mRNA degradation by Escherichia coli transcription termination factor Rho and pBR322 copy number control protein Rop. J Mol Biol 1997; 268:689-703. [PMID: 9175854 DOI: 10.1006/jmbi.1997.1004] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutants in Escherichia coli transcription termination factor Rho, termed rho(nusD), were previously isolated based on their ability to block the growth of bacteriophage T4. Here we show that rho(nusD) strains have decreased average half-lives for bulk cellular mRNA. Decreased E. coli message lifetimes could be because of increased ribonuclease activity in the rho mutant cells: if a Rho-dependent terminator precedes a ribonuclease gene, weaker termination in the rho mutants could lead to nuclease overexpression. However, inactivation of ribonuclease genes in rho026 cells did not relieve the defective phage growth. Unexpectedly, expression of the pBR322 Rop protein, a structure-specific, sequence-independent RNA-binding protein, in rho(nusD) cells restored the ability of T4 to grow and prolonged cellular message half-life in both the wild-type and the rho026 mutant. These results suggest that it is the RNA-binding ability of Rho rather than its transcription termination function that is important for the inhibition of bacteriophage growth and the shorter bulk mRNA lifetime. We propose that altered interaction of the mutant Rho with mRNA could make the RNA more susceptible to degradation. The inability of the RNA-binding proteins SrmB and DeaD to reverse the rho mutant phenotype when each is overexpressed implies that the required RNA interactions are specific. The results show novel roles for Rho and Rop in mRNA stability.
Collapse
Affiliation(s)
- S Sozhamannan
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
6
|
Abstract
At least two bacteriophage T4 replication origins, ori(uvsY) and ori(34), contain a T4 middle-mode promoter that is necessary for origin function. We wanted to analyze the requirement of these two replication origins for the MotA protein, which is the phage-encoded activator of middle-mode promoters. To ensure the complete absence of MotA protein, we deleted the motA gene from the T4 genome. Unexpectedly, the deletion mutant was not viable unless the MotA protein was provided from a recombinant plasmid. Therefore, MotA is an essential protein for T4 growth. The motA delta mutation reduced the synthesis of several proteins that are encoded by genes with middle-mode promoters, delayed and reduced the synthesis of late proteins, and substantially reduced phage genomic replication. The motA delta mutation also reduced the replication of an ori(uvsY)-containing plasmid and virtually abolished replication of an ori(34)-containing plasmid. The replication defects of the two origins correlated with transcriptional defects: the motA delta mutation modestly reduced transcription from the plasmid-borne ori(uvsY) promoter and strongly reduced transcription from the ori(34) promoter. These results provide strong evidence that MotA protein is normally involved in origin-dependent replication. However, MotA is not required for origin-directed replication as long as transcription can occur from the origin promoter.
Collapse
Affiliation(s)
- K H Benson
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | | |
Collapse
|
7
|
Sanson B, Uzan M. Sequence and characterization of the bacteriophage T4 comC alpha gene product, a possible transcription antitermination factor. J Bacteriol 1992; 174:6539-47. [PMID: 1400206 PMCID: PMC207620 DOI: 10.1128/jb.174.20.6539-6547.1992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have sequenced a 1,340-bp region of the bacteriophage T4 DNA spanning the comC alpha gene, a gene which has been implicated in transcription antitermination. We show that comC alpha, identified unambiguously by sequencing several missense and nonsense mutations within the gene, codes for an acidic polypeptide of 141 residues, with a predicted molecular weight of 16,680. We have identified its product on one- and two-dimensional gel systems and found that it migrates abnormally as a protein with a molecular weight of 22,000. One of the missense mutations (comC alpha 803) is a glycine-to-arginine change, and the resulting protein exhibits a substantially faster electrophoretic mobility. The ComC alpha protein appears immediately after infection. Its rate of synthesis is maximum around 2 to 3 min postinfection (at 37 degrees C) and then starts to decrease slowly. Some residual biosynthesis is still detectable during the late period of phage development.
Collapse
Affiliation(s)
- B Sanson
- Institut de Biologie Physico-chimique, Paris, France
| | | |
Collapse
|
8
|
Sullivan SL, Ward DF, Gottesman ME. Effect of Escherichia coli nusG function on lambda N-mediated transcription antitermination. J Bacteriol 1992; 174:1339-44. [PMID: 1531224 PMCID: PMC206430 DOI: 10.1128/jb.174.4.1339-1344.1992] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Escherichia coli Nus factors act in conjunction with the bacteriophage lambda N protein to suppress transcription termination on the lambda chromosome. NusA binds both N and RNA polymerase and may also interact with other Nus factors. To search for additional components of the N antitermination system, we isolated host revertants that restored N activity in nusA1 mutants. One revertant, nusG4, was mapped to the rif region of the E. coli chromosome and shown to represent a point mutation near the 3' end of the nusG gene. The nusG4 mutation also suppressed nusE71 but not nusASal, nusB5, nusC60 (rpoB60), or nusD026 (rho026). However, nusG+ expressed from a multicopy plasmid suppressed nusD026 and related rho mutants for both lambda and phage T4 growth. These results suggest that NusG may act as a component of the N antitermination complex. In addition, the data imply a role for NusG in Rho-dependent termination.
Collapse
Affiliation(s)
- S L Sullivan
- Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | | | | |
Collapse
|
9
|
Hinton D. Transcription from a bacteriophage T4 middle promoter using T4 motA protein and phage-modified RNA polymerase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55233-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Hinton DM. Altered Expression of the Bacteriophage T4 Gene 41 (Primase-Helicase) in an Escherichia coli rho Mutant. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71698-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
11
|
Stitt BL, Mosig G. Impaired expression of certain prereplicative bacteriophage T4 genes explains impaired T4 DNA synthesis in Escherichia coli rho (nusD) mutants. J Bacteriol 1989; 171:3872-80. [PMID: 2544560 PMCID: PMC210138 DOI: 10.1128/jb.171.7.3872-3880.1989] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Escherichia coli rho 026 mutation that alters the transcription termination protein Rho prevents growth of wild-type bacteriophage T4. Among the consequences of this mutation are delayed and reduced T4 DNA replication. We show that these defects can be explained by defective synthesis of certain T4 replication-recombination proteins. Expression of T4 gene 41 (DNA helicase/primase) is drastically reduced, and expression of T4 genes 43 (DNA polymerase), 30 (DNA ligase), 46 (recombination nuclease), and probably 44 (DNA polymerase-associated ATPase) is reduced to a lesser extent. The compensating T4 mutation goF1 partially restores the synthesis of these proteins and, concomitantly, the synthesis of T4 DNA in the E. coli rho mutant. From analyzing DNA synthesis in wild-type and various multiply mutant T4 strains, we infer that defective or reduced synthesis of these proteins in rho 026-infected cells has several major effects on DNA replication. It impairs lagging-strand synthesis during the primary mode of DNA replication; it delays and depresses recombination-dependent (secondary mode) initiation; and it inhibits the use of tertiary origins. All three T4 genes whose expression is reduced in rho 026 cells and whose upstream sequences are known have a palindrome containing a CUUCGG sequence between the promoter(s) and ribosome-binding site. We speculate that these palindromes might be important for factor-dependent transcription termination-antitermination during normal T4 development. Our results are consistent with previous proposals that the altered Rho factor of rho 026 may cause excessive termination because the transcription complex does not interact normally with a T4 antiterminator encoded by the wild-type goF gene and that the T4 goF1 mutation restores this interaction.
Collapse
Affiliation(s)
- B L Stitt
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235
| | | |
Collapse
|
12
|
Broida J, Abelson J. Sequence organization and control of transcription in the bacteriophage T4 tRNA region. J Mol Biol 1985; 185:545-63. [PMID: 4057254 DOI: 10.1016/0022-2836(85)90071-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacteriophage T4 contains genes for eight transfer RNAs and two stable RNAs of unknown function. These are found in two clusters at 70 X 10(3) base-pairs on the T4 genetic map. To understand the control of transcription in this region we have completed the sequencing of 5000 base-pairs in this region. The sequence contains a part of gene 3, gene 1, gene 57, internal protein I, the tRNA genes and five open reading frames which most likely code for heretofore unidentified proteins. We have used subclones of the region to investigate the kinetics of transcription in vivo. The results show that transcription in this region consists of overlapping early, middle and late transcripts. Transcription is directed from two early promoters, one or two middle promoters and perhaps two late promoters. This region contains all of the features that are seen in T4 transcription and as such is a good place to study the phenomenon in more detail.
Collapse
|
13
|
Pulitzer JF, Colombo M, Ciaramella M. New control elements of bacteriophage T4 pre-replicative transcription. J Mol Biol 1985; 182:249-63. [PMID: 3999145 DOI: 10.1016/0022-2836(85)90343-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacteriophage T4 pre-replicative genes are transcribed, by Escherichia coli RNA polymerase, in two alternative modes: an early mode and a middle mode. Middle mode transcription is under the control of at least one viral protein, pmotA. We have identified two additional viral genes, motB and motC, that map in the dispensable region of the T4 genome, between genes 39 and 56. pmotB and pmotC are diffusible factors which provide an alternative to the motA dependent mode of middle transcription of many T4 genes. Deletions of motB and motC are in fact lethal only in combination with a motA mutant. motB controls one of the alternative modes of transcription of the rIIA gene. When motA or motB are missing, transcription of rIIA is quantitatively unaffected; when both are missing the transcription rate drops by about 75%. Control of transcription of the tRNA gene cluster is more complex. Transcription of subcluster 2 is maximally reduced (70%) only by deletions that, besides motB, cut out an adjacent region. We guess that this adjacent region codes for an additional control element, which we call motC. The motB gene is situated in a 750-base region between the left end-points of del(39-56)-1 and -4.
Collapse
|
14
|
Uzan M, d'Aubenton-Carafa Y, Favre R, de Franciscis V, Brody E. The T4 mot protein functions as part of a pre-replicative DNA-protein complex. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89779-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Simon LD, Randolph B. Bacteriophage T4 bypass31 mutations that make gene 31 nonessential for bacteriophage T4 replication: isolation and characterization. J Virol 1984; 51:321-8. [PMID: 6379206 PMCID: PMC254441 DOI: 10.1128/jvi.51.2.321-328.1984] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
T4 bacteriophage mutants called bypass31 (byp31) that specifically suppress gene 31 amber mutations have been isolated and characterized. The mechanism by which the byp31 mutation, byp31-1, suppresses gene 31 nonsense mutations does not involve synthesis of gp31 or of a particular gp31 fragment; furthermore, the byp31 allele suppresses all nonsense mutations in gene 31 that have been tested. We detect no unusual properties among the T4 particles made in su- cells by the T4amN54byp31-1 double mutant. These virions, made in the absence of gp31, show normal heat sensitivity, normal sensitivity to osmotic shock, and normal morphology. Specific different gene 31 missense mutants are able to form plaques with high efficiencies on the following two types of host defective cells: (i) Escherichia coli groEL (Tilly et al., Proc. Natl. Acad. Sci. U.S.A. 78:1629-1633, 1981) mutants that block T4 capsid assembly and (ii) E. coli rho mutants in which T4+ heads are assembled, but in which tail production and DNA synthesis are blocked. (Note that not all rho mutants block T4 production [G. Binkowski and L. D. Simon, p. 342-350, in C. K. Mathews, E. M. Kutter, G. Mosig, and P. B. Berget, ed., Bacteriophage T4, 1983]; T4 is able to replicate in rho mutants such as rho ts15, whose principal defect is that they fail to terminate transcription.) The byp31-1 allele permits production of T4 particles in E. coli groEL host-defective mutants, but not in E. coli rho host mutants.
Collapse
|
16
|
Thermes C, Brody E. T4-induced antipolarity: temporal heterogeneity in response of early transcription units. J Virol 1984; 50:191-201. [PMID: 6699944 PMCID: PMC255599 DOI: 10.1128/jvi.50.1.191-201.1984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
When T4 infects Escherichia coli in the absence of protein synthesis, rho-mediated termination takes place on early polycistronic transcription units. During the early period of development, the appearance of delayed early transcripts becomes insensitive to the inhibition of protein synthesis. In the absence of the T4 gene product mot, an inducer for the middle mode of transcription, only the early polycistronic messengers are synthesized. In mot- -infected cells, the synthesis of the distal transcripts still becomes completely insensitive to the polar effect of chloramphenicol. This happens because potential rho-sensitive termination sites are not used in these cells. In this respect, overcoming polarity induced by chloramphenicol can be called a process of antitermination. The mot-independent antitermination can be studied by addition of chloramphenicol during infections with mot- bacteriophage. The effect is stable; it allows a constant percentage of rho-sensitive termination sites in the cell to be traversed by RNA polymerase for at least 10 min at 42 degrees C. By examining six different transcription units on the T4 genome, we find that each transcription unit has a cis-acting component (or components) which determines when its rho-sensitive termination site stops functioning. In extreme cases, rho acts with 100% efficiency in some transcription units, whereas it is almost inactive in others.
Collapse
|
17
|
|
18
|
Daegelen P, D'Aubenton-Carafa Y, Brody E. The role of rho in bacteriophage T4 development. I. Control of growth and polarity. Virology 1982; 117:105-20. [PMID: 7039086 DOI: 10.1016/0042-6822(82)90511-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Bacteriophage T4 infection mechanisms. ACTA ACUST UNITED AC 1982. [DOI: 10.1016/b978-0-444-80400-6.50013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Young ET, Menard RC. Sizes of bacteriophage T4 early mRNA's separated by preparative polyacrylamide gel electrophoresis and identified by in vitro translation and by hybridization to recombinant T4 plasmids. J Virol 1981; 40:772-89. [PMID: 6459465 PMCID: PMC256689 DOI: 10.1128/jvi.40.3.772-789.1981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We determined the sized of specific T4 prereplicative nRNA's by preparative polyacrylamide gel electrophoresis, and we used the following two techniques to identify specific gene transcripts; cell-free protein synthesis accompanied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to distinguish T4 polypeptides and hybridization to recombinant plasmids containing T4 DNA of known genetic composition. In our first analysis, the use of nonsense and in-phase deletion mutants allowed unambiguous identification of the functional transcripts that encoded genes 32, rIIB, and rIIA. In addition, we identified the functional transcript that encoded genes 43, 45, 30, 39, and 52, the beta-glucosyl transferase gene, and the deletion 293 region. A single peak of mRNA activity that coded for gp43, gp39, gprIIA, beta-glucosyl transferase, and the polypeptide encoded in the deletion 293 region was present; the other polypeptides were encoded in multiple mRNA species, gp46 and gp32 were encoded by two mRNA's and gp52 and gprIIB were encoded by three nRNA's. By hybridizing fractionated, pulse-labeled early RNA to cloned restriction fragments of T4 DNA, we identified the same specific transcripts for genes 43, 52, and rIIB. In addition, a lower-molecular-weight RNA (presumably degraded nRNA) was present even in pulse-labeled RNA preparations. The distribution of pulse-labeled RNAs that hybridized to gene 39, gene 30, gene rIIA, gene 40 plus gene 41, and gene 42 plus the beta-glucosyl transferase gene indicated extensive degradation. We detected cotranscription of genes rIIA and rIIB by rehybridization of RNA first annealed to an rIIB plasmid and then eluted and annealed to an rIIA plasmid. The size distributions of normal and chloramphenicol-treated RNAs that hybridized to plasmids containing T4 immediate early gene 30, gene 39, gene 40 plus gene 41, and gene 42 plus the beta-glucosyl transferase gene were not significantly different.
Collapse
|
21
|
Stitt BL, Revel HR, Lielausis I, Wood WB. Role of the host cell in bacteriophage T4 development. II. Characterization of host mutants that have pleiotropic effects on T4 growth. J Virol 1980; 35:775-89. [PMID: 6999171 PMCID: PMC288872 DOI: 10.1128/jvi.35.3.775-789.1980] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mutant host-defective Escherichi coli that fail to propagate bacteriophage T4 and have a pleiotropic effect on T4 development have been isolated and characterized. In phage-infected mutant cells, specific early phage proteins are absent or reduced in amount, phage DNA synthesis is depressed by about 50%, specific structural phage proteins, including some tail and collar components, are deficient or missing, and host-cell lysis is delayed and slow. Almost all phage that can overcome the host block carry mutantions that map in functionally undefined 'nonessential' regions of the T4 genome, most near gene 39. The mutant host strains are temperature sensitive for growth and show simultaneous reversion of the ts phenotype and the inability to propagate T4+. The host mutations are cotransduced with ilv (83 min) and may lie in the gene for transcription termination factor rho.
Collapse
|
22
|
Pulitzer JF, Coppo A, Caruso M. Host--virus interactions in the control of T4 prereplicative transcription. II. Interaction between tabC (rho) mutants and T4 mot mutants. J Mol Biol 1979; 135:979-97. [PMID: 395323 DOI: 10.1016/0022-2836(79)90523-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|