1
|
Schultz SK, Kothe U. Fluorescent labeling of tRNA for rapid kinetic interaction studies with tRNA-binding proteins. Methods Enzymol 2023; 692:103-126. [PMID: 37925176 DOI: 10.1016/bs.mie.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Transfer RNA (tRNA) plays a critical role during translation and interacts with numerous proteins during its biogenesis, functional cycle and degradation. In particular, tRNA is extensively post-transcriptionally modified by various tRNA modifying enzymes which each target a specific nucleotide at different positions within tRNAs to introduce different chemical modifications. Fluorescent assays can be used to study the interaction between a protein and tRNA. Moreover, rapid mixing fluorescence stopped-flow assays provide insights into the kinetics of the tRNA-protein interaction in order to elucidate the tRNA binding mechanism for the given protein. A prerequisite for these studies is a fluorescently labeled molecule, such as fluorescent tRNA, wherein a change in fluorescence occurs upon protein binding. In this chapter, we discuss the utilization of tRNA modifications in order to introduce fluorophores at particular positions within tRNAs. Particularly, we focus on in vitro thiolation of a uridine at position 8 within tRNAs using the tRNA modification enzyme ThiI, followed by labeling of the thiol group with fluorescein. As such, this fluorescently labeled tRNA is primarily unmodified, with the exception of the thiolation modification to which the fluorophore is attached, and can be used as a substrate to study the binding of different tRNA-interacting factors. Herein, we discuss the example of studying the tRNA binding mechanism of the tRNA modifying enzymes TrmB and DusA using internally fluorescein-labeled tRNA.
Collapse
Affiliation(s)
- Sarah K Schultz
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Ute Kothe
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
2
|
Schultz SK, Meadows K, Kothe U. Molecular mechanism of tRNA binding by the Escherichia coli N7 guanosine methyltransferase TrmB. J Biol Chem 2023; 299:104612. [PMID: 36933808 PMCID: PMC10130221 DOI: 10.1016/j.jbc.2023.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Among the large and diverse collection of tRNA modifications, 7-methylguanosine (m7G) is frequently found in the tRNA variable loop at position 46. This modification is introduced by the TrmB enzyme, which is conserved in bacteria and eukaryotes. However, the molecular determinants and the mechanism for tRNA recognition by TrmB are not well understood. Complementing the report of various phenotypes for different organisms lacking TrmB homologs, we report here hydrogen peroxide sensitivity for the Escherichia coli ΔtrmB knockout strain. To gain insight into the molecular mechanism of tRNA binding by E. coli TrmB in real-time, we developed a new assay based on introducing a 4-thiouridine modification at position 8 of in vitro transcribed tRNAPhe enabling us to fluorescently label this unmodified tRNA. Using rapid kinetic stopped-flow measurements with this fluorescent tRNA, we examined the interaction of wildtype and single substitution variants of TrmB with tRNA. Our results reveal the role of SAM for rapid and stable tRNA binding, the rate-limiting nature of m7G46 catalysis for tRNA release, and the importance of residues R26, T127 and R155 across the entire surface of TrmB for tRNA binding.
Collapse
Affiliation(s)
- Sarah K Schultz
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada; Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kieran Meadows
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ute Kothe
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada; Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
3
|
Helm M, Schmidt-Dengler MC, Weber M, Motorin Y. General Principles for the Detection of Modified Nucleotides in RNA by Specific Reagents. Adv Biol (Weinh) 2021; 5:e2100866. [PMID: 34535986 DOI: 10.1002/adbi.202100866] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/09/2021] [Indexed: 12/16/2022]
Abstract
Epitranscriptomics heavily rely on chemical reagents for the detection, quantification, and localization of modified nucleotides in transcriptomes. Recent years have seen a surge in mapping methods that use innovative and rediscovered organic chemistry in high throughput approaches. While this has brought about a leap of progress in this young field, it has also become clear that the different chemistries feature variegated specificity and selectivity. The associated error rates, e.g., in terms of false positives and false negatives, are in large part inherent to the chemistry employed. This means that even assuming technically perfect execution, the interpretation of mapping results issuing from the application of such chemistries are limited by intrinsic features of chemical reactivity. An important but often ignored fact is that the huge stochiometric excess of unmodified over-modified nucleotides is not inert to any of the reagents employed. Consequently, any reaction aimed at chemical discrimination of modified versus unmodified nucleotides has optimal conditions for selectivity that are ultimately anchored in relative reaction rates, whose ratio imposes intrinsic limits to selectivity. Here chemical reactivities of canonical and modified ribonucleosides are revisited as a basis for an understanding of the limits of selectivity achievable with chemical methods.
Collapse
Affiliation(s)
- Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudingerweg 5, D-55128, Mainz, Germany
| | - Martina C Schmidt-Dengler
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudingerweg 5, D-55128, Mainz, Germany
| | - Marlies Weber
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudingerweg 5, D-55128, Mainz, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core facility, Nancy, F-54000, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, F-54000, France
| |
Collapse
|
4
|
Dai Y, Qi CB, Feng Y, Cheng QY, Liu FL, Cheng MY, Yuan BF, Feng YQ. Sensitive and Simultaneous Determination of Uridine Thiolation and Hydroxylation Modifications in Eukaryotic RNA by Derivatization Coupled with Mass Spectrometry Analysis. Anal Chem 2021; 93:6938-6946. [PMID: 33908769 DOI: 10.1021/acs.analchem.0c04630] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discovery of dynamic and reversible modifications in RNA expands their functional repertoires. Now, RNA modifications have been viewed as new regulators involved in a variety of biological processes. Among these modifications, thiolation is one kind of special modification in RNA. Several thiouridines have been identified to be present in RNA, and they are essential in the natural growth and metabolism of cells. However, detection of these thiouridines generally is challenging, and few studies could offer the quantitative levels of uridine modifications in RNA, which limits the in-depth elucidation of their functions. Herein, we developed a chemical derivatization in combination with mass spectrometry analysis for the sensitive and simultaneous determination of uridine thiolation and hydroxylation modifications in eukaryotic RNA. The chemical derivatization strategy enables the addition of easily ionizable groups to the uridine thiolation and hydroxylation modifications, leading up to a 339-fold increase in detection sensitivities of these modifications by mass spectrometry analysis. The limits of detection of these uridine modifications can be down to 17 amol. With the established method, we discovered and confirmed that a new modification of 5-hydroxyuridine (ho5U) was widely present in small RNAs of mammalian cells, expanding the diversity of RNA modifications. The developed method shows superior capability in determining low-abundance RNA modifications and may promote identifying new modifications in RNA, which should be valuable in uncovering the unknown functions of RNA modifications.
Collapse
Affiliation(s)
- Yi Dai
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Chu-Bo Qi
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
| | - Yang Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qing-Yun Cheng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Fei-Long Liu
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Ming-Yu Cheng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Health Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
5
|
Schmid K, Adobes-Vidal M, Helm M. Alkyne-Functionalized Coumarin Compound for Analytic and Preparative 4-Thiouridine Labeling. Bioconjug Chem 2017; 28:1123-1134. [PMID: 28263563 DOI: 10.1021/acs.bioconjchem.7b00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bioconjugation of RNA is a dynamic field recently reinvigorated by a surge in research on post-transcriptional modification. This work focuses on the bioconjugation of 4-thiouridine, a nucleoside that occurs as a post-transcriptional modification in bacterial RNA and is used as a metabolic label and for cross-linking purposes in eukaryotic RNA. A newly designed coumarin compound named 4-bromomethyl-7-propargyloxycoumarin (PBC) is introduced, which exhibits remarkable selectivity for 4-thiouridine. Bearing a terminal alkyne group, it is conductive to secondary bioconjugation via "click chemistry", thereby offering a wide range of preparative and analytical options. We applied PBC to quantitatively monitor the metabolic incorporation of s4U as a label into RNA and for site-specific introduction of a fluorophore into bacterial tRNA at position 8, allowing the determination of its binding constant to an RNA-modification enzyme.
Collapse
Affiliation(s)
- Katharina Schmid
- Institute of Pharmacy and Biochemistry, Johannes-Gutenberg University Mainz , Staudingerweg 5, D-55128 Mainz, Germany
| | - Maria Adobes-Vidal
- Electrochemistry & Interfaces Group, Department of Chemistry, University of Warwick , Coventry, CV4 7AL United Kingdom
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes-Gutenberg University Mainz , Staudingerweg 5, D-55128 Mainz, Germany
| |
Collapse
|
6
|
Hou B, Lin PJ, Johnson AE. Membrane protein TM segments are retained at the translocon during integration until the nascent chain cues FRET-detected release into bulk lipid. Mol Cell 2012; 48:398-408. [PMID: 23022384 DOI: 10.1016/j.molcel.2012.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/15/2012] [Accepted: 08/09/2012] [Indexed: 01/08/2023]
Abstract
Most membrane proteins are integrated cotranslationally into the ER membrane at the translocon, where nonpolar nascent protein transmembrane segments (TMSs) are widely believed to partition directly into the nonpolar membrane interior. However, a FRET approach that monitors the separation between a fluorescent-labeled TMS and fluorescent phospholipids diffusing in the bulk lipid reveals that TMSs do not immediately enter the lipid phase of the membrane. Instead, TMSs are retained at the translocon by protein-protein interactions until their release into bulk lipid is triggered by translation termination or, in some cases, by the arrival of another nascent chain TMS at a translocon. Nascent chain status and structural elements therefore dictate the timing of TMS release into the lipid phase by altering TMS and flanking sequence interactions with translocons, ribosomes, and associated proteins, thereby controlling when successive TMSs assemble in the bilayer and TMS-delineated loops fold.
Collapse
Affiliation(s)
- Bo Hou
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | | | | |
Collapse
|
7
|
Lin PJ, Jongsma CG, Pool MR, Johnson AE. Polytopic membrane protein folding at L17 in the ribosome tunnel initiates cyclical changes at the translocon. ACTA ACUST UNITED AC 2011; 195:55-70. [PMID: 21949410 PMCID: PMC3187706 DOI: 10.1083/jcb.201103118] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Multi-spanning membrane protein loops are directed alternately into the cytosol or ER lumen during cotranslational integration. Nascent chain exposure is switched after a newly synthesized transmembrane segment (TMS) enters the ribosomal tunnel. FRET measurements revealed that each TMS is initially extended, but folds into a compact conformation after moving 6-7 residues from the peptidyltransferase center, irrespective of loop size. The ribosome-induced folding of each TMS coincided with its photocrosslinking to ribosomal protein L17 and an inversion of compartmental exposure. This correlation indicates that successive TMSs fold and bind at a specific ribosomal tunnel site that includes L17, thereby triggering structural rearrangements of multiple components in and on both sides of the ER membrane, most likely via TMS-dependent L17 and/or rRNA conformational changes transmitted to the surface. Thus, cyclical changes at the membrane during integration are initiated by TMS folding, even though nascent chain conformation and location vary dynamically in the ribosome tunnel. Nascent chains therefore control their own trafficking.
Collapse
Affiliation(s)
- Pen-Jen Lin
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
8
|
Behm-Ansmant I, Helm M, Motorin Y. Use of specific chemical reagents for detection of modified nucleotides in RNA. J Nucleic Acids 2011; 2011:408053. [PMID: 21716696 PMCID: PMC3118635 DOI: 10.4061/2011/408053] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/24/2011] [Indexed: 12/18/2022] Open
Abstract
Naturally occurring cellular RNAs contain an impressive number of chemically distinct modified residues which appear posttranscriptionally, as a result of specific action of the corresponding RNA modification enzymes. Over 100 different chemical modifications have been identified and characterized up to now. Identification of the chemical nature and exact position of these modifications is typically based on 2D-TLC analysis of nucleotide digests, on HPLC coupled with mass spectrometry, or on the use of primer extension by reverse transcriptase. However, many modified nucleotides are silent in reverse transcription, since the presence of additional chemical groups frequently does not change base-pairing properties. In this paper, we give a summary of various chemical approaches exploiting the specific reactivity of modified nucleotides in RNA for their detection.
Collapse
Affiliation(s)
- Isabelle Behm-Ansmant
- Laboratoire ARN-RNP Maturation-Structure-Fonction, Enzymologie Moléculaire et Structurale (AREMS), UMR 7214 CNRS-UHP, Nancy Université, boulevard des Aiguillettes, BP 70239, 54506 Vandoeuvre-les-Nancy, France
| | | | | |
Collapse
|
9
|
Mayerhofer PU, Cook JP, Wahlman J, Pinheiro TTJ, Moore KAH, Lord JM, Johnson AE, Roberts LM. Ricin A chain insertion into endoplasmic reticulum membranes is triggered by a temperature increase to 37 {degrees}C. J Biol Chem 2009; 284:10232-42. [PMID: 19211561 PMCID: PMC2665077 DOI: 10.1074/jbc.m808387200] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
After endocytic uptake by mammalian cells, the heterodimeric plant toxin
ricin is transported to the endoplasmic reticulum (ER), where the ricin A
chain (RTA) must cross the ER membrane to reach its ribosomal substrates.
Here, using gel filtration chromatography, sedimentation, fluorescence,
fluorescence resonance energy transfer, and circular dichroism, we show that
both fluorescently labeled and unlabeled RTA bind both to ER microsomal
membranes and to negatively charged liposomes. The binding of RTA to the
membrane at 0-30 °C exposes certain RTA residues to the nonpolar lipid
core of the bilayer with little change in the secondary structure of the
protein. However, major structural rearrangements in RTA occur when the
temperature is increased. At 37 °C, membrane-bound toxin loses some of its
helical content, and its C terminus moves closer to the membrane surface where
it inserts into the bilayer. RTA is then stably bound to the membrane because
it is nonextractable with carbonate. The sharp temperature dependence of the
structural changes does not coincide with a lipid phase change because little
change in fluorescence-detected membrane mobility occurred between 30 and 37
°C. Instead, the structural rearrangements may precede or initiate toxin
retrotranslocation through the ER membrane to the cytosol. The sharp
temperature dependence of these changes in RTA further suggests that they
occur optimally in mammalian targets of the plant toxin.
Collapse
Affiliation(s)
- Peter U Mayerhofer
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843-1114, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chen Y, Parr T, Holmes AE, Nakanishi K. Porphyrinmaleimides: Towards Thiol Probes for Cysteine Residues in Proteins. Bioconjug Chem 2007; 19:5-9. [DOI: 10.1021/bc700267f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yihui Chen
- Columbia University, Department of Chemistry, New York, New York 10027
| | - Timothy Parr
- Columbia University, Department of Chemistry, New York, New York 10027
| | - Andrea E. Holmes
- Columbia University, Department of Chemistry, New York, New York 10027
| | - Koji Nakanishi
- Columbia University, Department of Chemistry, New York, New York 10027
| |
Collapse
|
11
|
Wahlman J, DeMartino GN, Skach WR, Bulleid NJ, Brodsky JL, Johnson A. Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system. Cell 2007; 129:943-55. [PMID: 17540174 PMCID: PMC1890003 DOI: 10.1016/j.cell.2007.03.046] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/19/2007] [Accepted: 03/20/2007] [Indexed: 01/27/2023]
Abstract
Secretory proteins unable to assemble into their native states in the endoplasmic reticulum (ER) are transported back or "retrotranslocated" into the cytosol for ER-associated degradation (ERAD). To examine the roles of different components in ERAD, one fluorescence-labeled ERAD substrate was encapsulated with selected lumenal factors inside mammalian microsomes. After mixing microsomes with fluorescence-quenching agents and selected cytosolic proteins, the rate of substrate efflux was monitored continuously in real time by the decrease in fluorescence intensity as cytosolic quenchers contacted dye-labeled substrates. The retrotranslocation kinetics of nonglycosylated pro-alpha factor were not significantly altered by replacing all lumenal proteins with only protein disulfide isomerase or all cytosolic proteins with only PA700, the 19S regulatory particle of the 26S proteasome. Retrotranslocation was blocked by antibodies against a putative retrotranslocation channel protein, derlin-1, but not Sec61alpha. In addition, pro-alpha factor photocrosslinked derlin-1, but not Sec61alpha. Thus, derlin-1 appears to be involved in pro-alpha factor retrotranslocation.
Collapse
Affiliation(s)
- Judit Wahlman
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - George N. DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - William R. Skach
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Neil J. Bulleid
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Arthur E. Johnson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
- Corresponding author
| |
Collapse
|
12
|
Milon P, Konevega AL, Peske F, Fabbretti A, Gualerzi CO, Rodnina MV. Transient kinetics, fluorescence, and FRET in studies of initiation of translation in bacteria. Methods Enzymol 2007; 430:1-30. [PMID: 17913632 DOI: 10.1016/s0076-6879(07)30001-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Initiation of mRNA translation in prokaryotes requires the small ribosomal subunit (30S), initiator fMet-tRNA(fMet), three initiation factors, IF1, IF2, and IF3, and the large ribosomal subunit (50S). During initiation, the 30S subunit, in a complex with IF3, binds mRNA, IF1, IF2.GTP, and fMet-tRNA(fMet) to form a 30S initiation complex which then recruits the 50S subunit to yield a 70S initiation complex, while the initiation factors are released. Here we describe a transient kinetic approach to study the timing of elemental steps of 30S initiation complex formation, 50S subunit joining, and the dissociation of the initiation factors from the 70S initiation complex. Labeling of ribosomal subunits, fMet-tRNA(fMet), mRNA, and initiation factors with fluorescent reporter groups allows for the direct observation of the formation or dissociation of complexes by monitoring changes in the fluorescence of single dyes or fluorescence resonance energy transfer (FRET) between two fluorophores. Subunit joining was monitored by light scattering or by FRET between dyes attached to the ribosomal subunits. The kinetics of chemical steps, that is, GTP hydrolysis by IF2 and peptide bond formation following the binding of aminoacyl-tRNA to the 70S initiation complex, were measured by the quench-flow technique. The methods described here are based on results obtained with initiation components from Escherichia coli but can be adopted for mechanistic studies of initiation in other prokaryotic or eukaryotic systems.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Fluorescence Resonance Energy Transfer
- GTP Phosphohydrolases/metabolism
- Models, Molecular
- Prokaryotic Initiation Factors/chemistry
- Prokaryotic Initiation Factors/genetics
- Prokaryotic Initiation Factors/metabolism
- Protein Biosynthesis
- Protein Structure, Quaternary
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/metabolism
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/genetics
- Ribosome Subunits, Small, Bacterial/metabolism
Collapse
Affiliation(s)
- Pohl Milon
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, Camerino, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Bieling P, Beringer M, Adio S, Rodnina MV. Peptide bond formation does not involve acid-base catalysis by ribosomal residues. Nat Struct Mol Biol 2006; 13:423-8. [PMID: 16648860 DOI: 10.1038/nsmb1091] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 03/30/2006] [Indexed: 11/09/2022]
Abstract
Ribosomes catalyze the formation of peptide bonds between aminoacyl esters of transfer RNAs within a catalytic center composed of ribosomal RNA only. Here we show that the reaction of P-site formylmethionine (fMet)-tRNA(fMet) with a modified A-site tRNA substrate, Phelac-tRNA(Phe), in which the nucleophilic amino group is replaced with a hydroxyl group, does not show the pH dependence observed with small substrate analogs such as puromycin and hydroxypuromycin. This indicates that acid-base catalysis by ribosomal residues is not important in the reaction with the full-size substrate. Rather, the ribosome catalyzes peptide bond formation by positioning the tRNAs, or their 3' termini, through interactions with rRNA that induce and/or stabilize a pH-insensitive conformation of the active site and provide a preorganized environment facilitating the reaction. The rate of peptide bond formation with unmodified Phe-tRNA(Phe) is estimated to be >300 s(-1).
Collapse
Affiliation(s)
- Peter Bieling
- Institute of Physical Biochemistry, University of Witten/Herdecke, Stockumer Strasse 10, 58448 Witten, Germany
| | | | | | | |
Collapse
|
14
|
Johnson AE. Fluorescence approaches for determining protein conformations, interactions and mechanisms at membranes. Traffic 2006; 6:1078-92. [PMID: 16262720 DOI: 10.1111/j.1600-0854.2005.00340.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Processes that occur at membranes are essential for the viability of every cell, but such processes are the least well understood at the molecular level. The complex nature and physical properties of the molecular components involved, as well as the requirement for two separated aqueous compartments, restrict the experimental approaches that can be successfully applied to examine the structure, conformational changes and interactions of the membrane-bound proteins that accomplish these processes. In particular, to accurately elucidate the molecular mechanisms that effect and regulate such processes, one must use experimental approaches that do not disrupt the structural integrity or functionality of the protein-membrane complexes being examined. To best accomplish this goal, especially when large multicomponent complexes and native membranes are involved, the optimal experimental approach to use is most often fluorescence spectroscopy. Using multiple independent fluorescence techniques, one can determine structural information in real time and in intact membranes under native conditions that cannot be obtained by crystallography, electron microscopy and NMR techniques, among others. Furthermore, fluorescence techniques provide a comprehensive range of information, from kinetic to thermodynamic, about the assembly, structure, function and regulation of membrane-bound proteins and complexes. This article describes the use of various fluorescence techniques to characterize different aspects of proteins bound to or embedded in membranes.
Collapse
Affiliation(s)
- Arthur E Johnson
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, College Station, TX 77843, USA.
| |
Collapse
|
15
|
Hickerson R, Majumdar ZK, Baucom A, Clegg RM, Noller HF. Measurement of internal movements within the 30 S ribosomal subunit using Förster resonance energy transfer. J Mol Biol 2005; 354:459-72. [PMID: 16243353 DOI: 10.1016/j.jmb.2005.09.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 08/16/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
We have used Förster resonance energy transfer (FRET) to study specific conformational changes in the Escherichia coli 30 S ribosomal subunit that occur upon association with the 50 S subunit. By measuring energy transfer between 13 different pairs of fluorescent probes attached to specific positions on 30 S subunit proteins, we have monitored changes in distance between different locations within the 30 S subunit in its free and 50 S-bound states. The measured distance changes provide restraints for modeling the movement that occurs within the 30 S subunit upon formation of the 70 S ribosome in solution. Treating the head, body, and platform domains of the 30 S subunit as simple rigid bodies, the lowest-energy solution converges on a model that satisfies each of the individual FRET restraints. In this model, the 30 S subunit head tilts towards the 50 S subunit, similar to the movement found in comparing 30 S subunits and 70 S ribosomes from X-ray and cryo-electron microscope structures, and the platform is predicted to undergo a clock-wise rotation upon association.
Collapse
Affiliation(s)
- Robyn Hickerson
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
16
|
Majumdar ZK, Hickerson R, Noller HF, Clegg RM. Measurements of internal distance changes of the 30S ribosome using FRET with multiple donor-acceptor pairs: quantitative spectroscopic methods. J Mol Biol 2005; 351:1123-45. [PMID: 16055154 DOI: 10.1016/j.jmb.2005.06.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 06/10/2005] [Indexed: 11/26/2022]
Abstract
We present analytical and experimental procedures for determining distance changes within the 30 S subunit of the Escherichia coli ribosome using Förster resonance energy transfer (FRET). We discuss ways to contend with complexities when using FRET to measure distance changes within large multi-subunit macromolecular complexes, such as the ribosome. Complications can arise due to non-stoichiometric labeling of donor and acceptor probes, as well as environmental effects that are specific to each conjugation site. We show how to account for changes in extinction coefficients, quenching, labeling stoichiometry and other variations in the spectroscopic properties of the dye to enable more accurate calculation of distances from FRET data. We also discuss approximations that concern the orientation of the transition moments of the two dye molecules, as well as the impact of other errors in the measurement of absolute distances. Thirteen dye-pair locations with different distances using 18 independent FRET pairs conjugated to specific 30 S protein residues have been used to determine distance changes within the 30 S subunit upon association with the 50 S subunit, forming the 70 S ribosome. Here, we explain the spectroscopic methods we have used, which should be of general interest in studies that aim at obtaining quantitative distance information from FRET.
Collapse
Affiliation(s)
- Zigurts K Majumdar
- Laboratory for Fluorescence Dynamics, Department of Physics, University of Illinois at Urbana-Champaign, IL 61801, USA
| | | | | | | |
Collapse
|
17
|
Ramachandran R, Tweten RK, Johnson AE. The domains of a cholesterol-dependent cytolysin undergo a major FRET-detected rearrangement during pore formation. Proc Natl Acad Sci U S A 2005; 102:7139-44. [PMID: 15878993 PMCID: PMC1129106 DOI: 10.1073/pnas.0500556102] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FRET measurements were used to determine the domain-specific topography of perfringolysin O, a pore-forming toxin, on a membrane surface at different stages of pore formation. The data reveal that the elongated toxin monomer binds stably to the membrane in an "end-on" orientation, with its long axis approximately perpendicular to the plane of the membrane bilayer. This orientation is largely retained even after monomer association to form an oligomeric prepore complex. The domain 3 (D3) polypeptide segments that ultimately form transmembrane beta-hairpins remain far above the membrane surface in both the membrane-bound monomer and prepore oligomer. Upon pore formation, these segments enter the bilayer, whereas D1 moves to a position that is substantially closer to the membrane. Therefore, the extended D2 beta-structure that connects D1 to membrane-bound D4 appears to bend or otherwise reconfigure during the prepore-to-pore transition of the perfringolysin O oligomer.
Collapse
Affiliation(s)
- Rajesh Ramachandran
- Department of Biochemistry, Texas A&M University, College Station, TX 77843-1114, USA
| | | | | |
Collapse
|
18
|
Johnson AE. The co-translational folding and interactions of nascent protein chains: a new approach using fluorescence resonance energy transfer. FEBS Lett 2005; 579:916-20. [PMID: 15680974 DOI: 10.1016/j.febslet.2004.11.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 11/02/2004] [Indexed: 10/26/2022]
Abstract
During protein biosynthesis, a nascent protein is exposed to multiple environments and proteins both inside and outside the ribosome that influence nascent chain folding and trafficking. Fluorescence resonance energy transfer between two dyes incorporated into a single nascent chain using aminoacyl-tRNA analogs can directly and selectively monitor changes in nascent chain conformation. This approach recently revealed the existence and functional ramifications of ribosome-mediated folding of nascent membrane proteins inside the ribosome and can be extended to characterize the effects of chaperones and other proteins and ligands on nascent protein folding, interactions, assembly, and avoidance of misfolding and degradation.
Collapse
Affiliation(s)
- Arthur E Johnson
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA.
| |
Collapse
|
19
|
Woolhead CA, McCormick PJ, Johnson AE. Nascent Membrane and Secretory Proteins Differ in FRET-Detected Folding Far inside the Ribosome and in Their Exposure to Ribosomal Proteins. Cell 2004; 116:725-36. [PMID: 15006354 DOI: 10.1016/s0092-8674(04)00169-2] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 01/13/2004] [Accepted: 01/20/2004] [Indexed: 11/30/2022]
Abstract
Fluorescence resonance energy transfer measurements reveal that a transmembrane sequence within a nascent membrane protein folds into a compact conformation near the peptidyltransferase center and remains folded as the sequence moves through a membrane bound ribosome into the translocon. This compact conformation is compatible with an alpha helix because nearly the same energy transfer efficiency was observed when the transmembrane sequence was integrated into the lipid bilayer. Since the transmembrane sequence unfolds upon emerging from a free ribosome, this nascent chain folding is ribosome induced and stabilized. In contrast, a nascent secretory protein is in an extended conformation in the exit tunnel. Furthermore, two ribosomal proteins photo-crosslink to nascent membrane but not secretory proteins. These interactions coincide with the previously described sequential closing and opening of the two ends of the aqueous translocon pore, thereby suggesting that ribosomal recognition of nascent chain folding controls the operational mode of the translocon at the ER membrane.
Collapse
Affiliation(s)
- Cheryl A Woolhead
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, College Station, TX 77843, USA
| | | | | |
Collapse
|
20
|
Johnson AE, Chen JC, Flanagan JJ, Miao Y, Shao Y, Lin J, Bock PE. Structure, function, and regulation of free and membrane-bound ribosomes: the view from their substrates and products. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:531-41. [PMID: 12762055 DOI: 10.1101/sqb.2001.66.531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- A E Johnson
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, Departments of Chemistry and of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Flanagan JJ, Chen JC, Miao Y, Shao Y, Lin J, Bock PE, Johnson AE. Signal recognition particle binds to ribosome-bound signal sequences with fluorescence-detected subnanomolar affinity that does not diminish as the nascent chain lengthens. J Biol Chem 2003; 278:18628-37. [PMID: 12621052 DOI: 10.1074/jbc.m300173200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of signal recognition particle (SRP) to ribosome-bound signal sequences has been characterized directly and quantitatively using fluorescence spectroscopy. A fluorescent probe was incorporated cotranslationally into the signal sequence of a ribosome.nascent chain complex (RNC), and upon titration with SRP, a large and saturable increase in fluorescence intensity was observed. Spectral analyses of SRP and RNC association as a function of concentration allowed us to measure, at equilibrium, K(d) values of 0.05-0.38 nm for SRP.RNC complexes with different signal sequences. Competitive binding experiments with nonfluorescent RNC species revealed that the nascent chain probe did not alter SRP affinity and that SRP has significant affinity for both nontranslating ribosomes (K(d) = 71 nm) and RNCs that lack an exposed signal sequence (K(d) = 8 nm). SRP can therefore distinguish between translating and nontranslating ribosomes. The very high signal sequence-dependent SRP.RNC affinity did not decrease as the nascent chain lengthened. Thus, the inhibition of SRP-dependent targeting of RNCs to the endoplasmic reticulum membrane observed with long nascent chains does not result from reduced SRP binding to the signal sequence, as widely thought, but rather from a subsequent step, presumably nascent chain interference of SRP.RNC association with the SRP receptor and/or translocon.
Collapse
Affiliation(s)
- John J Flanagan
- Department of Medical Biochemistry and Genetics, Health Science Center, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Lien L, Ananda P, Seneviratne K, Jaikaran ASI, Andrew Woolley G. Site-specific biosynthetic incorporation of a fluorescent tag into proteins via cysteine-tRNA(Cys). Anal Biochem 2002; 307:252-7. [PMID: 12202241 DOI: 10.1016/s0003-2697(02)00035-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Site-specific incorporation of biophysical probes into proteins during translation can permit structure/function studies on selected proteins in heterogeneous environments. We report here a procedure for incorporating a fluorescent tag into proteins via Escherichia coli Cys-tRNA(Cys) during in vitro protein synthesis. Naturally occurring Cys-tRNA(Cys) is an attractive vehicle for fluorophore incorporation since it can be readily prepared in quantity and reacted with commercially available fluorophores. Moreover, proteins can often be constructed with a single Cys so that fluorophore incorporation results in a tag at a unique site.
Collapse
Affiliation(s)
- Linda Lien
- Department of Chemistry, University of Toronto, Ont., Canada
| | | | | | | | | |
Collapse
|
23
|
Klostermeier D, Millar DP. RNA conformation and folding studied with fluorescence resonance energy transfer. Methods 2001; 23:240-54. [PMID: 11243837 DOI: 10.1006/meth.2000.1135] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fluorescence resonance energy transfer (FRET) results from nonradiative coupling of two fluorophores and reports on distances in the range 10-100 A. It is therefore a suitable probe to determine distances in RNA molecules and define their global structure, to follow kinetics of RNA conformational changes during folding in real time, to monitor ion binding, or to analyze conformational equilibria and assess the thermodynamic stability of tertiary structure conformers. Along with the basic principles of steady-state and time-resolved fluorescence resonance energy transfer measurements, approaches to investigate RNA conformational transitions and folding are described and illustrated with selected examples. The versatility of FRET-based techniques has recently been demonstrated by implementations of FRET in high-throughput screening of potential drugs as well as studies of energy transfer that monitor RNA conformational changes on the single-molecule level.
Collapse
Affiliation(s)
- D Klostermeier
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
24
|
Agrawal RK, Spahn CM, Penczek P, Grassucci RA, Nierhaus KH, Frank J. Visualization of tRNA movements on the Escherichia coli 70S ribosome during the elongation cycle. J Cell Biol 2000; 150:447-60. [PMID: 10931859 PMCID: PMC2175196 DOI: 10.1083/jcb.150.3.447] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2000] [Accepted: 06/16/2000] [Indexed: 11/22/2022] Open
Abstract
Three-dimensional cryomaps have been reconstructed for tRNA-ribosome complexes in pre- and posttranslocational states at 17-A resolution. The positions of tRNAs in the A and P sites in the pretranslocational complexes and in the P and E sites in the posttranslocational complexes have been determined. Of these, the P-site tRNA position is the same as seen earlier in the initiation-like fMet-tRNA(f)(Met)-ribosome complex, where it was visualized with high accuracy. Now, the positions of the A- and E-site tRNAs are determined with similar accuracy. The positions of the CCA end of the tRNAs at the A site are different before and after peptide bond formation. The relative positions of anticodons of P- and E-site tRNAs in the posttranslocational state are such that a codon-anticodon interaction at the E site appears feasible.
Collapse
Affiliation(s)
- Rajendra K. Agrawal
- Wadsworth Center, Department of Biomedical Sciences, State University of New York, Albany, New York 12201
| | - Christian M.T. Spahn
- Howard Hughes Medical Institute, Health Research, Incorporated at Wadsworth Center, Albany, New York 12201
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| | - Pawel Penczek
- Wadsworth Center, Department of Biomedical Sciences, State University of New York, Albany, New York 12201
| | - Robert A. Grassucci
- Howard Hughes Medical Institute, Health Research, Incorporated at Wadsworth Center, Albany, New York 12201
| | - Knud H. Nierhaus
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| | - Joachim Frank
- Wadsworth Center, Department of Biomedical Sciences, State University of New York, Albany, New York 12201
- Howard Hughes Medical Institute, Health Research, Incorporated at Wadsworth Center, Albany, New York 12201
| |
Collapse
|
25
|
Rodnina MV, Savelsbergh A, Wintermeyer W. Dynamics of translation on the ribosome: molecular mechanics of translocation. FEMS Microbiol Rev 1999; 23:317-33. [PMID: 10371036 DOI: 10.1111/j.1574-6976.1999.tb00402.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The translocation step of protein elongation entails a large-scale rearrangement of the tRNA-mRNA-ribosome complex. Recent years have seen major advances in unraveling the mechanism of the process on the molecular level. A number of intermediate states have been defined and, in part, characterized structurally. The article reviews the recent evidence that suggests a dynamic role of the ribosome and its ligands during translocation. The focus is on dynamic aspects of tRNA movement and on the role of elongation factor G and GTP hydrolysis in translocation catalysis. The significance of structural changes of the ribosome induced by elongation factor G as well the role of ribosomal RNA are addressed. A functional model of elongation factor G as a motor protein driven by GTP hydrolysis is discussed.
Collapse
Affiliation(s)
- M V Rodnina
- Institute of Molecular Biology, University of Witten/Herdecke, Germany
| | | | | |
Collapse
|
26
|
VanLoock MS, Easterwood TR, Harvey SC. Major groove binding of the tRNA/mRNA complex to the 16 S ribosomal RNA decoding site. J Mol Biol 1999; 285:2069-78. [PMID: 9925785 DOI: 10.1006/jmbi.1998.2442] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We propose a detailed three-dimensional model, with atomic detail, for the structure of the Escherichia coli 16 S rRNA decoding site in a complex with mRNA and the A and P-site tRNAs. Model building began with four primary assumptions: (1) A and P-site tRNA conformations are identical with those seen in the tRNA crystal structure; (2) A and P-site tRNAs adopt an S-type orientation upon binding mRNA in the ribosome; (3) A1492 and A1493 bind non-specifically to the mRNA through a series of hydrogen bonds; and (4) C1400 lies in close proximity to the P-site tRNA wobble base in order to satisfy a UV-induced photocrosslink formed between the two residues. We have models with both major groove and minor groove binding of the tRNA/mRNA complex to the decoding site RNA, and conclude that major groove binding is more likely. Both classes of models maintain structural features reported in the NMR structure of the A-site region of the decoding site RNA with bound paromomycin. We also present models for the tRNA/mRNA complex bound to the decoding site RNA in the presence of the aminoglycoside paromomycin. We discuss possible mechanisms for ribosomal proof reading and antibiotic disruption of this proofreading.
Collapse
MESH Headings
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/metabolism
- Binding Sites
- Escherichia coli/genetics
- Models, Molecular
- Nucleic Acid Conformation
- Paromomycin/chemistry
- Paromomycin/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
Collapse
Affiliation(s)
- M S VanLoock
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294-0005, USA
| | | | | |
Collapse
|
27
|
Abstract
The central process for the transfer of the genetic information from the nucleic acid world into the structure of proteins is the ribosomal elongation cycle, where the sequence of codons is translated into the sequence of amino acids. The nascent polypeptide chain is elongated by one amino acid during the reactions of one cycle. Essentially, three models for the elongation cycle have been proposed. The allosteric three-site model and the hybrid-site model describe different aspects of tRNA binding and do not necessarily contradict each other. However, the alpha-epsilon model is not compatible with both models. The three models are evaluated in the light of recent results on the tRNA localization within the ribosome: the tRNAs of the elongating ribosome could be localized by two different techniques, viz. an advanced method of small-angle neutron scattering and cryo-electron microscopy. The best fit with the biochemical and structural data is obtained with the alpha-epsilon model.
Collapse
Affiliation(s)
- C M Spahn
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Berlin, Germany
| | | |
Collapse
|
28
|
Abstract
The interaction between tRNA and the ribosome during translation, specifically during elongation, constitutes an example of the motion and adaptability of living molecules. Recent results obtained by cryoelectron microscopy of "naked" ribosomes and ribosomes in functional binding states shine some light on this fundamental life-sustaining process. Inspection of the surface contour of our reconstruction reveals a precise "lock-and-key" fit between the intersubunit space and the tRNA molecule.
Collapse
Affiliation(s)
- J Frank
- Wadsworth Center, New York State Department of Health, Albany 12201-0509, USA.
| | | |
Collapse
|
29
|
Abstract
The structure of ribosomal RNA (rRNA) in the ribosome was probed with hydroxyl radicals generated locally from iron(II) tethered to the 5' ends of anticodon stem-loop analogs (ASLs) of transfer RNA. The ASLs, ranging in length from 4 to 33 base pairs, bound to the ribosome in a messenger RNA-dependent manner and directed cleavage to specific regions of the 16S, 23S, and 5S rRNA chains. The positions and intensities of cleavage depended on whether the ASLs were bound to the ribosomal A or P site, and on the lengths of their stems. These data predict the three-dimensional locations of the rRNA targets relative to the positions of A- and P- site transfer RNAs inside the ribosome.
Collapse
MESH Headings
- Anticodon
- Base Composition
- Base Sequence
- Edetic Acid/analogs & derivatives
- Edetic Acid/metabolism
- Ferrous Compounds/metabolism
- Hydroxyl Radical
- Molecular Sequence Data
- Nucleic Acid Conformation
- Organometallic Compounds/metabolism
- RNA Probes
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
Collapse
Affiliation(s)
- S Joseph
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
30
|
Jia Y, Sytnik A, Li L, Vladimirov S, Cooperman BS, Hochstrasser RM. Nonexponential kinetics of a single tRNAPhe molecule under physiological conditions. Proc Natl Acad Sci U S A 1997; 94:7932-6. [PMID: 9223290 PMCID: PMC21532 DOI: 10.1073/pnas.94.15.7932] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/1997] [Indexed: 02/04/2023] Open
Abstract
The fluorescence decay functions of individual, specifically labeled tRNAPhe molecules exhibit nonexponential character as a result of conformational dynamics occurring during the measurement on a single molecule. tRNAPhe conformational states that interchange much more slowly are evidenced by the distribution of lifetimes observed for many individual molecules. A structural model for the nonexponential decay indicates that the tRNAPhe-probe adduct fluctuates between two states, one of which provides conditions that quench the probe fluorescence.
Collapse
Affiliation(s)
- Y Jia
- Chemistry Department, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
31
|
Nagano K, Nagano N. Transfer RNA docking pair model in the ribosomal pre- and post-translocational states. Nucleic Acids Res 1997; 25:1254-64. [PMID: 9092637 PMCID: PMC146551 DOI: 10.1093/nar/25.6.1254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A consensus has been reached that the conformation of the anticodon-codon interactions of two adjacent tRNA molecules on the ribosome is a Sundaralingam-type (S-type). Even if it is kept to the S-type, there are still various possibilities. Various experimental data have been supporting an idea that the conformation of A-site tRNA is different from that of P-site tRNA. Those data as well as the recent result of Brimacombe and co-workers that U20:1 of lupin tRNAmMetbound to the A-site was cross-linked to a region, 875-905, of 23S rRNA in combination with the other recent findings of Nierhaus and co-workers about the spin-contrast method of neutron diffraction of the ribosome and the better accessible nucleotide patterns of phosphorothioated tRNAs on the ribosome have led to a new tRNA docking pair model, in which the highly conserved G18 and G19 of D-loop in A-site tRNA and C56 and C61 of TpsiC-loop in P-site tRNA base pair along with the conventional base pairs of adjacent codon-anticodon interactions. This A-P tRNA pair model can be translocated to the P-E tRNA pair model without changing the conformation except the ACCA termini, keeping the position of the growing nascent polypeptide chain.
Collapse
Affiliation(s)
- K Nagano
- Department of Information Dynamics, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173, Japan.
| | | |
Collapse
|
32
|
Stark H, Orlova EV, Rinke-Appel J, Jünke N, Mueller F, Rodnina M, Wintermeyer W, Brimacombe R, van Heel M. Arrangement of tRNAs in pre- and posttranslocational ribosomes revealed by electron cryomicroscopy. Cell 1997; 88:19-28. [PMID: 9019401 DOI: 10.1016/s0092-8674(00)81854-1] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The three-dimensional structure of the translating 70S E. coli ribosome is presented in its two main conformations: the pretranslocational and the posttranslocational states. Using electron cryomicroscopy and angular reconstitution, structures at 20 A resolution were obtained, which, when compared with our earlier reconstruction of "empty" ribosomes, showed densities corresponding to tRNA molecules--at the P and E sites for posttranslocational ribosomes and at the A and P sites for pretranslocational ribosomes. The P-site tRNA lies directly above the bridge connecting the two ribosomal subunits, with the A-site tRNA fitted snugly against it at an angle of approximately 50 degrees, toward the L7/L12 side of the ribosome. The E-site tRNA appears to lie between the side lobe of the 30S subunit and the L1 protuberance.
Collapse
Affiliation(s)
- H Stark
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Agrawal RK, Penczek P, Grassucci RA, Li Y, Leith A, Nierhaus KH, Frank J. Direct visualization of A-, P-, and E-site transfer RNAs in the Escherichia coli ribosome. Science 1996; 271:1000-2. [PMID: 8584922 DOI: 10.1126/science.271.5251.1000] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transfer RNA (tRNA) molecules play a crucial role in protein biosynthesis in all organisms. Their interactions with ribosomes mediate the translation of genetic messages into polypeptides. Three tRNAs bound to the Escherichia coli 70S ribosome were visualized directly with cryoelectron microscopy and three-dimensional reconstruction. The detailed arrangement of A- and P-site tRNAs inferred from this study allows localization of the sites for anticodon interaction and peptide bond formation on the ribosome.
Collapse
MESH Headings
- Anticodon
- Binding Sites
- Codon
- Escherichia coli/metabolism
- Image Processing, Computer-Assisted
- Microscopy, Electron
- Models, Molecular
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- R K Agrawal
- Wadsworth Center, New York State Department of Health, Albany 12201-0509, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Czworkowski J, Moore PB. The elongation phase of protein synthesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 54:293-332. [PMID: 8768078 DOI: 10.1016/s0079-6603(08)60366-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J Czworkowski
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
35
|
Abstract
Considering the size and complexity of the ribosome and the growing body of data from a wide range of experiments on ribosomal structure, it is becoming increasingly important to develop tools that facilitate the development of reliable models for the ribosome. We use a combination of manual and computer-based approaches for building and refining models of the ribosome and other RNA-protein complexes. Our methods are aimed at determining the range of models compatible with the data, making quantitative statements about the positional uncertainties (resolution) of different regions, identifying conflicts in the data, establishing which regions of the ribosome need further experimental exploration, and, where possible, predicting the outcome of future experiments. Our previous low-resolution model for the small subunit of the Escherichia coli ribosome is briefly reviewed, along with progress on atomic resolution modeling of the mRNA-tRNA complex and its interaction with the decoding site of the 16S RNA.
Collapse
Affiliation(s)
- T R Easterwood
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham 35294, USA
| | | |
Collapse
|
36
|
Wower J, Wower IK, Kirillov SV, Rosen KV, Hixson SS, Zimmermann RA. Peptidyl transferase and beyond. Biochem Cell Biol 1995; 73:1041-7. [PMID: 8722019 DOI: 10.1139/o95-111] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The peptidyl transferase center of the Escherichia coli ribosome encompasses a number of 50S-subunit proteins as well as several specific segments of the 23S rRNA. Although our knowledge of the role that both ribosomal proteins and 23S rRNA play in peptide bond formation has steadily increased, the location, organization, and molecular structure of the peptidyl transferase center remain poorly defined. Over the past 10 years, we have developed a variety of photoaffinity reagents and strategies for investigating the topography of tRNA binding sites on the ribosome. In particular, we have used the photoreactive tRNA probes to delineate ribosomal components in proximity to the 3' end of tRNA at the A, P, and E sites. In this article, we describe recent experiments from our laboratory which focus on the identification of segments of the 23S rRNA at or near the peptidyl transferase center and on the functional role of L27, the 50S-subunit protein most frequently labeled from the acceptor end of A- and P-site tRNAs. In addition, we discuss how these results contribute to a better understanding of the structure, organization, and function of the peptidyl transferase center.
Collapse
Affiliation(s)
- J Wower
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003-4505, USA
| | | | | | | | | | | |
Collapse
|
37
|
Watson BS, Hazlett TL, Eccleston JF, Davis C, Jameson DM, Johnson AE. Macromolecular arrangement in the aminoacyl-tRNA.elongation factor Tu.GTP ternary complex. A fluorescence energy transfer study. Biochemistry 1995; 34:7904-12. [PMID: 7794902 DOI: 10.1021/bi00024a015] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The distance between the corner of the L-shaped transfer RNA and the GTP bound to elongation factor Tu (EF-Tu) in the aminoacyl-tRNA.EF-Tu.GTP ternary complex was measured using fluorescence energy transfer. The donor dye, fluorescein (Fl), was attached covalently to the 4-thiouridine base at position 8 of tRNAPhe, and aminoacylation yielded Phe-tRNAPhe-Fl8. The ribose of GTP was covalently modified at the 2'(3') position with the acceptor dye rhodamine (Rh) to form GTP-Rh. Formation of the Phe-tRNAPhe-Fl8.EF-Tu.GTP-Rh ternary complex was verified both by EF-Tu protection of the aminoacyl bond from chemical hydrolysis and by an EF-Tu.GTP-dependent increase in fluorescein intensity. Spectral analyses revealed that both the emission intensity and lifetime of fluorescein were greater in the Phe-tRNAPhe-Fl8.EF-Tu.GTP ternary complex than in the Phe-tRNAPhe-Fl8.EF-Tu.GTP-Rh ternary complex. These spectral differences disappeared when excess GTP was added to replace GTP-Rh in the latter ternary complex, thereby showing that excited-state energy was transferred from fluorescein to rhodamine in the ternary complex. The efficiency of singlet-singlet energy transfer was low (10-12%), corresponding to a distance between the donor and acceptor dyes in the ternary complex of 70 +/- 7 A, where the indicated uncertainty reflects the uncertainty in dye orientation. After correction for the lengths of the probe attachment tethers, the 2'(3')-oxygen of the GTP ribose and the sulfur in the s4U are separated by a minimum of 49 A. This large distance limits the possible arrangements of the EF-Tu and the tRNA in the ternary complex.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B S Watson
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman 73019, USA
| | | | | | | | | | | |
Collapse
|
38
|
Easterwood TR, Major F, Malhotra A, Harvey SC. Orientations of transfer RNA in the ribosomal A and P sites. Nucleic Acids Res 1994; 22:3779-86. [PMID: 7937092 PMCID: PMC308362 DOI: 10.1093/nar/22.18.3779] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In protein synthesis, peptide bond formation requires that the tRNA carrying the amino acid (A site tRNA) contact the tRNA carrying the growing peptide chain (P site tRNA) at their 3' termini. Two models have been proposed for the orientations of two tRNAs as they would be bound to the mRNA in the ribosome. Viewing the tRNA as an upside down L, anticodon loop pointing down, acceptor stem pointing right, and calling this the front view, the R (Rich) model would have the back of the P site tRNA facing the front of the A site tRNA. In the S (Sundaralingam) model the front of the P site tRNA faces the back of the A site tRNA. Models of two tRNAs bound to mRNA as they would be positioned in the ribosomal A and P sites have been created using MC-SYM, a constraint satisfaction search program designed to build nucleic acid structures. The models incorporate information from fluorescence energy transfer experiments and chemical crosslinks. The models that best answer the constraints are of the S variety, with no R conformations produced consistent with the constraints.
Collapse
Affiliation(s)
- T R Easterwood
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham 35294
| | | | | | | |
Collapse
|
39
|
Crowley KS, Reinhart GD, Johnson AE. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 1993; 73:1101-15. [PMID: 8513496 DOI: 10.1016/0092-8674(93)90640-c] [Citation(s) in RCA: 233] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The signal sequence is in an aqueous milieu at an early stage in the translocation of a nascent secretory protein across the endoplasmic reticulum membrane. This was determined using fluorescent probes incorporated into the signal sequence of fully assembled ribosome-nascent chain-membrane complexes: the fluorescence lifetimes revealed that the probes were in an aqueous environment rather than buried in the nonpolar core of the membrane. Since these membrane-bound probes were not susceptible to collisional quenching by iodide ions, the space containing the signal sequence is sealed off from the cytoplasm by a tight ribosome-membrane junction. The nascent chain inside the ribosome is also not exposed to the cytoplasm and apparently passes through an aqueous tunnel in the ribosome.
Collapse
Affiliation(s)
- K S Crowley
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman 73019
| | | | | |
Collapse
|
40
|
Servillo L, Balestrieri C, Quagliuolo L, Iorio EL, Giovane A. tRNA fluorescent labeling at 3' end inducing an aminoacyl-tRNA-like behavior. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:583-9. [PMID: 7682946 DOI: 10.1111/j.1432-1033.1993.tb17797.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A fluorescent tRNA derivative labeled at 3'-O position of the ultimate adenosine residue by reaction, under mild conditions, of tRNA with isatoic anhydride [3,1-benzoxazine-2,4(1H)-dione] was obtained. The labeling selectivity was determined by several criteria: digestion with RNase, followed by HPLC of the digest, produces only one labeled nucleoside, identified as 3'-O-anthraniloyladenosine; the ratio of the absorbance at 260 nm to 332 nm also suggests a 1:1 molar ratio between the nucleic acid and the fluorophore; finally, the incapacity of the labeled tRNA to be charged by the specific aminoacyltransferase further demonstrates the engagement of the 3'-O position. Although the 3'-O-anthraniloyl-labeled tRNA does not seem to be functionally active, as far as the aminoacyl charging activity is concerned, surprisingly we found that it is able to form the ternary complex with elongation factor Tu (EF-Tu) and GTP with an affinity consistently higher than uncharged tRNA. From fluorescence anisotropy measurements the ternary complex dissociation constant was estimated as 73 nM for Escherichia coli and 140 nM for yeast anthraniloyl-tRNA(Phe). These results may be interpreted in terms of the particular structure of the anthraniloyl group that makes the labeled tRNA similar to an aminoacyl-tRNA.
Collapse
Affiliation(s)
- L Servillo
- Department of Biochemistry and Biophysics, University of Naples, Italy
| | | | | | | | | |
Collapse
|
41
|
Holmberg L, Melander Y, Nygård O. Ribosome-bound eukaryotic elongation factor 2 protects 5 S rRNA from modification. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36698-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Lim V, Venclovas C, Spirin A, Brimacombe R, Mitchell P, Müller F. How are tRNAs and mRNA arranged in the ribosome? An attempt to correlate the stereochemistry of the tRNA-mRNA interaction with constraints imposed by the ribosomal topography. Nucleic Acids Res 1992; 20:2627-37. [PMID: 1614849 PMCID: PMC336901 DOI: 10.1093/nar/20.11.2627] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Two tRNA molecules at the ribosomal A- and P-sites, with a relatively small angle between the planes of the L-shaped molecules, can be arranged in two mutually exclusive orientations. In one (the 'R'-configuration), the T-loop of the A-site tRNA faces the D-loop of the P-site tRNA, whereas in the other (the 'S'-configuration) the D-loop of the A-site tRNA faces the T-loop of the P-site tRNA. A number of stereochemical arguments, based on the crystal structure of 'free' tRNA, favour the R-configuration. In the ribosome, the CCA-ends of the tRNA molecules are 'fixed' at the base of the central protuberance (the peptidyl transferase centre) of the 50S subunit, and the anticodon loops lie in the neck region (the decoding site) of the 30S subunit. The translocation step is essentially a rotational movement of the tRNA from the A- to the P-site, and there is convincing evidence that the A-site must be located nearest to the L7/L12 protuberance of the 50S subunit. The mRNA in the two codon-anticodon duplexes lies on the 'inside' of the 'elbows' of the tRNA molecules (in both the S-type and R-type configurations), and runs up between the two molecules from the A- to the P-site in the 3' to 5'-direction. These considerations have the consequence that in the S-configuration the mRNA in the codon-anticodon duplexes is directed towards the 50S subunit, whereas in the R-configuration it is directed towards the 30S subunit. The results of site-directed cross-linking experiments, in particular cross-links to mRNA at positions within or very close to the codons interacting with A- or P-site tRNA, favour the latter situation. This conclusion is in direct contradiction to other current models for the arrangement of mRNA and tRNA on the ribosome.
Collapse
Affiliation(s)
- V Lim
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region
| | | | | | | | | | | |
Collapse
|
43
|
Nagano K, Takagi H, Harel M. The side-by-side model of two tRNA molecules allowing the alpha-helical conformation of the nascent polypeptide during the ribosomal transpeptidation. Biochimie 1991; 73:947-60. [PMID: 1742366 DOI: 10.1016/0300-9084(91)90136-o] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lim and Spirin [25] proposed a preferable conformation of the nascent peptide during the ribosomal transpeptidation. Spirin and Lim [26] excluded the possibilities of the side-by-side model proposed by Johnson et al [13] and the three-tRNA binding model (A, P and E sites) of Rheinberger and Nierhaus [3]. However, a slight conformational change at the 3' end regions of both A and P site tRNA molecules can enable the three different tRNA binding models to converge. With a modification of the angles of the ribose rings of both anticodon and mRNA this model can also be related to the model of Sundaralingam et al [19]. In this model of E coli rRNA the 3' end sequence ACCA76 or GCCA76 of P site tRNA is base-paired to UGGU810 of 23S rRNA, while the ACC75 or GCC75 of A site tRNA are base-paired to GGU1621 23S rRNA. The conformation of the A76 of A site tRNA is necessarily different from that of P site tRNA, at least during the course of the transpeptidation. The A76 of A site tRNA overlaps the binding region of puromycin. The C1400 of 16S rRNA in this model is located at a distance of 4 A from the 5' end of the anticodon of P site tRNA [14] and 17 A from the 5' end of the anticodon of A site tRNA [15]. It is also shown that a considerable but reasonable modification in the conformation of the anticodon loops could lead to accommodation of three deacylated tRNA(Phe) molecules at a time on 70S ribosome in the presence of poly(U) as observed experimentally [6]. A sterochemical explanation for the negatively-linked allosteric interactions between the A and E sites is also shown in the present model.
Collapse
Affiliation(s)
- K Nagano
- Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
44
|
Nygård O, Nilsson L. Translational dynamics. Interactions between the translational factors, tRNA and ribosomes during eukaryotic protein synthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 191:1-17. [PMID: 2199194 DOI: 10.1111/j.1432-1033.1990.tb19087.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- O Nygård
- Department of Cell Biology, Wenner-Gren Institute, University of Stockholm, Sweden
| | | |
Collapse
|
45
|
Dell VA, Miller DL, Johnson AE. Effects of nucleotide- and aurodox-induced changes in elongation factor Tu conformation upon its interactions with aminoacyl transfer RNA. A fluorescence study. Biochemistry 1990; 29:1757-63. [PMID: 2110000 DOI: 10.1021/bi00459a014] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of GDP and of aurodox (N-methylkirromycin) on the affinity of elongation factor Tu (EF-Tu) for aminoacyl-tRNA (aa-tRNA) have been quantified spectroscopically by using Phe-tRNA(Phe)-Fl8, a functionally active analogue of Phe-tRNA(Phe) with a fluorescein dye convalently attached to the s4U-8 base. The association of EF-Tu.GDP with Phe-tRNA(Phe)-Fl8 resulted in an average increase of 33% in fluorescein emission intensity. This spectral change was used to monitor the extent of ternary complex formation as a function of EF-Tu.GDP concentration, and hence to obtain a dissociation constant, directly and at equilibrium, for the EF-Tu.GDP-containing ternary complex. The Kd for the Phe-tRNA(Phe)-Fl8.EF-Tu.GDP complex was found to average 28.5 microM, more than 33,000-fold greater than the Kd of the Phe-tRNA(Phe)-Fl8.EF-Tu.GTP complex under the same conditions. In terms of free energy, the delta G degree for ternary complex formation at 6 degrees C was -11.5 kcal/mol with GTP and -5.8 kcal/mol with GDP. Thus, the hydrolysis of the ternary complex GTP results in a dramatic decrease in the affinity of EF-Tu for aa-tRNA, thereby facilitating the release of EF-Tu.GDP from the aa-tRNA on the ribosome. Aurodox (200 microM) decreased the Kd of the GDP complex by nearly 20-fold, to 1.46 microM, and increased the Kd of the GTP complex by at least 6-fold. The binding of aurodox to EF-Tu therefore both considerably strengthens EF-Tu.GDP affinity for aa-tRNA and also weakens EF-Tu.GTP affinity for aa-tRNA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- V A Dell
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman 73019
| | | | | |
Collapse
|
46
|
Abstract
We describe an assay that converts the effects of tRNA-tRNA contacts at two particular codons into a quantitative effect on beta-galactosidase level. The assay measures the separate and combined efficiency of suppression at adjacent nonsense codons in vivo using a set of specially created homologous messages. In a survey of distal anticodon arm substitutions, we find that particular mutant tRNAs occupying the P-site reduce the apparent efficiency of the suppressor tRNA reading the A-site codon by factors of 2-170. By using measured tRNA-tRNA distances and the crystallographic tRNA structure, we propose a model of the tRNA-tRNA-mRNA complex. In the model, the anticodon loops of the P-site and A-site tRNAs contact one another in a way that is consistent with our combined tRNA efficiency data. These results suggest that tRNA-tRNA interactions that modulate tRNA action are an inevitable feature of translation.
Collapse
Affiliation(s)
- D Smith
- Department of Molecular, Cellular, University of Colorado, Boulder 80309-0347
| | | |
Collapse
|
47
|
Wagenknecht T, Carazo JM, Radermacher M, Frank J. Three-dimensional reconstruction of the ribosome from Escherichia coli. Biophys J 1989; 55:455-64. [PMID: 2649163 PMCID: PMC1330499 DOI: 10.1016/s0006-3495(89)82839-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Three-dimensional image reconstruction has been applied to electron micrographs of noncrystalline, negatively stained ribosomes obtained from Escherichia coli. Several independent reconstructions all show an overall appearance resembling models that had been derived earlier by direct visual interpretation of electron micrographs. The reconstructed ribosomes show numerous structural details not recognized previously, some of which may be functionally significant. A large elongate cavity (approximately 8-nm long x 5-nm wide x 6-nm [maximal] deep) is present on the surface of the ribosome near the base of its stalk and is identifiable as a portion of a feature termed the interface canyon, which was detected in prior reconstructions of the large ribosomal subunit (Radermacher, M., T. Wagenknecht, A. Verschoor, and J. Frank. 1987. EMBO (Eur. Mol. Biol. Organ.) J. 6:1107-1114). On the back of the ribosome, near the base of the central protuberance, is a hole leading to the interface canyon, which likely represents an exit site for the elongating polypeptide produced during protein biosynthesis. The exposed portion of the interface canyon appears well suited to bind two tRNA molecules in a configuration that is consistent with biochemical and structural data on the mechanism of peptide bond biosynthesis.
Collapse
Affiliation(s)
- T Wagenknecht
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509
| | | | | | | |
Collapse
|
48
|
Nagano K, Harel M, Takezawa M. Prediction of three-dimensional structure of Escherichia coli ribosomal RNA. J Theor Biol 1988; 134:199-256. [PMID: 2468977 DOI: 10.1016/s0022-5193(88)80202-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A model for the tertiary structure of 23S, 16S and 5S ribosomal RNA molecules interacting with three tRNA molecules is presented using the secondary structure models common to E. coli, Z. mays chloroplast, and mammalian mitochondria. This ribosomal RNA model is represented by phosphorus atoms which are separated by 5.9 A in the standard A-form double helix conformation. The accumulated proximity data summarized in Table 1 were used to deduce the most reasonable assembly of helices separated from each other by at least 6.2 A. Straight-line approximation for single strands was adopted to describe the maximum allowed distance between helices. The model of a ribosome binding three tRNA molecules by Nierhaus (1984), the stereochemical model of codon-anticodon interaction by Sundaralingam et al. (1975) and the ribosomal transpeptidation model, forming an alpha-helical nascent polypeptide, by Lim & Spirin (1986), were incorporated in this model. The distribution of chemically modified nucleotides, cross-linked sites, invariant and missing regions in mammalian mitochondrial rRNAs are indicated on the model.
Collapse
MESH Headings
- Binding Sites
- Escherichia coli/genetics
- Models, Molecular
- Nucleic Acid Conformation
- Protein Conformation
- RNA, Bacterial/ultrastructure
- RNA, Ribosomal/ultrastructure
- RNA, Ribosomal, 16S/ultrastructure
- RNA, Ribosomal, 23S/ultrastructure
- RNA, Ribosomal, 5S/ultrastructure
- RNA, Transfer, Asp/ultrastructure
- RNA, Transfer, Phe/ultrastructure
Collapse
Affiliation(s)
- K Nagano
- Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
49
|
Odom OW, Deng HY, Hardesty B. Fluorescence labeling and isolation of labeled RNA and ribosomal proteins. Methods Enzymol 1988; 164:174-87. [PMID: 3071661 DOI: 10.1016/s0076-6879(88)64042-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
50
|
Odom OW, Hardesty B. An apparent conformational change in tRNA(Phe) that is associated with the peptidyl transferase reaction. Biochimie 1987; 69:925-38. [PMID: 3126830 DOI: 10.1016/0300-9084(87)90226-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fluorescence techniques were used to detect changes in the conformation of tRNA(Phe) that may occur during the peptidyl transferase reaction in which the tRNA appears to move between binding sites on ribosomes. Such a conformational change may be a fundamental part of the translocation mechanism by which tRNA and mRNA are moved through ribosomes. E. coli tRNA(Phe) was specifically labeled on acp3U47 and s4U8 or at the D positions 16 and 20. The labeled tRNAs were bound to ribosomes as deacylated tRNA(Phe) or AcPhe-tRNA. Changes in fluorescence quantum yield and anisotropy were measured upon binding to the ribosomes and during the peptidyl transferase reaction. In one set of experiments non-radiative energy transfer was measured between a coumarin probe at position 16 or 20 and a fluorescein attached to acp3U47 on the same tRNA(Phe) molecule. The results indicate that the apparent distance between the probes increases during deacylation of AcPhe-tRNA as a result of peptide bond formation. All of the results are consistent with but in themselves do not conclusively establish that tRNA undergoes a conformational change as well as movement during the peptidyl transferase reaction.
Collapse
Affiliation(s)
- O W Odom
- Clayton Foundation Biochemical Institute, Department of Chemistry, University of Texas, Austin 78712
| | | |
Collapse
|