1
|
Rakonjac J, Gold VAM, León-Quezada RI, Davenport CH. Structure, Biology, and Applications of Filamentous Bacteriophages. Cold Spring Harb Protoc 2024; 2024:pdb.over107754. [PMID: 37460152 DOI: 10.1101/pdb.over107754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The closely related Escherichia coli Ff filamentous phages (f1, fd, and M13) have taken a fantastic journey over the past 60 years, from the urban sewerage from which they were first isolated, to their use in high-end technologies in multiple fields. Their relatively small genome size, high titers, and the virions that tolerate fusion proteins make the Ffs an ideal system for phage display. Folding of the fusions in the oxidizing environment of the E. coli periplasm makes the Ff phages a platform that allows display of eukaryotic surface and secreted proteins, including antibodies. Resistance of the Ffs to a broad range of pH and detergents facilitates affinity screening in phage display, whereas the stability of the virions at ambient temperature makes them suitable for applications in material science and nanotechnology. Among filamentous phages, only the Ffs have been used in phage display technology, because of the most advanced state of knowledge about their biology and the various tools developed for E. coli as a cloning host for them. Filamentous phages have been thought to be a rather small group, infecting mostly Gram-negative bacteria. A recent discovery of more than 10 thousand diverse filamentous phages in bacteria and archaea, however, opens a fascinating prospect for novel applications. The main aim of this review is to give detailed biological and structural information to researchers embarking on phage display projects. The secondary aim is to discuss the yet-unresolved puzzles, as well as recent developments in filamentous phage biology, from a viewpoint of their impact on current and future applications.
Collapse
Affiliation(s)
- Jasna Rakonjac
- School of Natural Sciences, Massey University, Auckland 0632, New Zealand
- Nanophage Technologies Ltd., Palmerston North, Manawatu 4474, New Zealand
| | - Vicki A M Gold
- Living Systems Institute University of Exeter, Exeter, EX4 4QD, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
| | - Rayén I León-Quezada
- School of Natural Sciences, Massey University, Auckland 0632, New Zealand
- Nanophage Technologies Ltd., Palmerston North, Manawatu 4474, New Zealand
| | - Catherine H Davenport
- School of Natural Sciences, Massey University, Auckland 0632, New Zealand
- Nanophage Technologies Ltd., Palmerston North, Manawatu 4474, New Zealand
| |
Collapse
|
2
|
Cao X, Tang L, Song J. Circular Single-Stranded DNA: Discovery, Biological Effects, and Applications. ACS Synth Biol 2024; 13:1038-1058. [PMID: 38501391 DOI: 10.1021/acssynbio.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The field of nucleic acid therapeutics has witnessed a significant surge in recent times, as evidenced by the increasing number of approved genetic drugs. However, current platform technologies containing plasmids, lipid nanoparticle-mRNAs, and adeno-associated virus vectors encounter various limitations and challenges. Thus, we are devoted to finding a novel nucleic acid vector and have directed our efforts toward investigating circular single-stranded DNA (CssDNA), an ancient form of nucleic acid. CssDNAs are ubiquitous, but generally ignored. Accumulating evidence suggests that CssDNAs possess exceptional properties as nucleic acid vectors, exhibiting great potential for clinical applications in genetic disorders, gene editing, and immune cell therapy. Here, we comprehensively review the discovery and biological effects of CssDNAs as well as their applications in the field of biomedical research for the first time. Undoubtedly, as an ancient form of DNA, CssDNA holds immense potential and promises novel insights for biomedical research.
Collapse
Affiliation(s)
- Xisen Cao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linlin Tang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
3
|
Rakonjac J, Russel M, Khanum S, Brooke SJ, Rajič M. Filamentous Phage: Structure and Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:1-20. [PMID: 29549632 DOI: 10.1007/978-3-319-72077-7_1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ff filamentous phage (fd, M13 and f1) of Escherichia coli have been the workhorse of phage display technology for the past 30 years. Dominance of Ff over other bacteriophage in display technology stems from the titres that are about 100-fold higher than any other known phage, efficacious transformation ensuring large library size and superior stability of the virion at high temperatures, detergents and pH extremes, allowing broad range of biopanning conditions in screening phage display libraries. Due to the excellent understanding of infection and assembly requirements, Ff phage have also been at the core of phage-assisted continual protein evolution strategies (PACE). This chapter will give an overview of the Ff filamentous phage structure and biology, emphasizing those properties of the Ff phage life cycle and virion that are pertinent to phage display applications.
Collapse
Affiliation(s)
- Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | | | - Sofia Khanum
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Sam J Brooke
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Marina Rajič
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Simulation of the M13 life cycle I: Assembly of a genetically-structured deterministic chemical kinetic simulation. Virology 2016; 500:259-274. [PMID: 27644585 DOI: 10.1016/j.virol.2016.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/22/2022]
Abstract
To expand the quantitative, systems level understanding and foster the expansion of the biotechnological applications of the filamentous bacteriophage M13, we have unified the accumulated quantitative information on M13 biology into a genetically-structured, experimentally-based computational simulation of the entire phage life cycle. The deterministic chemical kinetic simulation explicitly includes the molecular details of DNA replication, mRNA transcription, protein translation and particle assembly, as well as the competing protein-protein and protein-nucleic acid interactions that control the timing and extent of phage production. The simulation reproduces the holistic behavior of M13, closely matching experimentally reported values of the intracellular levels of phage species and the timing of events in the M13 life cycle. The computational model provides a quantitative description of phage biology, highlights gaps in the present understanding of M13, and offers a framework for exploring alternative mechanisms of regulation in the context of the complete M13 life cycle.
Collapse
|
5
|
Stump MD, Madison-Antenucci S, Kokoska RJ, Steege DA. Filamentous phage IKe mRNAs conserve form and function despite divergence in regulatory elements. J Mol Biol 1997; 266:51-65. [PMID: 9054970 DOI: 10.1006/jmbi.1996.0766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As a means of determining whether there has been selection to conserve the basic pattern of filamentous phage mRNAs, the major mRNAs representing genes II to VIII have been defined for a phage distantly related to the Ff group specific for Escherichia coli hosts bearing F pili. Phage IKe has a genome with 55% identity with the Ff genome and infects E. coli strains bearing N pili. The results reveal a remarkably similar pattern of overlapping polycistronic mRNAs with a common 3' end and unique 5' ends. The IKe mRNAs, like the Ff phage mRNAs, represent a combination of primary transcripts and processed RNAs. However, examination of the sequences containing the RNA endpoint positions revealed that effectively the only highly conserved regulatory element is the rho-independent terminator that generates the common 3' end. Promoters and processing sites have not been maintained in identical positions, but frequently are placed so as to yield RNAs with similar coding function. By conserving the pattern of transcription and processing despite divergence in the regulatory elements and possibly the requirements for host, endoribonucleases, the results argue that the pattern is not simply fortuitous.
Collapse
Affiliation(s)
- M D Stump
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
6
|
Beresford TP, Ward LJ, Jarvis AW. Temporally Regulated Transcriptional Expression of the Genomes of Lactococcal Bacteriophages c2 and sk1. Appl Environ Microbiol 1993; 59:3708-12. [PMID: 16349085 PMCID: PMC182521 DOI: 10.1128/aem.59.11.3708-3712.1993] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription maps of the
Lactococcus lactis
subsp.
lactis
prolate phage c2 and small isometric phage sk1 were constructed. Early and late transcripts were demonstrated in phage c2. Early transcription was localized to within a 7.5-kb
Eco
RV fragment, and late transcription included the region which encodes the phage structural proteins and a lysin gene. Early, middle, and late transcripts were demonstrated in phage sk1. Transcription was confined to an 11.3-kb region defined by the three
Eco
RV restriction fragments of 6.2, 4.7, and 0.46 kb during the early part of the sk1 life cycle. Middle gene transcripts extended from the
Eco
RV site (defining the left-hand limit of early gene expression) through the
cos
site and included the 4.3-kb
Pvu
II-
cos
fragment. Late transcription was detected over the remainder of the phage genome. These results indicated that gene expression was temporally regulated at the level of transcription in these two lactococcal phages and that two regions of time-dependent transcription exist in phage c2 and three in phage sk1.
Collapse
Affiliation(s)
- T P Beresford
- New Zealand Dairy Research Institute, Palmerston North, New Zealand
| | | | | |
Collapse
|
7
|
Guy-Caffey JK, Rapoza MP, Jolley KA, Webster RE. Membrane localization and topology of a viral assembly protein. J Bacteriol 1992; 174:2460-5. [PMID: 1556066 PMCID: PMC205882 DOI: 10.1128/jb.174.8.2460-2465.1992] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The gene I protein (pI) of the filamentous bacteriophage f1 is required for the assembly of this virus. Antibodies specific to either the amino or carboxyl terminus of this protein were used to determine the location and topology of the gene I protein in f1-infected bacteria. pI is anchored in the inner membrane of Escherichia coli cells via a 20-amino-acid hydrophobic stretch, with its carboxyl-terminal 75 residues located in the periplasm and its amino-terminal 253 amino acids residing in the cytoplasm. By using the carboxyl-terminal pI antibody, a smaller protein, pI*, is also detected in f1-infected cells at a ratio of one to two molecules per molecule of pI. Analysis of proteins produced from a gene I amber mutant plasmid or bacteriophage suggests that pI* is most likely the result of an in-frame internal translational initiation event at methionine 241 of the 348-amino-acid pI. pI* is shown to be an integral inner membrane protein inserted in the same orientation as pI. The relation of the cellular locations of pI and pI* to some of the proposed functions of pI is discussed.
Collapse
Affiliation(s)
- J K Guy-Caffey
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | |
Collapse
|
8
|
Abstract
The genome of the class II filamentous bacteriophage Pf1 has been sequenced by a combination of the chain termination and chemical degradation methods. It consists of 7349 nucleotides in a closed, circular loop of single-stranded DNA. The size and position of its open reading frames (ORFs) in general resemble those of other filamentous bacteriophage genomes. The size and position of the spaces between the ORFs have not been conserved, however, and six short reading frames (2 of which overlap) occupy a region corresponding to that filled by genes 2 and 10 in the Ff genome. Most of the ORFs are preceded by sequences resembling ribosome binding sites from the phage's host. Pseudomonas aeruginosa, that appear to differ somewhat from their counterparts in Escherichia coli. A search for sequences related to known pseudomonad promoters suggests that the promoters in this bacteriophage may well be ntr-dependent, with the two strongest preceding the gene for the major coat protein (gene 8) and another ORF (430). Gene 8 is followed by a sequence with the properties of a rho-independent terminator of transcription, like that at the same position in the genome of Ff. The Pf1 genome contains no collection of potential stem-and-loop structures corresponding to those that initiate replication of Ff DNA and assembly of the Ff virion, although isolated structures of this kind are present. The available evidence suggests that at least 13 of the 14 major ORFs are expressed. Overall, the organization of the Pf1 genome differs from that of the other class II filamentous phage whose genome has been sequenced, Pf3, as much as it does from that of the class I phages Ff and IKe.
Collapse
Affiliation(s)
- D F Hill
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
9
|
La Farina M, Izzo V, Costa MA, Barbier R, Duro G, Vitale M, Mutolo V. Readthrough transcription occurs at the rho dependent signal F1 TIV in suppressor cells. Nucleic Acids Res 1990; 18:865-70. [PMID: 2179871 PMCID: PMC330338 DOI: 10.1093/nar/18.4.865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Suppressor cells infected with bacteriophage f1 yield phage encoded gene IV transcripts longer than those present in the supo host and identical to those found in a rho- host. However, such longer transcripts do not appear in the suppressor-infected cell when, by changing the translation frame of gene IV, the ribosome is not allowed to proceed to the end of the gene IV message and thus to reach the rho dependent transcription terminator f1 TIV. This suggests that ribosome movement beyond the natural gene IV stop codon disturbs the activity of that termination signal. In contrast to the rho- behaviour, the suppressor does not accumulate high levels of gene IV messages indicating that the accumulation occurring in the rho- mutant may not be a primary effect of the readthrough per se.
Collapse
Affiliation(s)
- M La Farina
- Dipartimento di Biologia Cellulare, Universita, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Blumer K, Steege D. Recognition and cleavage signals for mRNA processing lie within local domains of the phage f1 RNA precursors. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47129-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Ivey-Hoyle M, Steege DA. Translation of phage f1 gene VII occurs from an inherently defective initiation site made functional by coupling. J Mol Biol 1989; 208:233-44. [PMID: 2788746 DOI: 10.1016/0022-2836(89)90385-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Expression of the filamentous phage f1 gene VII is shown to be translationally coupled to that of the upstream gene V. Fusions of the gene VII initiation site to the lacZ coding region were used to determine that initiation at the VII site is completely dependent on the process of translation having proceeded up to a stop codon immediately upstream from the VII site. Coupled expression from the VII site was found to be inefficient, proportional to the level of upstream translation, and very sensitive to the distance from the functional upstream stop codon. Independent expression from the VII site was not observed, even in a deletion series designed to remove potentially masking RNA structure. On the basis of the VII site's dissimilarity to ribosome binding site sequences and its properties overall, we suggest that it inherently lacks the features required for independent recognition by ribosomes, and acquires the ability to initiate synthesis of gene VII protein by virtue of the coupling process.
Collapse
Affiliation(s)
- M Ivey-Hoyle
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | | |
Collapse
|
12
|
Sconzo G, La Rosa M, La Farina M, Roccheri MC, Oliva D, Giudice G. Isolation and characterization of a sea urchin hsp 70 gene segment. CELL DIFFERENTIATION 1988; 24:97-104. [PMID: 3208287 DOI: 10.1016/0045-6039(88)90061-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Three clones containing Paracentrotus lividus sea urchin DNA sequences which cross-hybridize to Drosophila heat shock protein (hsp) 70 gene were isolated. The sequence arrangements in the three cloned DNA inserts were compared by restriction and cross-hybridization analysis. The results showed that they contain four different genes related to one Drosophila hsp 70 gene. One of these genes was subcloned, and two of the isolated fragments were shown to hybridize to genomic DNA and to RNA from heat-treated sea urchin embryo.
Collapse
Affiliation(s)
- G Sconzo
- Dipartimento di Biologia Cellulare e dello Sviluppo, CNR, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
The virtue of Ff vectors goes beyond the fact that they deliver a single strand in a convenient package for sequencing and oligonucleotide-directed mutagenesis. Of all vectors in common use they are the easiest to propagate and process. Their genomes can be easily manipulated, and the knowledge acquired over a quarter century of basic research makes their behavior reasonably predictable. For this reason I have emphasized the general properties of Ff phage in this review and dealt at some length with applications that are still not fully developed, I hope this review will inspire readers to continue the tradition of imaginative exploitation of this unique class of viruses.
Collapse
|
14
|
Blumer KJ, Ivey MR, Steege DA. Translational control of phage f1 gene expression by differential activities of the gene V, VII, IX and VIII initiation sites. J Mol Biol 1987; 197:439-51. [PMID: 3441007 DOI: 10.1016/0022-2836(87)90557-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phage-specific transcription and subsequent RNA processing in Escherichia coli infected with the filamentous phage (f1, M13, fd) generate a pool of abundant and relatively long-lived phage mRNA species encoding the four adjacent genes V, VII, IX and VIII. Yet the products of gene V and gene VIII are synthesized at much higher levels than the gene VII and gene IX proteins. To ask if the translational initiation sites heading these genes show corresponding differences in activity and/or functional properties, we have purified a number of the phage mRNAs from cells infected with f1 and examined them in in vitro initiation reactions. The ribosome binding patterns obtained for the phage mRNA species and for smaller defined RNA fragments containing selected initiator regions reveal a large range in apparent ribosome binding strengths. The gene V and gene VIII sites are recognized efficiently in each mRNA species in which they are present. Gene IX site activity appears to be limited by local mRNA structure: the site has undetectable or low ribosome binding activity in all of the phage mRNA species, but is at least tenfold more active if the RNA sequences required to form a potential hairpin stem-and-loop 15 nucleotides upstream from the initiator AUG have been removed. The gene VII site shows no evidence of interaction with ribosomes in any phage mRNA or RNA fragment tested. The same striking differences in initiation activity were observed in vivo by cloning small f1 DNA fragments containing gene V or gene VII initiation site sequences to drive beta-galactosidase synthesis. High levels of a gene V-beta-galactosidase fusion protein are initiated at the V site, but no detectable synthesis occurs from the VII site. If the VII site is preceded by all of the information encoding the upstream gene V, however, modest amounts of a fusion protein initiated at the VII site are produced. The overall results, in accord with the observed yields of proteins in the phage-infected cell, provide strong evidence that the properties of these translational initiation sites determine in a significant way the differential expression of phage f1 genes V, VII, IX and VIII.
Collapse
Affiliation(s)
- K J Blumer
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|
15
|
|
16
|
Horabin JI, Webster RE. Morphogenesis of f1 filamentous bacteriophage. Increased expression of gene I inhibits bacterial growth. J Mol Biol 1986; 188:403-13. [PMID: 3525845 DOI: 10.1016/0022-2836(86)90164-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have cloned the gene I sequence of the filamentous bacteriophage f1 downstream from the lambda leftward promoter on a plasmid that also contains the temperature-sensitive lambda repressor, cI857. Temperature induction of gene I protein (pI) resulted in rapid cessation of growth. This inhibition appears to involve a rapid decrease in synthesis of host protein and RNA. The ability of pI to cause this inhibition is not dependent on thioredoxin, a host factor that is necessary for phage morphogenesis and has been shown by genetic data to interact with pI. The inhibition does not appear to be mediated by the amino half of the protein, as induction of an identical plasmid construction of an amber mutant positioned two-thirds along gene I, does not affect cell growth. Analysis of the transcription products from the cloned gene I confirmed previous suggestions that a transcription terminator exists in the amino-terminal portion of the gene. In addition, there is no detectable promoter activity in the 152 bases immediately upstream from the gene. These data and the inability to overproduce pI argue for down-regulation of pI production. Radioactive labeling of proteins in maxi-cells and normal Escherichia coli cells identifies pI as a protein of about 39,000 Mr that partitions with the cell envelope. Pulse-chase experiments suggest that pI is not processed to any appreciable extent.
Collapse
|
17
|
Fulford W, Russel M, Model P. Aspects of the growth and regulation of the filamentous phages. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1986; 33:141-68. [PMID: 3541041 DOI: 10.1016/s0079-6603(08)60022-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
|
19
|
La Farina M, Vitale M, Enea V. Transcription in bacteriophage f1-infected Escherichia coli: RNA synthesized on DNA of deletion mutant PII shows the existence of a two-site terminator. MOLECULAR & GENERAL GENETICS : MGG 1984; 195:411-7. [PMID: 6590942 DOI: 10.1007/bf00341441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two different transcripts are synthesized on the DNA of deletion mutant PII of bacteriophage f1 in E. coli cells infected with this miniphage. Both RNA species appear to be primary transcripts and differ by about 100 nucleotides at their 3'OH end. Mapping of these molecules on the miniphage genome suggests that a two-site terminator is active at the end of the I region of transcription of bacteriophage f1.
Collapse
|
20
|
La Farina M, Vitale M. Rho-dependence of the terminator active at the end of the I region of transcription of bacteriophage f1. MOLECULAR & GENERAL GENETICS : MGG 1984; 195:5-9. [PMID: 6092864 DOI: 10.1007/bf00332715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Infection of rho- Escherichia coli cells with deletion mutant PII of bacteriophage f1 results in a miniphage RNA population composed of transcripts longer than those synthesized in the infection of rho+ cells. This indicates a Rho dependence of the terminator active at the end of the I region of transcription of bacteriophage f1. An estimate of the length of a transcript, which represents a good fraction of the RNA that passes beyond the terminator, indicates that the hairpin structure where synthesis of complementary strand DNA initiates also acts as a fairly efficient Rho-independent terminator.
Collapse
|
21
|
Smits MA, Jansen J, Konings RN, Schoenmakers JG. Initiation and termination signals for transcription in bacteriophage M13. Nucleic Acids Res 1984; 12:4071-81. [PMID: 6328409 PMCID: PMC318817 DOI: 10.1093/nar/12.10.4071] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Transcription of the infrequently expressed phage M13 genome domain, comprising genes III, VI, I and IV, has been studied in detail by hybridization and S1-nuclease mapping studies. The contiguous genes III and VI are transcribed via an 1800 nucleotide-long RNA molecule that is initiated at a promoter which overlaps with the Rho-independent termination signal between genes III and VIII. Its synthesis is terminated at a Rho-dependent terminator in the proximal part of gene I. Transcription of gene I is not mediated by an independent promoter but most probably by read-through of RNA-polymerase through this terminator. Transcription of gene IV is accomplished by synthesis of four distinct RNAs of about 1500 to 1680 nucleotides long which are initiated at a promoter located immediately in front of gene IV. Termination of these transcripts is generated at least four different sites located in tandem within the intergenic region between genes IV and II.
Collapse
|
22
|
Abstract
The gene V protein of the filamentous bacteriophages fl, fd and M13, and the gene 32 protein of bacteriophage T4 share the property of binding strongly and co-operatively to single-stranded nucleic acids, especially DNA. Moreover, both are capable of repressing the translation of specific mRNAs (gene 32 protein its own, and gene V protein that of the filamentous phage gene II), both in vivo and in vitro. If the mechanism of repression by either of these proteins were based solely on its ability to bind single strands co-operatively, then the other would be expected to mimic or interfere with its effect in vitro. We have found no such mimicry or interference, even at protein concentrations high enough to have substantial non-specific effects on translation. This suggests that the sites of repression on the mRNAs must offer something other than simple "unstructuredness" for binding and repression to occur.
Collapse
|
23
|
Blumer KJ, Steege DA. mRNA processing in Escherichia coli: an activity encoded by the host processes bacteriophage f1 mRNAs. Nucleic Acids Res 1984; 12:1847-61. [PMID: 6322124 PMCID: PMC318625 DOI: 10.1093/nar/12.4.1847] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To examine the regions of the male-specific filamentous bacteriophage f1 genome that include signals for mRNA processing, the 5' endpoints of the major in vivo phage mRNAs have been located in the f1 DNA sequence by S1 nuclease mapping. The 5' ends of the purified mRNAs and additional phage-specific RNAs transiently visible early after infection occur in clusters of T-rich residues within genes that code for three phage proteins. When a 270-nucleotide region encompassing the 5' endpoints of three processed RNAs is transcribed as part of the bacteriophage lambda N mRNA in uninfected female cells, RNA 5' ends identical to ends of the three f1 RNAs are generated from the lambda-f1 precursor. This finding indicates that the mRNA processing activity is encoded by the bacterial host, and that its recognition sites are present in the local regions near the 5' ends which result from RNA cleavage. Several characteristics of f1 mRNA processing events have implications for the differential regulation of adjacent phage genes constrained in the same transcription unit, and may be representative of similar processing events occurring in the bacterial cell.
Collapse
|
24
|
Abstract
The bacteriophage f1 intergenic region distal to gene IV encodes a rho-dependent transcription termination signal. Terminator function in vivo and in vitro is dependent upon active Escherichia coli rho protein, although the RNA 3' ends detected in vivo differ from those seen in vitro. The minimal sequence required for terminator function in a heterologous plasmid system encompasses approximately 100 nucleotides distal to gene IV, which can be drawn as a large hairpin structure. The in vivo rho-dependent 3' end occurs within this sequence, while the in vitro rho-dependent 3' ends occur just distal to it. In vivo in a rho mutant host, f1 transcripts pass through the rho-dependent sites and stop within a sequence of high potential secondary structure near the f1 origin of DNA replication. This sequence alone causes transcription termination in the heterologous plasmid system in vivo. In vitro in the absence of rho protein, transcription does not terminate within this sequence. The RNA 3' ends detected in these studies do not occur within A + T-rich sequences.
Collapse
|
25
|
La Farina M. Transcription in bacteriophage f1-infected Escherichia coli: very large RNA species are synthesized on the phage DNA. MOLECULAR & GENERAL GENETICS : MGG 1983; 191:22-5. [PMID: 6350826 DOI: 10.1007/bf00330884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fractionation of pulse-labeled RNA extracted from E. coli cells infected with phage f1 and hybridization of this RNA to f1 DNA reveals that very large species are synthesized on the phage genome. Hybridization of the RNA to specific fragments of f1 DNA shows that, in the infected cell, at least one mRNA is present into which the sequences of genes III, VI, and I are all transcribed together. This result fully explains the polar effect shown by gene III mutants on the expression of genes VI and I (Pratt et al. 1966).
Collapse
|