1
|
Cittadino GM, Andrews J, Purewal H, Estanislao Acuña Avila P, Arnone JT. Functional Clustering of Metabolically Related Genes Is Conserved across Dikarya. J Fungi (Basel) 2023; 9:jof9050523. [PMID: 37233234 DOI: 10.3390/jof9050523] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Transcriptional regulation is vital for organismal survival, with many layers and mechanisms collaborating to balance gene expression. One layer of this regulation is genome organization, specifically the clustering of functionally related, co-expressed genes along the chromosomes. Spatial organization allows for position effects to stabilize RNA expression and balance transcription, which can be advantageous for a number of reasons, including reductions in stochastic influences between the gene products. The organization of co-regulated gene families into functional clusters occurs extensively in Ascomycota fungi. However, this is less characterized within the related Basidiomycota fungi despite the many uses and applications for the species within this clade. This review will provide insight into the prevalence, purpose, and significance of the clustering of functionally related genes across Dikarya, including foundational studies from Ascomycetes and the current state of our understanding throughout representative Basidiomycete species.
Collapse
Affiliation(s)
- Gina M Cittadino
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Johnathan Andrews
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Harpreet Purewal
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | | | - James T Arnone
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| |
Collapse
|
2
|
At the revolution with Fred Sherman. Mol Cell Biol 2014; 34:922-5. [PMID: 24379440 DOI: 10.1128/mcb.01682-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fred Sherman was a prominent yeast geneticist and my mentor in graduate school. Fred passed away in September 2013 at the age of 81. In this minireview, I describe what it was like to know Fred and be in his lab from 1977 to 1982, the extraordinarily exciting time when the recombinant DNA revolution hit yeast genetics.
Collapse
|
3
|
Summers DW, Cyr DM. Use of yeast as a system to study amyloid toxicity. Methods 2011; 53:226-31. [PMID: 21115125 PMCID: PMC3432305 DOI: 10.1016/j.ymeth.2010.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/22/2010] [Accepted: 11/22/2010] [Indexed: 11/17/2022] Open
Abstract
The formation of amyloid-like fibrils is a hallmark of several neurodegenerative diseases. How the assembly of amyloid-like fibrils contributes to cell death is a major unresolved question in the field. The budding yeast Saccharomyces cerevisiae is a powerful model organism to study basic mechanisms for how cellular pathways regulate amyloid assembly and proteotoxicity. For example, studies of the amyloidogenic yeast prion [RNQ(+)] have revealed novel roles by which molecular chaperones protect cells from the accumulation of cytotoxic protein species. In budding yeast there are a variety of cellular assays that can be employed to analyze the assembly of amyloid-like aggregates and mechanistically dissect how cellular pathways influence proteotoxicity. In this review, we describe several assays that are routinely used to investigate aggregation and toxicity of the [RNQ(+)] prion in yeast.
Collapse
Affiliation(s)
- Daniel W. Summers
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill
| | - Douglas M. Cyr
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill
| |
Collapse
|
4
|
de Jongh WA, Bro C, Ostergaard S, Regenberg B, Olsson L, Nielsen J. The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae. Biotechnol Bioeng 2008; 101:317-26. [PMID: 18421797 DOI: 10.1002/bit.21890] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The uptake and catabolism of galactose by the yeast Saccharomyces cerevisiae is much lower than for glucose and fructose, and in applications of this yeast for utilization of complex substrates that contain galactose, for example, lignocellulose and raffinose, this causes prolonged fermentations. Galactose is metabolized via the Leloir pathway, and besides the industrial interest in improving the flux through this pathway it is also of medical relevance to study the Leloir pathway. Thus, genetic disorders in the genes encoding galactose-1-phosphate uridylyltransferase or galactokinase result in galactose toxicity both in patients with galactosemia and in yeast. In order to elucidate galactose related toxicity, which may explain the low uptake and catabolic rates of S. cerevisiae, we have studied the physiological characteristics and intracellular metabolite profiles of recombinant S. cerevisiae strains with improved or impaired growth on galactose. Aerobic batch cultivations on galactose of strains with different combinations of overexpression of the genes GAL1, GAL2, GAL7, and GAL10, which encode proteins that together convert extracellular galactose into glucose-1-phosphate, revealed a decrease in the maximum specific growth rate when compared to the reference strain. The hypothesized toxic intermediate galactose-1-phosphate cannot be the sole cause of galactose related toxicity, but indications were found that galactose-1-phosphate might cause a negative effect through inhibition of phosphoglucomutase. Furthermore, we show that galactitol is formed in S. cerevisiae, and that the combination of elevated intracellular galactitol concentration, and the ratio between galactose-1-phosphate concentration and phosphoglucomutase activity seems to be important for galactose related toxicity causing decreased growth rates.
Collapse
Affiliation(s)
- Willem A de Jongh
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Building 223, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
5
|
Sil AK, Xin P, Hopper JE. Vectors allowing amplified expression of the Saccharomyces cerevisiae Gal3p-Gal80p-Gal4p transcription switch: applications to galactose-regulated high-level production of proteins. Protein Expr Purif 2000; 18:202-12. [PMID: 10686151 DOI: 10.1006/prep.1999.1177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Gal4, Gal80, and Gal3 proteins of Saccharomyces cerevisiae constitute a galactose-responsive regulatory switch for GAL gene promoters. The low cellular levels of these proteins have hampered mechanistic studies and limit the utility of the GAL gene promoters for high-yield production of endogenous and exogenous proteins. We have constructed two new vectors, pMEGA2 and pMEGA2-DeltaURA3, that increase the level of the Gal4p-Gal80p-Gal3p switch proteins under conditions that preserve the Gal3p-Gal80p-Gal4p stoichiometries required for normal switch function. Cells carrying pMEGA2 show 15- to 20-fold more Gal4p and 30- to 40-fold more Gal3p and Gal80p than cells lacking pMEGA2. These high levels of Gal4p, Gal80p, and Gal3p do not perturb the integrity of galactose-inducible regulation. Cells that carry pMEGA2 exhibit normal galactose-induction kinetics for the chromosomal MEL1 gene expression and normal, albeit slower, log-phase growth. Insertion of the MEL1 gene into pMEGA2 provides a 24- to 30-fold increase in the Mel1 protein. Cells carrying a 2-microm-based URA3-selectable plasmid containing a GAL1pro:lacZ reporter gene and a second plasmid, pMEGA2-DeltaURA3, produce 12-fold more beta-galactosidase than cells carrying only the GAL1pro:lacZ reporter plasmid. The performance of the MEGA plasmids in providing amplified production of the Gal3, Gal80, and Gal4 proteins should prove useful in investigations of the mechanistic aspects of these transcription switch proteins and in work aimed at achieving high-level, galactose-regulatable production of proteins in yeast.
Collapse
Affiliation(s)
- A K Sil
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
6
|
Lafontaine D, Tollervey D. One-step PCR mediated strategy for the construction of conditionally expressed and epitope tagged yeast proteins. Nucleic Acids Res 1996; 24:3469-71. [PMID: 8811105 PMCID: PMC146098 DOI: 10.1093/nar/24.17.3469] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
With the availability of the complete yeast genomic sequence, techniques which allow the rapid functional analysis of genes of interest are of increasing importance. Here we report a technique which allows the initial characterisation of genes of interest, through the construction of conditionally expressed mutations for functional analyses and the generation of epitope-tagged fusion proteins for immuno-localisation and immuno-purification, entirely by PCR.
Collapse
Affiliation(s)
- D Lafontaine
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | |
Collapse
|
7
|
Giot L, Simon M, Dubois C, Faye G. Suppressors of thermosensitive mutations in the DNA polymerase delta gene of Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:212-22. [PMID: 7862092 DOI: 10.1007/bf00294684] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA polymerases (Pol) alpha, delta and epsilon are necessary for replication of nuclear DNA. Pol delta interacts permanently or transiently with numerous accessory proteins whose identification may shed light on the function(s) of Pol delta. In vitro mutagenesis was used to induce thermosensitive (ts) mutations in the DNA polymerase delta gene (POL3). We have attempted to clone two recessive extragenic suppressors of such ts mutants (sdp1 for mutation pol3-14 and sdp5-1 for mutation pol3-11) by transforming thermoresistant haploid strains pol3-14 sdp1 and pol3-11 sdp5-1 with wild-type genomic libraries in singlecopy or multicopy vectors. None of the thermosensitive transformants so obtained was identified as being sdp1 or sdp5-1. Instead, three genes were cloned whose products interfere with the activity of suppressors. One of them is the type 1 protein phosphatase gene, DIS2. Another is a novel gene, ASM4, whose gene product is rich in asparagine and glutamine residues.
Collapse
Affiliation(s)
- L Giot
- Institut Curie-Biologie, Centre Universitaire, Orsay, France
| | | | | | | |
Collapse
|
8
|
Mylin LM, Bushman VL, Long RM, Yu X, Lebo CM, Blank TE, Hopper JE. SIP1 is a catabolite repression-specific negative regulator of GAL gene expression. Genetics 1994; 137:689-700. [PMID: 8088514 PMCID: PMC1206028 DOI: 10.1093/genetics/137.3.689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The yeast Snf1p kinase is required for normal expression of many genes involved in utilization of non-glucose carbon. Snf1p is known to associate with several proteins. One is Sip1p, a protein that becomes phosphorylated in the presence of Snf1p and thus is a candidate Snf1p kinase substrate. We have isolated the SIP1 gene as a multicopy suppressor of the gal83-associated defect in glucose repression of GAL gene expression. Multicopy SIP1 also suppressed the gal82-associated defect in glucose repression, suggesting that SIP1, GAL83 and GAL82 function interdependently. Multicopy SIP1 gene reduces GAL1, GAL2, GAL7 and GAL10 gene expression three- to fourfold in cells grown in the presence of glucose but has no effect in cells grown on nonrepressing carbon. Sip1-deletion cells exhibited a two- to threefold increase in GAL gene expression compared to wild-type cells when grown on glucose. These studies show that SIP1 is a catabolite repression-specific negative regulator of GAL gene expression. Northern analysis revealed two SIP1 transcripts whose relative abundance changed with carbon source. Western blots revealed that Sip1p abundance is not markedly affected by carbon source, suggesting that Sip1p may be regulated post-translationally.
Collapse
Affiliation(s)
- L M Mylin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey 17033
| | | | | | | | | | | | | |
Collapse
|
9
|
Kouprina N, Tsouladze A, Koryabin M, Hieter P, Spencer F, Larionov V. Identification and genetic mapping of CHL genes controlling mitotic chromosome transmission in yeast. Yeast 1993; 9:11-9. [PMID: 8442383 DOI: 10.1002/yea.320090103] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Eight independent chl (chromosome loss) mutants were isolated using yeast haploid strain disomic for chromosome III. In these mutants, chromosome III is lost during mitosis 50-fold more frequently than in the wild-type strains. chl mutants are also incapable of stable maintenance of circular and linear artificial chromosomes. Seven of the eight mutations are recessive, and one is semidominant. Complementation tests placed these mutants into six complementation groups (chl11 through chl16). Based on tetrad analysis, chl12, chl14 and chl15 correspond to mutations in single nuclear genes. Tetrad analysis of the other mutants was not possible due to poor spore viability. Complementation analysis was also carried out between collection of chl mutants and ctf mutants (chromosome transmission fidelity) (Spencer et al., 1990). The chl3, chl4, chl8, chl12 and chl15 mutants were unable to complement ctf3, ctf17, ctf12, ctf18 and ctf4, respectively. Three CHL genes were mapped by tetrad analysis. The CHL3 gene is placed on the right arm of chromosome XII, between the ILV5 (33.3 cM) and URA4 (21.8 cM) loci. The CHL10 gene is located on the left arm of chromosome VI, 12.5 cM from the centromere. The CHL15 gene is tightly linked to the KAR3 marker of the right arm of chromosome XVI (8.8 cM). The mapping data indicate that these three genes differ from other genes known to affect chromosome stability in mitosis. Therefore, the total number of the CHL genes identified (including those described by us earlier) is 13 (CHL1-CHL10, CHL12, CHL14 and CHL15).
Collapse
Affiliation(s)
- N Kouprina
- Institute of Cytology, Academy of Sciences of Russia, St Petersburg
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Affiliation(s)
- J F Theis
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark 07103
| | | |
Collapse
|
12
|
Ulery TL, Mangus DA, Jaehning JA. The yeast IMP1 gene is allelic to GAL2. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:129-35. [PMID: 1745225 DOI: 10.1007/bf00290660] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have found that many laboratory strains of yeast are defective in galactose metabolism owing to a recessive mutation in the previously characterized nuclear gene, IMP1. This defect leads to a requirement for mitochondrial function for growth on, and metabolism of, galactose. Genetic background affects the degree to which cells are defective. In particular, alleles of GAL3 affect the ability to score the Imp phenotype. We have found that in imp1 strains, transcriptional induction of the galactose inducible genes (GAL1, 2, 7 + 10, MEL1) is normal, but galactose transport is reduced in both rho+ and rho0 cells. This phenotype is normally associated with mutations in GAL2, the galactose permease. Although the growth phenotypes of gal2 and imp1 mutants are distinct, we found that the transformation of imp1 rho0 strains with a plasmid containing the GAL2 gene allows these strains to grow on galactose. Initial genetic analyses did not demonstrate linkage between the GAL2 and IMP1 genes owing to the effects of an unlinked gene on the Imp phenotype. By disrupting the GAL2 gene in an Imp+ background, we have shown that IMP1 and GAL2 segregate as tightly linked genes. Based on these data, we believe that imp1 is a partially defective allele of the GAL2 gene.
Collapse
Affiliation(s)
- T L Ulery
- Department of Biology, Indiana University, Bloomington 47405
| | | | | |
Collapse
|
13
|
Kure S, Koyata H, Kume A, Ishiguro Y, Hiraga K. The glycine cleavage system. The coupled expression of the glycine decarboxylase gene and the H-protein gene in the chicken. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)49992-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Mutational analysis of the consensus sequence of a replication origin from yeast chromosome III. Mol Cell Biol 1990. [PMID: 2196439 DOI: 10.1128/mcb.10.8.3917] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast autonomously replicating sequence (ARS) elements contain an 11-base-pair core consensus sequence (5'-[A/T]TTTAT[A/G]TTT[A/T]-3') that is required for function. The contribution of each position within this sequence to ARS activity was tested by creating all possible single-base mutations within the core consensus sequence of ARS307 (formerly called the C2G1 ARS) and testing their effects on high-frequency transformation and on plasmid stability. Of the 33 mutations, 22 abolished ARS function as measured by high-frequency transformation, 7 caused more than twofold reductions in plasmid stability, and 4 had no effect on plasmid stability. Mutations that reduced or abolished ARS activity occurred at each position in the consensus sequence, demonstrating that each position of this sequence contributes to ARS function. Of the four mutations that had no effect on ARS activity, three created alternative perfect matches to the core consensus sequence, demonstrating that the alternate bases allowed by the consensus sequence are, indeed, interchangeable. In addition, a change from T to C at position 6 did not perturb wild-type efficiency. To test whether the essential region extends beyond the 11-base-pair consensus sequence, the effects on plasmid stability of point mutations one base 3' to the T-rich strand of the core consensus sequence (position 12) and deletion mutations that altered bases 5' to the T-rich strand of the core consensus sequence were examined. An A at position 12 or the removal of three T residues 5' to the core consensus sequence severely diminished ARS efficiency, showing that the region required for full ARS efficiency extends beyond the core consensus sequence in both directions.
Collapse
|
15
|
Van Houten JV, Newlon CS. Mutational analysis of the consensus sequence of a replication origin from yeast chromosome III. Mol Cell Biol 1990; 10:3917-25. [PMID: 2196439 PMCID: PMC360902 DOI: 10.1128/mcb.10.8.3917-3925.1990] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Yeast autonomously replicating sequence (ARS) elements contain an 11-base-pair core consensus sequence (5'-[A/T]TTTAT[A/G]TTT[A/T]-3') that is required for function. The contribution of each position within this sequence to ARS activity was tested by creating all possible single-base mutations within the core consensus sequence of ARS307 (formerly called the C2G1 ARS) and testing their effects on high-frequency transformation and on plasmid stability. Of the 33 mutations, 22 abolished ARS function as measured by high-frequency transformation, 7 caused more than twofold reductions in plasmid stability, and 4 had no effect on plasmid stability. Mutations that reduced or abolished ARS activity occurred at each position in the consensus sequence, demonstrating that each position of this sequence contributes to ARS function. Of the four mutations that had no effect on ARS activity, three created alternative perfect matches to the core consensus sequence, demonstrating that the alternate bases allowed by the consensus sequence are, indeed, interchangeable. In addition, a change from T to C at position 6 did not perturb wild-type efficiency. To test whether the essential region extends beyond the 11-base-pair consensus sequence, the effects on plasmid stability of point mutations one base 3' to the T-rich strand of the core consensus sequence (position 12) and deletion mutations that altered bases 5' to the T-rich strand of the core consensus sequence were examined. An A at position 12 or the removal of three T residues 5' to the core consensus sequence severely diminished ARS efficiency, showing that the region required for full ARS efficiency extends beyond the core consensus sequence in both directions.
Collapse
Affiliation(s)
- J V Van Houten
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark 07103
| | | |
Collapse
|
16
|
Abstract
A general method for constructing and selecting recombinant vaccinia viruses with insertions, deletions, or mutations in any gene that is similar in principle to one originally devised for Saccharomyces cerevisiae (S. Scherer and R. W. Davis, Proc. Natl. Acad. Sci. USA 76:4951-4955, 1979) is described. The selectable marker used, Escherichia coli guanine phosphoribosyltransferase, is not retained within the final recombinant virus, and hence, this procedure may be used serially to introduce several foreign genes or to make multiple site-directed mutations.
Collapse
Affiliation(s)
- F G Falkner
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
17
|
Some of the signals for 3'-end formation in transcription of the Saccharomyces cerevisiae Ty-D15 element are immediately downstream of the initiation site. Mol Cell Biol 1989. [PMID: 2548082 DOI: 10.1128/mcb.9.6.2431] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fragments from the Ty-D15 element of Saccharomyces cerevisiae were assayed for the ability to direct 3'-end formation for RNA initiated by the GAL1 promoter. The delta, the direct repeat at each end of the element, was capable of forming 3' ends at two sites, an inefficient upstream site and an efficient downstream site near the end of the delta. Different sequences were required for 3'-end formation at these sites. For the efficient site, all transcripts had 3' ends in the delta and no downstream transcription was detected, which suggested that these sequences terminate transcription. Surprisingly, the delta region downstream of the initiation site for Ty RNA comprised part of this major site and terminated more than 50% of the transcripts that read into it. Sequences necessary for the efficient site were localized to two small regions. Both regions were upstream of the 3' end and contained similarities to a tripartite consensus sequence that has been proposed as a terminator element. Sequences near the position of the 3' end could also affect termination; a short G + C-rich sequence inserted just downstream changed an efficient terminator to an inefficient one. Initiation in the delta had no effect on the efficiency or positions or termination in that delta. A new initiation site was seen when the same delta terminated transcription, but transcriptional interference did not occur, since the amount of initiation was not decreased.
Collapse
|
18
|
Yu K, Elder RT. Some of the signals for 3'-end formation in transcription of the Saccharomyces cerevisiae Ty-D15 element are immediately downstream of the initiation site. Mol Cell Biol 1989; 9:2431-44. [PMID: 2548082 PMCID: PMC362316 DOI: 10.1128/mcb.9.6.2431-2444.1989] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fragments from the Ty-D15 element of Saccharomyces cerevisiae were assayed for the ability to direct 3'-end formation for RNA initiated by the GAL1 promoter. The delta, the direct repeat at each end of the element, was capable of forming 3' ends at two sites, an inefficient upstream site and an efficient downstream site near the end of the delta. Different sequences were required for 3'-end formation at these sites. For the efficient site, all transcripts had 3' ends in the delta and no downstream transcription was detected, which suggested that these sequences terminate transcription. Surprisingly, the delta region downstream of the initiation site for Ty RNA comprised part of this major site and terminated more than 50% of the transcripts that read into it. Sequences necessary for the efficient site were localized to two small regions. Both regions were upstream of the 3' end and contained similarities to a tripartite consensus sequence that has been proposed as a terminator element. Sequences near the position of the 3' end could also affect termination; a short G + C-rich sequence inserted just downstream changed an efficient terminator to an inefficient one. Initiation in the delta had no effect on the efficiency or positions or termination in that delta. A new initiation site was seen when the same delta terminated transcription, but transcriptional interference did not occur, since the amount of initiation was not decreased.
Collapse
Affiliation(s)
- K Yu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | |
Collapse
|
19
|
Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 1989; 122:19-27. [PMID: 2659436 PMCID: PMC1203683 DOI: 10.1093/genetics/122.1.19] [Citation(s) in RCA: 7222] [Impact Index Per Article: 206.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A series of yeast shuttle vectors and host strains has been created to allow more efficient manipulation of DNA in Saccharomyces cerevisiae. Transplacement vectors were constructed and used to derive yeast strains containing nonreverting his3, trp1, leu2 and ura3 mutations. A set of YCp and YIp vectors (pRS series) was then made based on the backbone of the multipurpose plasmid pBLUESCRIPT. These pRS vectors are all uniform in structure and differ only in the yeast selectable marker gene used (HIS3, TRP1, LEU2 and URA3). They possess all of the attributes of pBLUESCRIPT and several yeast-specific features as well. Using a pRS vector, one can perform most standard DNA manipulations in the same plasmid that is introduced into yeast.
Collapse
Affiliation(s)
- R S Sikorski
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
20
|
Yeast regulatory gene GAL3: carbon regulation; UASGal elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactokinases. Mol Cell Biol 1989. [PMID: 3062381 DOI: 10.1128/mcb.8.8.3439] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GAL3 gene expression is required for rapid GAL4-mediated galactose induction of the galactose-melibiose regulon genes in Saccharomyces cerevisiae. Here we show by Northern (RNA) blot analysis that GAL3 gene expression is itself galactose inducible. Like the GAL1, GAL7, GAL10, and MEL1 genes, the GAL3 gene is severely glucose repressed. Like the MEL1 gene, but in contrast to the GAL1, GAL7, and GAL10 genes, GAL3 is expressed at readily detectable basal levels in cells grown in noninducing, nonrepressing media. We determined the sequence of the S. cerevisiae GAL3 gene and its 5'-noncoding region. Within the 5'-noncoding region of the GAL3 gene, we found two sequences similar to the UASGal elements of the other galactose-melibiose regulon genes. Deletion analysis indicated that only the most ATG proximal of these sequences is required for GAL3 expression. The coding region of GAL3 consists of a 1,275-base-pair open reading frame in the direction of transcription. A comparison of the deduced 425-amino-acid sequence with the protein data bank revealed three regions of striking similarity between the GAL3 protein and the GAL1-specified galactokinase of Saccharomyces carlsbergensis. One of these regions also showed striking similarity to sequences within the galactokinase protein of Escherichia coli. On the basis of these protein sequence similarities, we propose that the GAL3 protein binds a molecule identical to or structurally related to one of the substrates or products of the galactokinase-catalyzed reaction.
Collapse
|
21
|
Direction of chromosome rearrangements in Saccharomyces cerevisiae by use of his3 recombinational substrates. Mol Cell Biol 1988. [PMID: 3054515 DOI: 10.1128/mcb.8.10.4370] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used the his3 recombinational substrates (his3 fragments) to direct large interchromosomal (translocations) and intrachromosomal (deletions and tandem duplications) rearrangements in the yeast Saccharomyces cerevisiae. In strains completely deleted for the wild-type HIS3 gene, his3 fragments, one containing a deletion of 5' amino acid coding sequences and the other containing a deletion of 3' amino acid coding sequences, were first placed at preselected sites by homologous recombination. His+ revertants that arose via spontaneous mitotic recombination between the two his3 fragments were selected. This strategy was used to direct rearrangements in both RAD52+ and rad52 mutant strains. Translocations occurred in the RAD52+ genetic background and were characterized by orthogonal field alternating gel electrophoresis of yeast chromosomal DNA and by standard genetic techniques. An unexpected translocation was also identified in which HIS3 sequences were amplified. Two types of tandem duplications of the GAL(7, 10, 1) locus were also directed, and one type was not observed in rad52 mutants. Recombination mechanisms are discussed to account for these differences.
Collapse
|
22
|
Fedor MJ, Lue NF, Kornberg RD. Statistical positioning of nucleosomes by specific protein-binding to an upstream activating sequence in yeast. J Mol Biol 1988; 204:109-27. [PMID: 3063825 DOI: 10.1016/0022-2836(88)90603-1] [Citation(s) in RCA: 221] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Arrays of nucleosomes were positioned with respect to the GAL1-GAL10 intergenic region inserted into Saccharomyces cerevisiae minichromosomes. Deletions of DNA flanking the upstream activation sequence left the array unaltered, showing that nucleosome positioning was not a consequence of sequence-specific histone-DNA interactions but depended on proximity to the galactose-responsive upstream activation sequence (UASG). Replacement of the upstream activation sequence by synthetic oligonucleotides with different protein-binding properties identified a short sequence within this region that is responsible for the ordered array. This sequence overlaps a binding site for GAL4 protein, a positive regulator of transcription, but exerts its effect on chromatin structure independently of GAL4, probably through binding a novel factor that is not GAL-specific.
Collapse
Affiliation(s)
- M J Fedor
- Department of Cell Biology, Stanford University School of Medicine, CA 94305
| | | | | |
Collapse
|
23
|
Elledge SJ, Davis RW. A family of versatile centromeric vectors designed for use in the sectoring-shuffle mutagenesis assay in Saccharomyces cerevisiae. Gene 1988; 70:303-12. [PMID: 3063604 DOI: 10.1016/0378-1119(88)90202-8] [Citation(s) in RCA: 188] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A simple assay called the sectoring shuffle was developed to monitor the mutational state of essential genes cloned into yeast centromeric plasmids. The essence of this assay is the creation of a conditional phenotype, colony color sectoring, for an essential gene in the absence of conditional thermosensitive or cold-sensitive alleles of that gene. This allows the quick determination of the mutational state of a cloned essential gene by observing its effect on the sectoring phenotype of the tester strain. During the course of this work we developed a family of 20 Escherichia coli-yeast shuttle vectors, pUN plasmids, containing ARS1 CEN4 and a variety of selectable markers as well as the SUP11 gene which can act as a color marker in the proper background. These vectors are compact and have been very useful for the sectoring-shuffle assay and for gene analysis in general. This paper describes these vectors, the sectoring shuffle and several applications of sectoring phenotypes.
Collapse
Affiliation(s)
- S J Elledge
- Department of Biochemistry, Stanford University School of Medicine, CA 94305
| | | |
Collapse
|
24
|
Fasullo MT, Davis RW. Direction of chromosome rearrangements in Saccharomyces cerevisiae by use of his3 recombinational substrates. Mol Cell Biol 1988; 8:4370-80. [PMID: 3054515 PMCID: PMC365510 DOI: 10.1128/mcb.8.10.4370-4380.1988] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We used the his3 recombinational substrates (his3 fragments) to direct large interchromosomal (translocations) and intrachromosomal (deletions and tandem duplications) rearrangements in the yeast Saccharomyces cerevisiae. In strains completely deleted for the wild-type HIS3 gene, his3 fragments, one containing a deletion of 5' amino acid coding sequences and the other containing a deletion of 3' amino acid coding sequences, were first placed at preselected sites by homologous recombination. His+ revertants that arose via spontaneous mitotic recombination between the two his3 fragments were selected. This strategy was used to direct rearrangements in both RAD52+ and rad52 mutant strains. Translocations occurred in the RAD52+ genetic background and were characterized by orthogonal field alternating gel electrophoresis of yeast chromosomal DNA and by standard genetic techniques. An unexpected translocation was also identified in which HIS3 sequences were amplified. Two types of tandem duplications of the GAL(7, 10, 1) locus were also directed, and one type was not observed in rad52 mutants. Recombination mechanisms are discussed to account for these differences.
Collapse
Affiliation(s)
- M T Fasullo
- Department of Biochemistry, Stanford University School of Medicine, California 94305
| | | |
Collapse
|
25
|
Snyder M, Davis RW. SPA1: a gene important for chromosome segregation and other mitotic functions in S. cerevisiae. Cell 1988; 54:743-54. [PMID: 3044610 DOI: 10.1016/s0092-8674(88)90977-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human autoantibodies that recognize the spindle poles of mammals, plants, and insects were found to recognize two antigens in yeast. One of these proteins, called SPA1 (for Spindle Pole Antigen), is antigenically related to the spindle poles of a diverse set of organisms. The gene encoding SPA1 was cloned by immunoscreening a lambda gt11 yeast genomic DNA expression library with autoantibody probes. Mutational analysis of the SPA1 gene demonstrates that it is important for cell growth, chromosome segregation, and other cellular processes; spa1 mutants are viable but grow poorly at 30 degrees C, missegregate chromosomes at an increased frequency, and often contain deformed spindles. A significant fraction of spa1 mutant cells contain two or more nuclei, and others contain none; these abnormal cells may arise through a nuclear migration defect. Thus SPA1 represents a new fidelity gene that is important for chromosome segregation and other mitotic functions.
Collapse
Affiliation(s)
- M Snyder
- Department of Biology, Yale University, New Haven, Connecticut 06511
| | | |
Collapse
|
26
|
|
27
|
Webster TD, Dickson RC. The organization and transcription of the galactose gene cluster of Kluyveromyces lactis. Nucleic Acids Res 1988; 16:8011-28. [PMID: 3047676 PMCID: PMC338506 DOI: 10.1093/nar/16.16.8011] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The yeast Kluyveromyces lactis grows on galactose by inducing the Leloir pathway enzymes-kinase, epimerase, and transferase. To investigate the molecular mechanism for regulating expression of this metabolic pathway we isolated GAL1, GAL7, GAL10, which code for kinase, transferase, and epimerase, respectively, and characterized their size, organization, and transcriptional regulation. Our results indicate that induction of the Leloir pathway in K. lactis occurs at the level of transcription and that the organization and regulation of the GAL gene cluster in K. lactis is closely related to the homologous gene cluster in Saccharomyces cerevisiae. Likewise, the Upstream Activator Sequences that regulate induction of the GAL genes are similar in base sequence, number and relative location in the two yeasts.
Collapse
Affiliation(s)
- T D Webster
- Department of Biochemistry, University of Kentucky Medical Center, Lexington 40536-0084
| | | |
Collapse
|
28
|
Bajwa W, Torchia TE, Hopper JE. Yeast regulatory gene GAL3: carbon regulation; UASGal elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactokinases. Mol Cell Biol 1988; 8:3439-47. [PMID: 3062381 PMCID: PMC363581 DOI: 10.1128/mcb.8.8.3439-3447.1988] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
GAL3 gene expression is required for rapid GAL4-mediated galactose induction of the galactose-melibiose regulon genes in Saccharomyces cerevisiae. Here we show by Northern (RNA) blot analysis that GAL3 gene expression is itself galactose inducible. Like the GAL1, GAL7, GAL10, and MEL1 genes, the GAL3 gene is severely glucose repressed. Like the MEL1 gene, but in contrast to the GAL1, GAL7, and GAL10 genes, GAL3 is expressed at readily detectable basal levels in cells grown in noninducing, nonrepressing media. We determined the sequence of the S. cerevisiae GAL3 gene and its 5'-noncoding region. Within the 5'-noncoding region of the GAL3 gene, we found two sequences similar to the UASGal elements of the other galactose-melibiose regulon genes. Deletion analysis indicated that only the most ATG proximal of these sequences is required for GAL3 expression. The coding region of GAL3 consists of a 1,275-base-pair open reading frame in the direction of transcription. A comparison of the deduced 425-amino-acid sequence with the protein data bank revealed three regions of striking similarity between the GAL3 protein and the GAL1-specified galactokinase of Saccharomyces carlsbergensis. One of these regions also showed striking similarity to sequences within the galactokinase protein of Escherichia coli. On the basis of these protein sequence similarities, we propose that the GAL3 protein binds a molecule identical to or structurally related to one of the substrates or products of the galactokinase-catalyzed reaction.
Collapse
Affiliation(s)
- W Bajwa
- Department of Biological Chemistry, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033
| | | | | |
Collapse
|
29
|
Abstract
The genome of haploid Saccharomyces cerevisiae contains two nonallelic sets of histone H3 and H4 genes. Strains with deletions of each of these loci were constructed by gene replacement techniques. Mutants containing deletions of either gene set were viable, however meiotic segregants lacking both histone H3 and H4 gene loci were inviable. In haploid cells no phenotypic expression of the histone gene deletions was observed; deletion mutants had wild-type growth rates, were not temperature sensitive for growth, and mated normally. However, diploids homozygous for the H3-H4 gene deletions were slightly defective in their growth and cell cycle progression. The generation times of the diploid mutants were longer than wild-type cells, the size distributions of cells from exponentially growing cultures were skewed towards larger cell volumes, and the G1 period of the mutant cells was longer than that of the wild-type diploid. The homozygous deletion of the copy-II set of H3-H4 genes in diploids also increased the frequency of mitotic chromosome loss as measured using a circular plasmid minichromosome assay.
Collapse
Affiliation(s)
- M M Smith
- Department of Microbiology, School of Medicine, University of Virginia, Charlottesville 22908
| | | |
Collapse
|
30
|
Berlani RE, Davis RW, Walbot V. Genomic organization of two families of highly repeated nuclear DNA sequences of maize selected for autonomous replicating activity in yeast. PLANT MOLECULAR BIOLOGY 1988; 11:161-172. [PMID: 24272258 DOI: 10.1007/bf00015668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/1987] [Accepted: 04/25/1988] [Indexed: 06/02/2023]
Abstract
Maize nuclear DNA sequences capable of promoting the autonomous replication of plasmids in yeast were isolated by ligating Eco RI-digested fragments into yeast vectors unable to replicate autonomously. Three such autonomously replicating sequences (ARS), representing two families of highly repeated sequences within the maize genome, were isolated and characterized. Each repetitive family shows hybridization patterns on a Southern blot characteristic of a dispersed sequence. Unlike most repetitive sequences in maize, both ARS families have a constant copy number and characteristic genomic hybridization pattern in the inbred lines examined. Larger genome clones with sequence homology to the ARS-containing elements were selected from a lambda library of maize genomic DNA. There was typically only one copy of an ARS-homologous sequence on each 12-15 kb genomic fragment.
Collapse
Affiliation(s)
- R E Berlani
- Department of Biological Sciences, Stanford University, 94305, Stanford, CA, USA
| | | | | |
Collapse
|
31
|
|
32
|
Abstract
The core histone genes of Saccharomyces cerevisiae are arranged as duplicate nonallelic sets of specifically paired genes. The identity of structural organization between the duplicated gene pairs would have its simplest evolutionary origin in the duplication of a complete locus in a single event. In such a case, the time since the duplication of one of the genes should be identical to that since duplication of the gene adjacent to it on the chromosome. A calculation of the evolutionary distances between the coding DNA sequences of the histone genes leads to a duplication paradox: The extents of sequence divergence in the silent component of third-base positions for adjacent pairs of genes are not identical. Estimates of the evolutionary distance between the two H3-H4 noncoding intergene DNA sequences are large; the divergence between the two separate sequences is indistinguishable from the divergence between either of the regions and a randomly generated permutation of itself. These results suggest that the duplication event may have occurred much earlier than previously estimated. The potential age of the duplication, and the attractive simplicity of the duplication of both the H3-H4 and the H2A-H2B gene pairs having taken place in a single event, leads to the hypothesis that modern haploid S. cerevisiae may have evolved by diploidization or fusion of two ancient fungi.
Collapse
|
33
|
Fine-structure analysis of the DNA sequence requirements for autonomous replication of Saccharomyces cerevisiae plasmids. Mol Cell Biol 1987. [PMID: 3023929 DOI: 10.1128/mcb.6.7.2354] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An autonomously replicating segment, ARS, is located 293 base pairs downstream from the histone H4 gene at the copy-I H3-H4 locus. The sequences needed for autonomous replication were defined by deletion analysis to include an ARS consensus sequence and an additional 3'-flanking region. External deletions into the 3'-flanking yeast sequences resulted in a loss of replication function. However, disruptions of the required 3'-flanking domain by either 10-base-pair linker-scanning substitutions or larger internal deletions did not impair autonomous replication. Thus, replication is dependent upon a flanking chromosome domain, but not an exact DNA sequence. The extent of the yeast sequences required in the 3'-flanking domain is variable depending on the nature of neighboring plasmid vector sequences. That is, there are certain vector sequences that prohibit replication when they are placed too close to the ARS consensus. These results suggest that the functional 3'-flanking domain of the H4 ARS is a specific DNA or chromatin structure or both.
Collapse
|
34
|
Petersen JG, Holmberg S. The ILV5 gene of Saccharomyces cerevisiae is highly expressed. Nucleic Acids Res 1986; 14:9631-51. [PMID: 3027658 PMCID: PMC341325 DOI: 10.1093/nar/14.24.9631] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleotide sequence of the yeast ILV5 gene, which codes for the branched-chain amino acid biosynthesis enzyme acetohydroxyacid reductoisomerase, has been determined. The ILV5 coding region is 1,185 nucleotides, corresponding to a polypeptide with a molecular weight of 44,280. Transcription of the ILV5 mRNA initiates at position -81 upstream from the ATG translation start codon and terminates between 218 and 222 bases downstream from the stop codon. Consensus sequences have been identified for initiation and termination of transcription, and for general control of amino acid biosynthesis, as well as repression by leucine. The ILV5 gene is regulated slightly by general amino acid control. Codon usage of the ILV5 gene has the strong bias observed in yeast genes that are highly expressed. In agreement with this, the reductoisomerase monomer, with an apparent molecular weight of 40,000, has been identified in an SDS polyacrylamide gel pattern of total soluble yeast proteins as a gene dosage dependent band.
Collapse
|
35
|
|
36
|
Bouton AH, Smith MM. Fine-structure analysis of the DNA sequence requirements for autonomous replication of Saccharomyces cerevisiae plasmids. Mol Cell Biol 1986; 6:2354-63. [PMID: 3023929 PMCID: PMC367788 DOI: 10.1128/mcb.6.7.2354-2363.1986] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An autonomously replicating segment, ARS, is located 293 base pairs downstream from the histone H4 gene at the copy-I H3-H4 locus. The sequences needed for autonomous replication were defined by deletion analysis to include an ARS consensus sequence and an additional 3'-flanking region. External deletions into the 3'-flanking yeast sequences resulted in a loss of replication function. However, disruptions of the required 3'-flanking domain by either 10-base-pair linker-scanning substitutions or larger internal deletions did not impair autonomous replication. Thus, replication is dependent upon a flanking chromosome domain, but not an exact DNA sequence. The extent of the yeast sequences required in the 3'-flanking domain is variable depending on the nature of neighboring plasmid vector sequences. That is, there are certain vector sequences that prohibit replication when they are placed too close to the ARS consensus. These results suggest that the functional 3'-flanking domain of the H4 ARS is a specific DNA or chromatin structure or both.
Collapse
|
37
|
Parent SA, Fenimore CM, Bostian KA. Vector systems for the expression, analysis and cloning of DNA sequences in S. cerevisiae. Yeast 1985; 1:83-138. [PMID: 3916863 DOI: 10.1002/yea.320010202] [Citation(s) in RCA: 239] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- S A Parent
- Section of Biochemistry, Brown University, Providence, Rhode Island 02912
| | | | | |
Collapse
|
38
|
Hieter P, Pridmore D, Hegemann JH, Thomas M, Davis RW, Philippsen P. Functional selection and analysis of yeast centromeric DNA. Cell 1985; 42:913-21. [PMID: 2996783 DOI: 10.1016/0092-8674(85)90287-9] [Citation(s) in RCA: 224] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A direct selection procedure has been used to isolate 11 distinct yeast genomic DNA fragments that eliminate the extreme segregation bias characteristic of autonomously replicating yeast plasmids. The selection scheme takes advantage of the fact that the cloned ochre suppressing tRNA gene, SUP11, is lethal at high copy number and therefore causes cell death when present on an ARS plasmid that lacks a cis-acting partition function. Each of the cloned DNA sequences was mapped to specific yeast chromosomes by hybridization to chromosome-sized DNA molecules separated by alternating field electrophoresis. Ten of the cloned fragments correspond to chromosomal centromeres; one fragment corresponds to the cis-acting locus required for endogenous 2 mu plasmid stability. Nucleotide sequence comparison of the ten centromere DNAs gives a new picture of conserved centromere DNA elements.
Collapse
|
39
|
DNase I-hypersensitive sites in the galactose gene cluster of Saccharomyces cerevisiae. Mol Cell Biol 1985. [PMID: 3897838 DOI: 10.1128/mcb.5.6.1522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Five DNase I-hypersensitive regions were associated with the Saccharomyces cerevisiae galactose gene cluster during both galactose induction and glucose repression of transcription. Four hypersensitive regions were located in areas flanking the GAL cluster genes, and one site occurred within GAL10. A DNase I-hypersensitive region located between the 5' ends of divergently transcribed GAL10 and GAL1 contained sequences essential for the transcription of both genes.
Collapse
|
40
|
Proffitt JH. DNase I-hypersensitive sites in the galactose gene cluster of Saccharomyces cerevisiae. Mol Cell Biol 1985; 5:1522-4. [PMID: 3897838 PMCID: PMC366885 DOI: 10.1128/mcb.5.6.1522-1524.1985] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Five DNase I-hypersensitive regions were associated with the Saccharomyces cerevisiae galactose gene cluster during both galactose induction and glucose repression of transcription. Four hypersensitive regions were located in areas flanking the GAL cluster genes, and one site occurred within GAL10. A DNase I-hypersensitive region located between the 5' ends of divergently transcribed GAL10 and GAL1 contained sequences essential for the transcription of both genes.
Collapse
|
41
|
Regulated expression of endonuclease EcoRI in Saccharomyces cerevisiae: nuclear entry and biological consequences. Proc Natl Acad Sci U S A 1985; 82:1354-8. [PMID: 2983340 PMCID: PMC397259 DOI: 10.1073/pnas.82.5.1354] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In an investigation to determine how proteins are localized within the nucleus of a cell, we demonstrate that the restriction endonuclease EcoRI is able to enter and function within the nucleus of Saccharomyces cerevisiae when this prokaryotic protein is synthesized in vivo. The EcoRI endonuclease was produced in yeast under the transcriptional control of a regulated yeast promoter by ligating a DNA fragment containing only coding sequences for the endonuclease to the promoter element of the yeast GAL1 gene (the structural gene for galactokinase, EC 2.7.1.6). Yeast cells harboring a plasmid containing this promoter-gene fusion are able to grow under conditions that repress transcription from the GAL1 promoter. However, under inducing conditions, these yeast cells are unable to grow. Moreover, rad52 mutants, which are deficient in the repair of double-strand breaks, are more sensitive to the presence of the promoter-gene fusion plasmid than are wild-type cells. We demonstrate that the EcoRI endonuclease activity is present in lysates prepared from yeast transformants grown under conditions that induce transcription of GAL1, but this activity is not detectable in cells grown under conditions that repress transcription from the promoter. Furthermore, analysis of yeast chromosomal DNA shows that the endonuclease enters the yeast nucleus and cleaves DNA specifically at EcoRI recognition sites.
Collapse
|
42
|
Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol Cell Biol 1985. [PMID: 6390181 DOI: 10.1128/mcb.4.10.1985] [Citation(s) in RCA: 162] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present the DNA sequence of a 914-base pair fragment from Saccharomyces cerevisiae that contains the GAL1-GAL10 divergent promoter, 140 base pairs of GAL10 coding sequence, and 87 base pairs of GAL1 coding sequence. From this fragment, we constructed four pairs of GAL1-lacZ and GAL10-lacZ fusions on various types of yeast plasmid vectors. On each type of vector, the fused genes were induced by galactose and repressed by glucose. The response of a GAL1-lacZ fusion to gal4 and gal80 regulatory mutations was similar to the response of intact chromosomal GAL1 and GAL10 genes. A set of deletions that removed various portions of the GAL10 regulatory sequences from a GAL10-CYC1-lacZ fusion was constructed in vitro. These deletions defined a relatively guanine-cytosine-rich region of 45 base pairs that contained sequences necessary for full-strength galactose induction and an adjacent guanine-cytosine rich 55 base pairs that contained sequences sufficient for weak induction.
Collapse
|
43
|
Abstract
We used a combination of cloned DNA fragments encoding the GAL7 gene, yeast plasmid vectors, and chromosomal gal7 deletions to characterize the in vivo transcription of the GAL7 gene on autonomously replicating plasmids. Our results demonstrated that a plasmid-borne 3.1-kilobase DNA fragment containing the GAL7 gene provides sufficient information to mimic the regulated expression of the chromosomal location. Normal expression of GAL7 could occur in the absence of DNA encoding the functional genes of the GAL cluster region and was not altered when the gene was adjacent to other plasmid elements such as autonomously replicating sequences or centromeres. The chromosomal and single-copy centromeric plasmid locations of GAL7 were indistinguishable in their response to growth conditions (induction by galactose, repression by glucose) and positive and negative regulatory factors (GAL4 and GAL80). Increasing the gene dosage to more than 200 copies per cell resulted in constitutive expression of the GAL7 mRNA; fully induced mRNA levels were increased more than 10-fold at these high gene dosages. When cells were shifted from noninducing to inducing conditions, the initial time of appearance and the rate of accumulation of GAL7 mRNA were altered in cell populations containing multiple GAL7 genes. The induction kinetics and final accumulation of the chromosomal GAL10 mRNA were also affected by the presence of multiple copies of the GAL7 gene; these results are consistent with a model involving limiting amounts of regulatory factors.
Collapse
|
44
|
Bram RJ, Kornberg RD. Specific protein binding to far upstream activating sequences in polymerase II promoters. Proc Natl Acad Sci U S A 1985; 82:43-7. [PMID: 3881758 PMCID: PMC396967 DOI: 10.1073/pnas.82.1.43] [Citation(s) in RCA: 223] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A binding activity specific for the upstream activating sequence of the GAL1-GAL10 promoter of Saccharomyces cerevisiae has been purified 220-fold on the basis of a nitrocellulose filter-binding assay. The binding activity is enriched in a nuclear preparation and is likely to be the GAL4 gene product. DNase I-protection mapping patterns reveal binding to two 30-base-pair regions at the boundaries of the sequence. A nearly identical mapping pattern is obtained with the coordinately regulated GAL7 promoter. The four 30-base-pair regions of binding in the two promoters are closely homologous, with a core consensus sequence of C-G-CG-TG-C-A-A-C-A-G-T-G-C-T-C-C-G-A-A- GC-G-A-T. A synthetic oligonucleotide with such a sequence competes with the upstream activating sequence in the binding reaction.
Collapse
|
45
|
Yocum RR, Johnston M. Molecular cloning of the GAL80 gene from Saccharomyces cerevisiae and characterization of a gal80 deletion. Gene X 1984; 32:75-82. [PMID: 6397403 DOI: 10.1016/0378-1119(84)90034-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
An integrated GAL1-lacZ fusion provided a useful phenotypic marker for the gal80- regulatory mutation in Saccharomyces cerevisiae. On minimal glucose plates containing a beta-galactosidase indicator, a GAL80 strain containing the fusion gave white colonies, whereas a gal80- strain gave blue colonies. This color difference was used to isolate the GAL80 gene from a plasmid bank by complementation of the gal80- mutant. The putative GAL80 gene was located on a 2.6-kb HindIII-SalI fragment and has been subcloned into an integrating vector. Genetic analysis showed that the clone integrated at the GAL80 locus. A deletion that covered the entire GAL80 region was constructed in vitro and transplaced into the yeast genome to give an isogenic pair of GAL80 and gal80 deletion strains. Glucose repression of a GAL1-lacZ fusion was normal in the gal80 deletion strain, implying that the GAL80 gene product is not involved in glucose repression.
Collapse
|
46
|
Abstract
The GAL1 and GAL10 genes of Saccharomyces cerevisiae are divergently transcribed, with 606 base pairs of DNA separating their transcription initiation sites. These two genes are stringently coregulated: their expression is induced ca. 1,000-fold in cells growing on galactose and is repressed by growth on glucose. The nucleotide sequence of the region of DNA between these genes and the precise sites of transcription initiation are presented here. The most notable feature of the nucleotide sequence of this region is a 108-base-pair guanine-plus-cytosine-rich stretch of DNA located approximately in the middle of the region between GAL1 and GAL10. Analysis of the effects of mutations that alter the region between these two genes, constructed in vitro or selected in vivo, suggest that these guanine-plus-cytosine-rich sequences are required for the expression of both genes. The region of DNA between GAL1 and GAL10 is sufficient for regulation of expression of these genes: fusion of the region to the yeast HIS3 gene places HIS3 under GAL control.
Collapse
|
47
|
Yocum RR, Hanley S, West R, Ptashne M. Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol Cell Biol 1984; 4:1985-98. [PMID: 6390181 PMCID: PMC369015 DOI: 10.1128/mcb.4.10.1985-1998.1984] [Citation(s) in RCA: 155] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We present the DNA sequence of a 914-base pair fragment from Saccharomyces cerevisiae that contains the GAL1-GAL10 divergent promoter, 140 base pairs of GAL10 coding sequence, and 87 base pairs of GAL1 coding sequence. From this fragment, we constructed four pairs of GAL1-lacZ and GAL10-lacZ fusions on various types of yeast plasmid vectors. On each type of vector, the fused genes were induced by galactose and repressed by glucose. The response of a GAL1-lacZ fusion to gal4 and gal80 regulatory mutations was similar to the response of intact chromosomal GAL1 and GAL10 genes. A set of deletions that removed various portions of the GAL10 regulatory sequences from a GAL10-CYC1-lacZ fusion was constructed in vitro. These deletions defined a relatively guanine-cytosine-rich region of 45 base pairs that contained sequences necessary for full-strength galactose induction and an adjacent guanine-cytosine rich 55 base pairs that contained sequences sufficient for weak induction.
Collapse
|
48
|
Baker SM, Okkema PG, Jaehning JA. Expression of the Saccharomyces cerevisiae GAL7 gene on autonomous plasmids. Mol Cell Biol 1984; 4:2062-71. [PMID: 6390184 PMCID: PMC369023 DOI: 10.1128/mcb.4.10.2062-2071.1984] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We used a combination of cloned DNA fragments encoding the GAL7 gene, yeast plasmid vectors, and chromosomal gal7 deletions to characterize the in vivo transcription of the GAL7 gene on autonomously replicating plasmids. Our results demonstrated that a plasmid-borne 3.1-kilobase DNA fragment containing the GAL7 gene provides sufficient information to mimic the regulated expression of the chromosomal location. Normal expression of GAL7 could occur in the absence of DNA encoding the functional genes of the GAL cluster region and was not altered when the gene was adjacent to other plasmid elements such as autonomously replicating sequences or centromeres. The chromosomal and single-copy centromeric plasmid locations of GAL7 were indistinguishable in their response to growth conditions (induction by galactose, repression by glucose) and positive and negative regulatory factors (GAL4 and GAL80). Increasing the gene dosage to more than 200 copies per cell resulted in constitutive expression of the GAL7 mRNA; fully induced mRNA levels were increased more than 10-fold at these high gene dosages. When cells were shifted from noninducing to inducing conditions, the initial time of appearance and the rate of accumulation of GAL7 mRNA were altered in cell populations containing multiple GAL7 genes. The induction kinetics and final accumulation of the chromosomal GAL10 mRNA were also affected by the presence of multiple copies of the GAL7 gene; these results are consistent with a model involving limiting amounts of regulatory factors.
Collapse
|
49
|
Johnston M, Davis RW. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol Cell Biol 1984; 4:1440-8. [PMID: 6092912 PMCID: PMC368932 DOI: 10.1128/mcb.4.8.1440-1448.1984] [Citation(s) in RCA: 535] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The GAL1 and GAL10 genes of Saccharomyces cerevisiae are divergently transcribed, with 606 base pairs of DNA separating their transcription initiation sites. These two genes are stringently coregulated: their expression is induced ca. 1,000-fold in cells growing on galactose and is repressed by growth on glucose. The nucleotide sequence of the region of DNA between these genes and the precise sites of transcription initiation are presented here. The most notable feature of the nucleotide sequence of this region is a 108-base-pair guanine-plus-cytosine-rich stretch of DNA located approximately in the middle of the region between GAL1 and GAL10. Analysis of the effects of mutations that alter the region between these two genes, constructed in vitro or selected in vivo, suggest that these guanine-plus-cytosine-rich sequences are required for the expression of both genes. The region of DNA between GAL1 and GAL10 is sufficient for regulation of expression of these genes: fusion of the region to the yeast HIS3 gene places HIS3 under GAL control.
Collapse
|
50
|
Toxicity of 2-deoxygalactose to Saccharomyces cerevisiae cells constitutively synthesizing galactose-metabolizing enzymes. Mol Cell Biol 1984. [PMID: 6328283 DOI: 10.1128/mcb.4.5.994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of 400 independent spontaneous mutations conferring 2-deoxygalactose resistance upon cells constitutive for the galactose pathway suggests that toxicity is due to 2-deoxygalactose-1-phosphate. Selection for and against growth on galactose in the same strain is now possible; application to systems with transcriptional or translational gene fusions to galactokinase are discussed.
Collapse
|