1
|
Lundwall Å. Old genes and new genes: The evolution of the kallikrein locus. Thromb Haemost 2017; 110:469-75. [DOI: 10.1160/th12-11-0851] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/28/2013] [Indexed: 01/25/2023]
Abstract
SummaryThe human kallikrein locus consists of KLK1, the gene of major tissue kallikrein, and 14 genes of kallikrein-related peptidases (KLKs) located in tandem on chromosome 19q13.3-13.4. In this review, based on information retrieved from the literature or extracted from genome databases, it is hypothesised that the kallikrein locus is unique to mammals. The majority of genes are highly conserved, as demonstrated by the identification of 11 KLK genes in the opossum, a metatherian species. In contrast, a sublocus, encompassing KLK1-4, has gone through major transformations that have generated new genes, which in most cases are closely related to KLK1. In the primate lineage, this process created KLK3, the gene of the prostate cancer marker, prostate-specific antigen (PSA), whereas in the murine lineage it gave rise to 13 genes unique to the mouse and nine unique to the rat. The KLK proteases are effector molecules that emerged early in mammalian evolution and their importance in skin homeostasis and male reproductive function is undisputed and there are also accumulating evidence for a role of KLK proteases in the development of the brain. It is speculated that the KLK gene family arose as part of the process that generated distinguishing mammalian features, like skin with hair and sweat glands, and specialised anatomical attributes of the brain and the reproductive tract.
Collapse
|
2
|
Debela M, Magdolen V, Bode W, Brandstetter H, Goettig P. Structural basis for the Zn2+ inhibition of the zymogen-like kallikrein-related peptidase 10. Biol Chem 2017; 397:1251-1264. [PMID: 27611765 PMCID: PMC5551965 DOI: 10.1515/hsz-2016-0205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/04/2016] [Indexed: 12/18/2022]
Abstract
Although kallikrein-related peptidase 10 (KLK10) is expressed in a variety of human tissues and body fluids, knowledge of its physiological functions is fragmentary. Similarly, the pathophysiology of KLK10 in cancer is not well understood. In some cancer types, a role as tumor suppressor has been suggested, while in others elevated expression is associated with poor patient prognosis. Active human KLK10 exhibits a unique, three residue longer N-terminus with respect to other serine proteases and an extended 99-loop nearly as long as in tissue kallikrein KLK1. Crystal structures of recombinant ligand-free KLK10 and a Zn2+ bound form explain to some extent the mixed trypsin- and chymotrypsin-like substrate specificity. Zn2+-inhibition of KLK10 appears to be based on a unique mechanism, which involves direct binding and blocking of the catalytic triad. Since the disordered N-terminus and several loops adopt a zymogen-like conformation, the active protease conformation is very likely induced by interaction with the substrate, in particular at the S1 subsite and at the unusual Ser193 as part of the oxyanion hole. The KLK10 structures indicate that the N-terminus, the nearby 75-, 148-, and the 99-loops are connected in an allosteric network, which is present in other trypsin-like serine proteases with several variations.
Collapse
Affiliation(s)
| | - Viktor Magdolen
- Klinische Forschergruppe der Frauenklinik, Klinikum rechts der Isar der TU München, Ismaninger Str. 22, D-81675 München, Germany
| | - Wolfram Bode
- Max-Planck-Institut für Biochemie, Proteinase Research Group, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Hans Brandstetter
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, A-5020 Salzburg, Austria
| | | |
Collapse
|
3
|
Dalal S, Mhashal A, Kadoo N, Gaikwad SM. Functional stability and structural transitions of Kallikrein: spectroscopic and molecular dynamics studies. J Biomol Struct Dyn 2016; 35:330-342. [DOI: 10.1080/07391102.2016.1138884] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sayli Dalal
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Anil Mhashal
- Division of Physical Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Narendra Kadoo
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sushama M. Gaikwad
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
4
|
Guo S, Skala W, Magdolen V, Briza P, Biniossek ML, Schilling O, Kellermann J, Brandstetter H, Goettig P. A Single Glycan at the 99-Loop of Human Kallikrein-related Peptidase 2 Regulates Activation and Enzymatic Activity. J Biol Chem 2015; 291:593-604. [PMID: 26582203 PMCID: PMC4705380 DOI: 10.1074/jbc.m115.691097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 01/20/2023] Open
Abstract
Human kallikrein-related peptidase 2 (KLK2) is a key serine protease in semen liquefaction and prostate cancer together with KLK3/prostate-specific antigen. In order to decipher the function of its potential N-glycosylation site, we produced pro-KLK2 in Leishmania tarentolae cells and compared it with its non-glycosylated counterpart from Escherichia coli expression. Mass spectrometry revealed that Asn-95 carries a core glycan, consisting of two GlcNAc and three hexoses. Autocatalytic activation was retarded in glyco-pro-KLK2, whereas the activated glyco-form exhibited an increased proteolytic resistance. The specificity patterns obtained by the PICS (proteomic identification of protease cleavage sites) method are similar for both KLK2 variants, with a major preference for P1-Arg. However, glycosylation changes the enzymatic activity of KLK2 in a drastically substrate-dependent manner. Although glyco-KLK2 has a considerably lower catalytic efficiency than glycan-free KLK2 toward peptidic substrates with P2-Phe, the situation was reverted toward protein substrates, such as glyco-pro-KLK2 itself. These findings can be rationalized by the glycan-carrying 99-loop that prefers to cover the active site like a lid. By contrast, the non-glycosylated 99-loop seems to favor a wide open conformation, which mostly increases the apparent affinity for the substrates (i.e. by a reduction of Km). Also, the cleavage pattern and kinetics in autolytic inactivation of both KLK2 variants can be explained by a shift of the target sites due to the presence of the glycan. These striking effects of glycosylation pave the way to a deeper understanding of kallikrein-related peptidase biology and pathology.
Collapse
Affiliation(s)
- Shihui Guo
- From the Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Wolfgang Skala
- From the Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Viktor Magdolen
- the Klinische Forschergruppe der Frauenklinik, Klinikum Rechts der Isar der TU München, 81675 Munich, Germany
| | - Peter Briza
- From the Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | | | - Oliver Schilling
- the Institute of Molecular Medicine and Cell Research and BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany, the German Cancer Consortium (DKTK), 69120 Heidelberg, Germany, the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany, and
| | - Josef Kellermann
- the Max-Planck-Institute for Biochemistry, 82152 Martinsried, Germany
| | - Hans Brandstetter
- From the Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Peter Goettig
- From the Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria,
| |
Collapse
|
5
|
Skala W, Utzschneider DT, Magdolen V, Debela M, Guo S, Craik CS, Brandstetter H, Goettig P. Structure-function analyses of human kallikrein-related peptidase 2 establish the 99-loop as master regulator of activity. J Biol Chem 2014; 289:34267-83. [PMID: 25326387 PMCID: PMC4256358 DOI: 10.1074/jbc.m114.598201] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Human kallikrein-related peptidase 2 (KLK2) is a tryptic serine protease predominantly expressed in prostatic tissue and secreted into prostatic fluid, a major component of seminal fluid. Most likely it activates and complements chymotryptic KLK3 (prostate-specific antigen) in cleaving seminal clotting proteins, resulting in sperm liquefaction. KLK2 belongs to the “classical” KLKs 1–3, which share an extended 99- or kallikrein loop near their non-primed substrate binding site. Here, we report the 1.9 Å crystal structures of two KLK2-small molecule inhibitor complexes. In both structures discontinuous electron density for the 99-loop indicates that this loop is largely disordered. We provide evidence that the 99-loop is responsible for two biochemical peculiarities of KLK2, i.e. reversible inhibition by micromolar Zn2+ concentrations and permanent inactivation by autocatalytic cleavage. Indeed, several 99-loop mutants of KLK2 displayed an altered susceptibility to Zn2+, which located the Zn2+ binding site at the 99-loop/active site interface. In addition, we identified an autolysis site between residues 95e and 95f in the 99-loop, whose elimination prevented the mature enzyme from limited autolysis and irreversible inactivation. An exhaustive comparison of KLK2 with related structures revealed that in the KLK family the 99-, 148-, and 220-loop exist in open and closed conformations, allowing or preventing substrate access, which extends the concept of conformational selection in trypsin-related proteases. Taken together, our novel biochemical and structural data on KLK2 identify its 99-loop as a key player in activity regulation.
Collapse
Affiliation(s)
- Wolfgang Skala
- From the Division of Structural Biology, Department of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria
| | - Daniel T Utzschneider
- Klinische Forschergruppe der Frauenklinik, Klinikum rechts der Isar der TU München, D-81675 Munich, Germany
| | - Viktor Magdolen
- Klinische Forschergruppe der Frauenklinik, Klinikum rechts der Isar der TU München, D-81675 Munich, Germany
| | - Mekdes Debela
- Max-Planck-Institut for Biochemistry, Proteinase Research Group, D-82152 Martinsried, Germany, and
| | - Shihui Guo
- From the Division of Structural Biology, Department of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Hans Brandstetter
- From the Division of Structural Biology, Department of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria
| | - Peter Goettig
- From the Division of Structural Biology, Department of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria,
| |
Collapse
|
6
|
Cai W, Naimuddin M, Inagaki H, Kameyama K, Ishida N, Kubo T. Directed evolution of three-finger toxin to produce serine protease inhibitors. J Recept Signal Transduct Res 2013; 34:154-61. [PMID: 24308378 DOI: 10.3109/10799893.2013.865747] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Directed evolution is a very popular strategy for improving biophysical properties and even for generating proteins with novel functions. Recent advances in combinatorial protein engineering mean it is now possible to develop protein scaffolds that could substitute for whole antibody-associated properties as emerging therapeutic proteins. In particular, disulfide-rich proteins are attractive templates for directed evolution in the search for novel molecules because they can regulate the activities of receptors, enzymes, and other molecules. Previously, we demonstrated that functional regulatory molecules against interleukin-6 receptor (IL-6R) could be obtained by directed evolution of the three-finger toxin (3F) scaffold. In the present study, trypsin was selected as a target for directed evolution to further explore the potential use of the 3F cDNA display library. After seven rounds of selection, the DNA sequences converged. The recombinant proteins produced by the selected candidates had inhibitory activity against trypsin (Ki of 33-450 nM). Three of the six groups had Ki values that were comparable to bovine pancreatic trypsin inhibitor and soybean trypsin inhibitor. Two of the candidates also had inhibitory effects against chymotrypsin and kallikrein. This study suggests that 3F protein is suitable for the preparation of high-diversity libraries that can be utilized to obtain protease inhibitors. In addition to our previous successful targeting of IL-6R, the technique developed in our studies may have wide applications in the generation of regulatory molecules for targets of interest, such as receptors, enzymes for research, diagnostic applications, and therapeutic uses.
Collapse
Affiliation(s)
- Weiyan Cai
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba, Ibaraki , Japan
| | | | | | | | | | | |
Collapse
|
7
|
Lawrence MG, Lai J, Clements JA. Kallikreins on steroids: structure, function, and hormonal regulation of prostate-specific antigen and the extended kallikrein locus. Endocr Rev 2010; 31:407-46. [PMID: 20103546 DOI: 10.1210/er.2009-0034] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The 15 members of the kallikrein-related serine peptidase (KLK) family have diverse tissue-specific expression profiles and putative proteolytic functions. The kallikrein family is also emerging as a rich source of disease biomarkers with KLK3, commonly known as prostate-specific antigen, being the current serum biomarker for prostate cancer. The kallikrein locus is also notable because it is extraordinarily responsive to steroids and other hormones. Indeed, at least 14 functional hormone response elements have been identified in the kallikrein locus. A more comprehensive understanding of the transcriptional regulation of kallikreins may help the field make more informed hypotheses about the physiological functions of kallikreins and their effectiveness as biomarkers. In this review, we describe the organization of the kallikrein locus and the structure of kallikrein genes and proteins. We also focus on the transcriptional regulation of kallikreins by androgens, progestins, glucocorticoids, mineralocorticoids, estrogens, and other hormones in animal models and human prostate, breast, and reproductive tract tissues. The interaction of the androgen receptor with androgen response elements in the promoter and enhancer of KLK2 and KLK3 is also summarized in detail. There is evidence that all kallikreins are regulated by multiple nuclear receptors. Yet, apart from KLK2 and KLK3, it is not clear whether all kallikreins are direct transcriptional targets. Therefore, we argue that gaining more detailed information about the mechanisms that regulate kallikrein expression should be a priority of future studies and that the kallikrein locus will continue to be an important model in the era of genome-wide analyses.
Collapse
Affiliation(s)
- Mitchell G Lawrence
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | | | | |
Collapse
|
8
|
Goettig P, Magdolen V, Brandstetter H. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie 2010; 92:1546-67. [PMID: 20615447 PMCID: PMC3014083 DOI: 10.1016/j.biochi.2010.06.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/29/2010] [Indexed: 01/21/2023]
Abstract
Including the true tissue kallikrein KLK1, kallikrein-related peptidases (KLKs) represent a family of fifteen mammalian serine proteases. While the physiological roles of several KLKs have been at least partially elucidated, their activation and regulation remain largely unclear. This obscurity may be related to the fact that a given KLK fulfills many different tasks in diverse fetal and adult tissues, and consequently, the timescale of some of their physiological actions varies significantly. To date, a variety of endogenous inhibitors that target distinct KLKs have been identified. Among them are the attenuating Zn(2+) ions, active site-directed proteinaceous inhibitors, such as serpins and the Kazal-type inhibitors, or the huge, unspecific compartment forming α(2)-macroglobulin. Failure of these inhibitory systems can lead to certain pathophysiological conditions. One of the most prominent examples is the Netherton syndrome, which is caused by dysfunctional domains of the Kazal-type inhibitor LEKTI-1 which fail to appropriately regulate KLKs in the skin. Small synthetic inhibitory compounds and natural polypeptidic exogenous inhibitors have been widely employed to characterize the activity and substrate specificity of KLKs and to further investigate their structures and biophysical properties. Overall, this knowledge leads not only to a better understanding of the physiological tasks of KLKs, but is also a strong fundament for the synthesis of small compound drugs and engineered biomolecules for pharmaceutical approaches. In several types of cancer, KLKs have been found to be overexpressed, which makes them clinically relevant biomarkers for prognosis and monitoring. Thus, down regulation of excessive KLK activity in cancer and in skin diseases by small inhibitor compounds may represent attractive therapeutical approaches.
Collapse
Affiliation(s)
- Peter Goettig
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria.
| | | | | |
Collapse
|
9
|
Lilja H. Structure and function of prostatic- and seminal vesicle-secreted proteins involved in the gelation and liquefaction of human semen. Scandinavian Journal of Clinical and Laboratory Investigation 2010. [DOI: 10.1080/00365518809168290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Aminetzach YT, Srouji JR, Kong CY, Hoekstra HE. Convergent evolution of novel protein function in shrew and lizard venom. Curr Biol 2009; 19:1925-31. [PMID: 19879144 DOI: 10.1016/j.cub.2009.09.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/08/2009] [Accepted: 09/14/2009] [Indexed: 11/26/2022]
Abstract
How do proteins evolve novel functions? To address this question, we are studying the evolution of a mammalian toxin, the serine protease BLTX [1], from the salivary glands of the North American shrew Blarina brevicauda. Here, we examine the molecular changes responsible for promoting BLTX toxicity. First, we show that regulatory loops surrounding the BLTX active site have evolved adaptively via acquisition of small insertions and subsequent accelerated sequence evolution. Second, these mutations introduce a novel chemical environment into the catalytic cleft of BLTX. Third, molecular-dynamic simulations show that the observed changes create a novel chemical and physical topology consistent with increased enzyme catalysis. Finally, we show that a toxic serine protease from the Mexican beaded lizard (GTX) [2] has evolved convergently through almost identical functional changes. Together, these results suggest that the evolution of toxicity might be predictable-arising via adaptive structural modification of analogous labile regulatory loops of an ancestral serine protease-and thus might aid in the identification of other toxic proteins.
Collapse
Affiliation(s)
- Yael T Aminetzach
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
11
|
Prostate specific antigen: One out of five disulfide bridges determines inactivation by reduction. Biochem Biophys Res Commun 2009; 379:1101-6. [DOI: 10.1016/j.bbrc.2009.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 01/06/2009] [Indexed: 11/18/2022]
|
12
|
Clements JA. Reflections on the tissue kallikrein and kallikrein-related peptidase family – from mice to men – what have we learnt in the last two decades? Biol Chem 2008; 389:1447-54. [DOI: 10.1515/bc.2008.174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractThe genes encoding the kininogenase, glandular tissue kallikrein, in rodents and man were first described in the mid-1980s. Remarkably, they appeared to be part of a much larger highly conserved family of genes (GK) in rodents, but only had two paralogs in man. This discrepancy was not rectified until the late 1990s/2000 with the identification of a cluster of 12 more kallikrein-related (KLK) genes in the human 19q13 locus and the subsequent identification of their rodent homologs. Interestingly, there are remarkable similarities in expression patterns, hormonal regulation and functional attributes of the old (GK) and new (KLK) families which underscore the evolutionary conservation across these loci and species. This historical perspective focuses on the lessons learned from earlier studies on the rodentGKgene families and the striking similarities of some attributes, yet uniqueness, of others. These earlier findings have all contributed to the current status of the KLK serine peptidase-encoding gene family as an exciting source of new biomarkers and therapeutic targets.
Collapse
|
13
|
Clements JA, Willemsen NM, Myers SA, Dong Y. The Tissue Kallikrein Family of Serine Proteases: Functional Roles in Human Disease and Potential as Clinical Biomarkers. Crit Rev Clin Lab Sci 2008; 41:265-312. [PMID: 15307634 DOI: 10.1080/10408360490471931] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate specific antigen (PSA) or human kallikrein 3 (hK3) has long been an effective biomarker for prostate cancer. Now, other members of the tissue kallikrein (KLK) gene family are fast becoming of clinical interest due to their potential as prognostic biomarkers. particularly for hormone dependent cancers. The tissue kallikreins are serine proteases that are encoded by highly conserved multi-gene family clusters in rodents and humans. The rat and mouse loci contain 10 and 25 functional genes, respectively, while the human locus at 19q 13.4 contains 15 genes. The structural organization and size of these genes are similar across species; all genes have 5 coding exons that encode a prepro-enzyme. Although the physiological activators of these zymogens have not been described, in vitro biochemical studies show that some kallikreins can auto-activate and others can activate each other, suggesting that the kallikreins may participate in an enzymatic cascade similar to that of the coagulation cascade. These genes are expressed, to varying degrees, in a wide range of tissues suggesting a functional involvement in a diverse range of physiological and pathophysiological processes. These include roles in normal skin desquamation and psoriatic lesions, tooth development, neural plasticity, and Alzheimer's disease (AD). Of particular interest is the expression of many kallikreins in prostate, ovarian, and breast cancers where they are emerging as useful prognostic indicators of disease progression.
Collapse
Affiliation(s)
- Judith A Clements
- Hormone Dependent Cancer Program, Cluster for Molecular Biotechnology, School of Life Sciences & Science Research Centre, Queensland University of Technology, Brisbane, Australia.
| | | | | | | |
Collapse
|
14
|
Hehemann JH, Redecke L, Murugaiyan J, von Bergen M, Betzel C, Saborowski R. Autoproteolytic stability of a trypsin from the marine crab Cancer pagurus. Biochem Biophys Res Commun 2008; 370:566-71. [DOI: 10.1016/j.bbrc.2008.03.128] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 03/23/2008] [Indexed: 11/29/2022]
|
15
|
May A, Zacharias M. Energy minimization in low‐frequency normal modes to efficiently allow for global flexibility during systematic protein–protein docking. Proteins 2008; 70:794-809. [PMID: 17729269 DOI: 10.1002/prot.21579] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein-protein association can frequently involve significant backbone conformational changes of the protein partners. A computationally rapid method has been developed that allows to approximately account for global conformational changes during systematic protein-protein docking starting from many thousands of start configurations. The approach employs precalculated collective degrees of freedom as additional variables during protein-protein docking minimization. The global collective degrees of freedom are obtained from normal mode analysis using a Gaussian network model for the protein. Systematic docking searches were performed on 10 test systems that differed in the degree of conformational change associated with complex formation and in the degree of overlap between observed conformational changes and precalculated flexible degrees of freedom. The results indicate that in case of docking searches that minimize the influence of local side chain conformational changes inclusion of global flexibility can significantly improve the agreement of the near-native docking solutions with the corresponding experimental structures. For docking of unbound protein partners in several cases an improved ranking of near native docking solutions was observed. This was achieved at a very modest ( approximately 2-fold) increase of computational demands compared to rigid docking. For several test cases the number of docking solutions close to experiment was also significantly enhanced upon inclusion of soft collective degrees of freedom. This result indicates that inclusion of global flexibility can facilitate in silico protein-protein association such that a greater number of different start configurations results in favorable complex formation.
Collapse
Affiliation(s)
- Andreas May
- School of Engineering and Science, Jacobs University Bremen, D-28759 Bremen, Germany
| | | |
Collapse
|
16
|
Debela M, Goettig P, Magdolen V, Huber R, Schechter NM, Bode W. Structural Basis of the Zinc Inhibition of Human Tissue Kallikrein 5. J Mol Biol 2007; 373:1017-31. [PMID: 17881000 DOI: 10.1016/j.jmb.2007.08.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/30/2007] [Accepted: 08/19/2007] [Indexed: 11/22/2022]
Abstract
Human kallikrein 5 (hK5) is a member of the tissue kallikrein family of serine peptidases. It has trypsin-like substrate specificity, is inhibited by metal ions, and is abundantly expressed in human skin, where it is believed to play a central role in desquamation. To further understand the interaction of hK5 with substrates and metal ions, active recombinant hK5 was crystallized in complex with the tripeptidyl aldehyde inhibitor leupeptin, and structures at 2.3 A resolution were obtained with and without Zn2+. While the overall structure and the specificity of S1 pocket for basic side-chains were similar to that of hK4, a closely related family member, both differed in their interaction with Zn2+. Unlike hK4, the 75-loop of hK5 is not structured to bind a Zn2+. Instead, Zn2+ binds adjacent to the active site, becoming coordinated by the imidazole rings of His99 and His96 not present in hK4. This zinc binding is accompanied by a large shift in the backbone conformation of the 99-loop and by large movements of both His side-chains. Modeling studies show that in the absence of bound leupeptin, Zn2+ is likely further coordinated by the imidazolyl side-chain of the catalytic His57 which can, similar to equivalent His57 imidazole groups in the related rat kallikrein proteinase tonin and in an engineered metal-binding rat trypsin, rotate out of its triad position to provide the third co-ordination site of the bound Zn2+, rendering Zn2+-bound hK5 inactive. In solution, this mode of binding likely occurs in the presence of free and substrate saturated hK5, as kinetic analyses of Zn2+ inhibition indicate a non-competitive mechanism. Supporting the His57 re-orientation, Zn2+ does not fully inhibit hK5 hydrolysis of tripeptidyl substrates containing a P2-His residue. The P2 and His57 imidazole groups would lie next to each other in the enzyme-substrate complex, indicating that incomplete inhibition is due to competition between both imidazole groups for Zn2+. The His96-99-57 triad is thus suggested to be responsible for the Zn2+-mediated inhibition of hK5 catalysis.
Collapse
Affiliation(s)
- Mekdes Debela
- Max-Planck-Institut für Biochemie, Proteinase Research Group, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Debela M, Hess P, Magdolen V, Schechter NM, Steiner T, Huber R, Bode W, Goettig P. Chymotryptic specificity determinants in the 1.0 A structure of the zinc-inhibited human tissue kallikrein 7. Proc Natl Acad Sci U S A 2007; 104:16086-91. [PMID: 17909180 PMCID: PMC2042166 DOI: 10.1073/pnas.0707811104] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
hK7 or human stratum corneum chymotryptic enzyme belongs to the human tissue kallikrein (hKs) serine proteinase family and is strongly expressed in the upper layers of the epidermis. It participates in skin desquamation but is also implicated in diverse skin diseases and is a potential biomarker of ovarian cancer. We have solved x-ray structures of recombinant active hK7 at medium and atomic resolution in the presence of the inhibitors succinyl-Ala-Ala-Pro-Phe-chloromethyl ketone and Ala-Ala-Phe-chloromethyl ketone. The most distinguishing features of hK7 are the short 70-80 loop and the unique S1 pocket, which prefers P1 Tyr residues, as shown by kinetic data. Similar to several other kallikreins, the enzyme activity is inhibited by Zn(2+) and Cu(2+) at low micromolar concentrations. Biochemical analyses of the mutants H99A and H41F confirm that only the metal-binding site at His(99) close to the catalytic triad accounts for the noncompetitive Zn(2+) inhibition type. Additionally, hK7 exhibits large positively charged surface patches, representing putative exosites for prime side substrate recognition.
Collapse
Affiliation(s)
- Mekdes Debela
- Max-Planck-Institut für Biochemie, Proteinase Research Group, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Petra Hess
- Max-Planck-Institut für Biochemie, Strukturforschung, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Viktor Magdolen
- Klinische Forschergruppe der Frauenklinik der TU München, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Norman M. Schechter
- Department of Dermatology, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104; and
| | - Thomas Steiner
- Max-Planck-Institut für Biochemie, Strukturforschung, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Robert Huber
- Max-Planck-Institut für Biochemie, Strukturforschung, Am Klopferspitz 18, 82152 Martinsried, Germany
- School of Biosciences, Cardiff University, Cardiff CF10 3TL, United Kingdom
- To whom correspondence may be addressed. E-mail: or
| | - Wolfram Bode
- Max-Planck-Institut für Biochemie, Proteinase Research Group, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Peter Goettig
- Max-Planck-Institut für Biochemie, Proteinase Research Group, Am Klopferspitz 18, 82152 Martinsried, Germany
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
18
|
Piao S, Kim S, Kim JH, Park JW, Lee BL, Ha NC. Crystal Structure of the Serine Protease Domain of Prophenoloxidase Activating Factor-I. J Biol Chem 2007; 282:10783-91. [PMID: 17287215 DOI: 10.1074/jbc.m611556200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A family of serine proteases (SPs) mediates the proteolytic cascades of embryonic development and immune response in invertebrates. These proteases, called easter-type SPs, consist of clip and chymotrypsin-like SP domains. The SP domain of easter-type proteases differs from those of typical SPs in its primary structure. Herein, we report the first crystal structure of the SP domain of easter-type proteases, presented as that of prophenoloxidase activating factor (PPAF)-I in zymogen form. This structure reveals several important structural features including a bound calcium ion, an additional loop with a unique disulfide linkage, a canyon-like deep active site, and an exposed activation loop. We subsequently show the role of the bound calcium and the proteolytic susceptibility of the activation loop, which occurs in a clip domain-independent manner. Based on biochemical study in the presence of heparin, we suggest that PPAF-III, highly homologous to PPAF-I, contains a surface patch that is responsible for enhancing the catalytic activity through interaction with a nonsubstrate region of a target protein. These results provide insights into an activation mechanism of easter-type proteases in proteolytic cascades, in comparison with the well studied blood coagulation enzymes in mammals.
Collapse
Affiliation(s)
- Shunfu Piao
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Korea
| | | | | | | | | | | |
Collapse
|
19
|
Gozzo AJ, Nunes VA, Cruz-Silva I, Carmona AK, Nader HB, Faljoni-Alario A, Sampaio MU, Araújo MS. Heparin modulation of human plasma kallikrein on different substrates and inhibitors. Biol Chem 2006; 387:1129-38. [PMID: 16895484 DOI: 10.1515/bc.2006.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The interplay of different proteases and glycosaminoglycans is able to modulate the activity of the enzymes and to affect their structures. Human plasma kallikrein (huPK) is a proteolytic enzyme involved in intrinsic blood clotting, the kallikrein-kinin system and fibrinolysis. We investigated the effect of heparin on the action, inhibition and secondary structure of huPK. The catalytic efficiency for the hydrolysis of substrates by huPK was determined by Michaelis-Menten kinetic plots: 5.12x10(4) M-1 s-1 for acetyl-Phe-Arg-p-nitroanilide, 1.40x10(5) M-1 s-1 for H-D-Pro-Phe-Arg-p-nitroanilide, 2.25x10(4) M-1 s-1 for Abz-Gly-Phe-Ser-Pro-Phe-Arg-Ser-Ser-Arg-Gln-EDDnp, 4.24x10(2)M-1 s-1 for factor XII and 5.58x10(2) M-1 s-1 for plasminogen. Heparin reduced the hydrolysis of synthetic substrates (by 2.0-fold), but enhanced factor XII and plasminogen hydrolysis (7.7- and 1.4-fold, respectively). The second-order rate constants for inhibition of huPK by antithrombin and C1-inhibitor were 2.40x10(2) M-1 s-1 and 1.70x10(4) M-1 s-1, respectively. Heparin improved the inhibition of huPK by these inhibitors (3.4- and 1.4-fold). Despite the fact that huPK was able to bind to a heparin-Sepharose matrix, its secondary structure was not modified by heparin, as monitored by circular dichroism. These actions may have a function in the control or maintenance of some pathophysiological processes in which huPK participates.
Collapse
Affiliation(s)
- Andrezza J Gozzo
- Departamento de Bioquímica, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Debela M, Magdolen V, Schechter N, Valachova M, Lottspeich F, Craik CS, Choe Y, Bode W, Goettig P. Specificity Profiling of Seven Human Tissue Kallikreins Reveals Individual Subsite Preferences. J Biol Chem 2006; 281:25678-88. [PMID: 16740631 DOI: 10.1074/jbc.m602372200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human tissue kallikreins (hKs) form a family of 15 closely related (chymo)trypsin-like serine proteinases. These tissue kallikreins are expressed in a wide range of tissues including the central nervous system, the salivary gland, and endocrine-regulated tissues, such as prostate, breast, or testis, and may have diverse physiological functions. For several tissue kallikreins, a clear correlation has been established between expression and different types of cancer. For example, the prostate-specific antigen (PSA or hK3) serves as tumor marker and is used to monitor therapy response. Using a novel strategy, we have cloned, expressed in Escherichia coli or in insect cells, refolded, activated, and purified the seven human tissue kallikreins hK3/PSA, hK4, hK5, hK6, hK7, hK10, and hK11. Moreover, we have determined their extended substrate specificity for the nonprime side using a positional scanning combinatorial library of tetrapeptide substrates. hK3/PSA and hK7 exhibited a chymotrypsin-like specificity preferring large hydrophobic or polar residues at the P1 position. In contrast, hK4, hK5, and less stringent hK6 displayed a trypsin-like specificity with strong preference for P1-Arg, whereas hK10 and hK11 showed an ambivalent specificity, accepting both basic and large aliphatic P1 residues. The extended substrate specificity profiles are in good agreement with known substrate cleavage sites but also in accord with experimentally solved (hK4, hK6, and hK7) or modeled structures. The specificity profiles may lead to a better understanding of human tissue kallikrein functions and assist in identifying their physiological protein substrates as well as in designing more selective inhibitors.
Collapse
Affiliation(s)
- Mekdes Debela
- Max-Planck-Institut für Biochemie, Proteinase Research Group, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Debela M, Magdolen V, Grimminger V, Sommerhoff C, Messerschmidt A, Huber R, Friedrich R, Bode W, Goettig P. Crystal structures of human tissue kallikrein 4: activity modulation by a specific zinc binding site. J Mol Biol 2006; 362:1094-107. [PMID: 16950394 DOI: 10.1016/j.jmb.2006.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/29/2006] [Accepted: 08/01/2006] [Indexed: 11/24/2022]
Abstract
Human tissue kallikrein 4 (hK4) belongs to a 15-member family of closely related serine proteinases. hK4 is predominantly expressed in prostate, activates hK3/PSA, and is up-regulated in prostate and ovarian cancer. We have identified active monomers of recombinant hK4 besides inactive oligomers in solution. hK4 crystallised in the presence of zinc, nickel, and cobalt ions in three crystal forms containing cyclic tetramers and octamers. These structures display a novel metal site between His25 and Glu77 that links the 70-80 loop with the N-terminal segment. Micromolar zinc as present in prostatic fluid inhibits the enzymatic activity of hK4 against fluorogenic substrates. In our measurements, wild-type hK4 exhibited a zinc inhibition constant (IC50) of 16 microM including a permanent residual activity, in contrast to the zinc-independent mutants H25A and E77A. Since the Ile16 N terminus of wild-type hK4 becomes more accessible for acetylating agents in the presence of zinc, we propose that zinc affects the hK4 active site via the salt-bridge formed between the N terminus and Asp194 required for a functional active site. hK4 possesses an unusual 99-loop that creates a groove-like acidic S2 subsite. These findings explain the observed specificity of hK4 for the P1 to P4 substrate residues. Moreover, hK4 shows a negatively charged surface patch, which may represent an exosite for prime-side substrate recognition.
Collapse
Affiliation(s)
- Mekdes Debela
- Max-Planck-Institut für Biochemie, Proteinase Research Group, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Marrero A, Mallorquí-Fernández G, Guevara T, García-Castellanos R, Gomis-Rüth FX. Unbound and acylated structures of the MecR1 extracellular antibiotic-sensor domain provide insights into the signal-transduction system that triggers methicillin resistance. J Mol Biol 2006; 361:506-21. [PMID: 16846613 DOI: 10.1016/j.jmb.2006.06.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 06/15/2006] [Accepted: 06/16/2006] [Indexed: 11/25/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains are responsible for most hospital-onset bacterial infections. Lately, they have become a major threat to the community through infections of skin, soft tissue and respiratory tract, and subsequent septicaemia or septic shock. MRSA strains are resistant to most beta-lactam antibiotics (BLAs) as a result of the biosynthesis of a penicillin-binding protein with low affinity for BLAs, called PBP2a, PBP2' or MecA. This response is regulated by the chromosomal mec-divergon, which encodes a signal-transduction system including a transcriptional repressor, MecI, and a sensor/transducer, MecR1, as well as the structural mecA gene. This system is similar to those encoded by bla divergons in S. aureus and Bacillus licheniformis. MecR1 comprises an integral-membrane latent metalloprotease domain facing the cytosol and an extracellular sensor domain. The latter binds BLAs and transmits a signal through the membrane that eventually triggers activation of the metalloprotease moiety, which in turn switches off MecI-induced repression of mecA transcription. The MecR1 sensor domain, MecR1-PBD, reveals a two-domain structure of alpha/beta-type fold reminiscent of penicillin-binding proteins and beta-lactamases, and a catalytic serine residue as the ultimate cause for BLA-binding. Covalent complexes with benzylpenicillin and oxacillin provide evidence that serine acylation does not entail significant structural changes, thus supporting the hypothesis that additional extracellular segments of MecR1 are involved in signal transmission. The chemical nature of the residues shaping the active-site cleft favours stabilisation of the acyl enzyme complexes in MecR1-PBD, in contrast to the closely related OXA beta-lactamases, where the cleft is more likely to promote subsequent hydrolysis. The present structural data provide insights into the mec-encoded BLA-response mechanism and an explanation for kinetic differences in signal transmission with the related bla-encoded systems.
Collapse
Affiliation(s)
- Aniebrys Marrero
- Institut de Biologia Molecular de Barcelona, C.I.D.-C.S.I.C. C/Jordi Girona, 18-26 08034 Barcelona, Spain
| | | | | | | | | |
Collapse
|
23
|
Laxmikanthan G, Blaber SI, Bernett MJ, Scarisbrick IA, Juliano MA, Blaber M. 1.70 A X-ray structure of human apo kallikrein 1: structural changes upon peptide inhibitor/substrate binding. Proteins 2006; 58:802-14. [PMID: 15651049 DOI: 10.1002/prot.20368] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human kallikreins are serine proteases that comprise a recently identified large and closely related 15-member family. The kallikreins include both regulatory- and degradative-type proteases, impacting a variety of physiological processes including regulation of blood pressure, neuronal health, and the inflammatory response. While the function of the majority of the kallikreins remains to be elucidated, two members are useful biomarkers for prostate cancer and several others are potentially useful biomarkers for breast cancer, Alzheimer's, and Parkinson's disease. Human tissue kallikrein (human K1) is the best functionally characterized member of this family, and is known to play an important role in blood pressure regulation. As part of this function, human K1 exhibits unique dual-substrate specificity in hydrolyzing low molecular weight kininogen between both Arg-Ser and Met-Lys sequences. We report the X-ray crystal structure of mature, active recombinant human apo K1 at 1.70 A resolution. The active site exhibits structural features intermediate between that of apo and pro forms of known kallikrein structures. The S2 to S2' pockets demonstrate a variety of conformational changes in comparison to the porcine homolog of K1 in complex with peptide inhibitors, including the displacement of an extensive solvent network. These results indicate that the binding of a peptide substrate contributes to a structural rearrangement of the active-site Ser 195 resulting in a catalytically competent juxtaposition with the active-site His 57. The solvent networks within the S1 and S1' pockets suggest how the Arg-Ser and Met-Lys dual substrate specificity of human K1 is accommodated.
Collapse
Affiliation(s)
- Gurunathan Laxmikanthan
- Institute of Molecular Biophysics Florida State University, Tallahassee, Florida 32306-3015, USA
| | | | | | | | | | | |
Collapse
|
24
|
Clonis YD. Affinity chromatography matures as bioinformatic and combinatorial tools develop. J Chromatogr A 2006; 1101:1-24. [PMID: 16242704 DOI: 10.1016/j.chroma.2005.09.073] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 09/21/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Affinity chromatography has the reputation of a more expensive and less robust than other types of liquid chromatography. Furthermore, the technique is considered to stand a modest chance of large-scale purification of proteinaceous pharmaceuticals. This perception is changing because of the pressure for quality protein therapeutics, and the realization that higher returns can be expected when ensuring fewer purification steps and increased product recovery. These developments necessitated a rethinking of the protein purification processes and restored the interest for affinity chromatography. This liquid chromatography technique is designed to offer high specificity, being able to safely guide protein manufactures to successfully cope with the aforementioned challenges. Affinity ligands are distinguished into synthetic and biological. These can be generated by rational design or selected from ligand libraries. Synthetic ligands are generated by three methods. The rational method features the functional approach and the structural template approach. The combinatorial method relies on the selection of ligands from a library of synthetic ligands synthesized randomly. The combined method employs both methods, that is, the ligand is selected from an intentionally biased library based on a rationally designed ligand. Biological ligands are selected by employing high-throughput biological techniques, e.g. phage- and ribosome-display for peptide and microprotein ligands, in addition to SELEX for oligonucleotide ligands. Synthetic mimodyes and chimaeric dye-ligands are usually designed by rational approaches and comprise a chloro-triazinlyl scaffold. The latter substituted with various amino acids, carbocyclic, and heterocyclic groups, generates libraries from which synthetic ligands can be selected. A 'lead' compound may help to generating a 'focused' or 'biased' library. This can be designed by various approaches, e.g.: (i) using a natural ligand-protein complex as a template; (ii) applying the principle of complementarity to exposed residues of the protein structure; and (iii) mimicking directly a natural biological recognition interaction. Affinity ligands, based on the peptide structure, can be peptides, peptide-mimetic derivatives (<30 monomers) and microproteins (e.g. 25-200 monomers). Microprotein ligands are selected from biological libraries constructed of variegated protein domains, e.g. minibody, Kunitz, tendamist, cellulose-binding domain, scFv, Cytb562, zinc-finger, SpA-analogue (Z-domain).
Collapse
Affiliation(s)
- Yannis D Clonis
- Laboratory of Enzyme Technology, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece.
| |
Collapse
|
25
|
Ghosh MC, Grass L, Soosaipillai A, Sotiropoulou G, Diamandis EP. Human kallikrein 6 degrades extracellular matrix proteins and may enhance the metastatic potential of tumour cells. Tumour Biol 2005; 25:193-9. [PMID: 15557757 DOI: 10.1159/000081102] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Accepted: 07/07/2004] [Indexed: 11/19/2022] Open
Abstract
Human kallikrein 6 (hK6), a trypsin-like serine protease, is a newly identified member of the kallikrein gene family. Its involvement in inflammatory CNS lesions and in demyelination has been reported. Recent work has suggested that expression of this enzyme is significantly elevated in patients with ovarian cancer. We have identified many tumour cell lines that secrete hK6, but its physiological role is unknown. Here, we try to unveil the role of this kallikrein in the metastasis and invasion of tumour cells. We demonstrate that purified human recombinant hK6 can cleave gelatin in zymography and can efficiently degrade high-molecular-weight extracellular matrix proteins such as fibronectin, laminin, vitronectin and collagen. In Boyden chamber assays, we found that tumour cells treated with a neutralizing hK6 antibody migrate less than control cells. We conclude that hK6 might play a role in the invasion and metastasis of tumour cells and may be a candidate therapeutic target.
Collapse
Affiliation(s)
- Manik C Ghosh
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | | | | | | | | |
Collapse
|
26
|
Zhu Z, Liang Z, Zhang T, Zhu Z, Xu W, Teng M, Niu L. Crystal Structures and Amidolytic Activities of Two Glycosylated Snake Venom Serine Proteinases. J Biol Chem 2005; 280:10524-9. [PMID: 15632114 DOI: 10.1074/jbc.m412900200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We deduced that Agkistrodon actus venom serine proteinases I and II, previously isolated from the venom of A. acutus (Zhu, Z., Gong, P., Teng, M., and Niu, L. (2003) Acta Crystallogr. Sect. D Biol. Crystallogr. 59, 547-550), are encoded by two almost identical genes, with only the single substitution Asp for Asn at residue 62. Amidolytic assays indicated that they possess slightly different enzymatic properties. Crystal structures of A. actus venom serine proteinases I and II were determined at resolution of 2.0 and 2.1 A with the identification of trisaccharide (NAG(301)-FUC(302)-NAG(303)) and monosaccharide (NAG(301)) residues in them, respectively. The substrate binding sites S3 of the two proteinases appear much shallower than that of Trimeresurus stejnegeri venom plasminogen activator despite the overall structural similarity. Based on structural analysis, we showed that these Asn(35)-linked oligosaccharides collide spatially with some inhibitors, such as soybean trypsin inhibitor, and would therefore hinder their inhibitory binding. Difference of the carbohydrates in both the proteinases might also lead to their altered catalytic activities.
Collapse
Affiliation(s)
- Zhongliang Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and Key Laboratory of Structural Biology, Chinese Academy of Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, The People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
27
|
Borgoño CA, Michael IP, Diamandis EP. Human Tissue Kallikreins: Physiologic Roles and Applications in Cancer. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.257.2.5] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
Tissue kallikreins are members of the S1 family (clan SA) of trypsin-like serine proteases and are present in at least six mammalian orders. In humans, tissue kallikreins (hK) are encoded by 15 structurally similar, steroid hormone–regulated genes (KLK) that colocalize to chromosome 19q13.4, representing the largest cluster of contiguous protease genes in the entire genome. hKs are widely expressed in diverse tissues and implicated in a range of normal physiologic functions from the regulation of blood pressure and electrolyte balance to tissue remodeling, prohormone processing, neural plasticity, and skin desquamation. Several lines of evidence suggest that hKs may be involved in cascade reactions and that cross-talk may exist with proteases of other catalytic classes. The proteolytic activity of hKs is regulated in several ways including zymogen activation, endogenous inhibitors, such as serpins, and via internal (auto)cleavage leading to inactivation. Dysregulated hK expression is associated with multiple diseases, primarily cancer. As a consequence, many kallikreins, in addition to hK3/PSA, have been identified as promising diagnostic and/or prognostic biomarkers for several cancer types, including ovarian, breast, and prostate. Recent data also suggest that hKs may be causally involved in carcinogenesis, particularly in tumor metastasis and invasion, and, thus, may represent attractive drug targets to consider for therapeutic intervention.
Collapse
Affiliation(s)
- Carla A. Borgoño
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Iacovos P. Michael
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Eleftherios P. Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Nayeem A, Krystek S, Stouch T. An assessment of protein-ligand binding site polarizability. Biopolymers 2003; 70:201-11. [PMID: 14517908 DOI: 10.1002/bip.10434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Electronic polarizability, an important physical property of biomolecules, is currently ignored in most biomolecular calculations. Yet, it is widely believed that polarization could account for a substantial fraction of the total nonbonded energy of a system. This belief is supported by studies of small complexes in vacuum. This perception is driving the development of a new class of polarizable force fields for biomolecular calculations. However, the quantification of this term for protein-ligand complexes has never been attempted. Here we explore the polarizable nature of protein-ligand complexes in order to evaluate the importance of this effect. We introduce two indexes describing the polarizability of protein binding sites. These we apply to a large range of pharmaceutically relevant complexes. We offer a recommendation of particular complexes as test systems with which to determine the effects of polarizability and as test cases with which to test the new generation of force fields. Additionally, we provide a tabulation of the amino acid composition of these binding sites and show that composition can be specific for certain classes of proteins. We also show that the relative abundance of some amino acids is different in binding sites than elsewhere in a protein's structure.
Collapse
Affiliation(s)
- Akbar Nayeem
- Department of Macromolecular Modeling, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08534, USA
| | | | | |
Collapse
|
29
|
Nunes VA, Gozzo AJ, Sampaio MU, Juliano MA, Sampaio CAM, Araujo MS. Mapping of human plasma kallikrein active site by design of peptides based on modifications of a Kazal-type inhibitor reactive site. JOURNAL OF PROTEIN CHEMISTRY 2003; 22:533-41. [PMID: 14703987 DOI: 10.1023/b:jopc.0000005503.20628.4e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human plasma kallikrein (huPK) is a proteinase that participates in several biological processes. Although various inhibitors control its activity, members of the Kazal family have not been identified as huPK inhibitors. In order to map the enzyme active site, we synthesized peptides based on the reactive site (PRILSPV) of a natural Kazal-type inhibitor found in Cayman plasma, which is not an huPK inhibitor. As expected, the leader peptide (Abz-SAPRILSPVQ-EDDnp) was not cleaved by huPK. Modifications to the leader peptide at P'1, P'3 and P'4 positions were made according to the sequence of a phage display-generated recombinant Kazal inhibitor (PYTLKWV) that presented huPK-binding ability. Novel peptides were identified as substrates for huPK and related enzymes. Both porcine pancreatic and human plasma kallikreins cleaved peptides at Arg or Lys bonds, whereas human pancreatic kallikrein cleaved bonds involving Arg or a pair of hydrophobic amino acid residues. Peptide hydrolysis by pancreatic kallikrein was not significantly altered by amino acid replacements. The peptide Abz-SAPRILSWVQ-EDDnp was the best substrate and a competitive inhibitor for huPK, indicating that Trp residue at the P'4 position is important for enzyme action.
Collapse
Affiliation(s)
- V A Nunes
- Department of Biochemistry, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Três de Maio, 100, 04044-020 São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Hink-Schauer C, Estébanez-Perpiñá E, Wilharm E, Fuentes-Prior P, Klinkert W, Bode W, Jenne DE. The 2.2-A crystal structure of human pro-granzyme K reveals a rigid zymogen with unusual features. J Biol Chem 2002; 277:50923-33. [PMID: 12384499 DOI: 10.1074/jbc.m207962200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Granzyme K (GzmK) belongs to a family of trypsin-like serine proteases localized in electron dense cytoplasmic granules of activated natural killer and cytotoxic T-cells. Like the related granzymes A and B, GzmK can trigger DNA fragmentation and is involved in apoptosis. We expressed the Ser(195) --> Ala variant of human pro-GzmK in Escherichia coli, crystallized it, and determined its 2.2-A x-ray crystal structure. Pro-GzmK possesses a surprisingly rigid structure, which is most similar to activated serine proteases, in particular complement factor D, and not their proforms. The N-terminal peptide Met(14)-Ile(17) projects freely into solution and can be readily approached by cathepsin C, the natural convertase of pro-granzymes. The pre-shaped S1 pocket is occupied by the ion paired residues Lys(188B)-Asp(194) and is hence not available for proper substrate binding. The Ser(214)-Cys(220) segment, which normally provides a template for substrate binding, bulges out of the active site and is distorted. With analogy to complement factor D, we suggest that this strand will maintain its non-productive conformation in mature GzmK, mainly due to the unusual residues Gly(215), Glu(219), and Val(94). We hypothesize that GzmK is proteolytically active only toward specific, as yet unidentified substrates, which upon approach transiently induce a functional active-site conformation.
Collapse
Affiliation(s)
- Clara Hink-Schauer
- Department of Neuroimmunology, Max-Planck-Institute of Neurobiology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18a, Planegg-Martinsried D-82152, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Carvalho AL, Sanz L, Barettino D, Romero A, Calvete JJ, Romão MJ. Crystal structure of a prostate kallikrein isolated from stallion seminal plasma: a homologue of human PSA. J Mol Biol 2002; 322:325-37. [PMID: 12217694 DOI: 10.1016/s0022-2836(02)00705-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Prostate-specific kallikrein, a member of the gene family of serine proteases, was initially discovered in semen and is the most useful serum marker for prostate cancer diagnosis and prognosis. We report the crystal structure at 1.42A resolution of horse prostate kallikrein (HPK). This is the first structure of a serine protease purified from seminal plasma. HPK shares extensive sequence homology with human prostate-specific antigen (PSA), including a predicted chymotrypsin-like specificity, as suggested by the presence of a serine residue at position S1 of the specificity pocket. In contrast to other kallikreins, HPK shows a structurally distinct specificity pocket. Its entrance is blocked by the kallikrein loop, suggesting a possible protective or substrate-selective role for this loop. The HPK structure seems to be in an inactivated state and further processing might be required to allow the binding of substrate molecules. Crystal soaking experiments revealed a binding site for Zn(2+) and Hg(2+), two known PSA inhibitors.
Collapse
Affiliation(s)
- Ana L Carvalho
- REQUIMTE/CQFB, Departamento de Química, Fac de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | | | |
Collapse
|
32
|
Gomis-Rüth FX, Bayés A, Sotiropoulou G, Pampalakis G, Tsetsenis T, Villegas V, Avilés FX, Coll M. The structure of human prokallikrein 6 reveals a novel activation mechanism for the kallikrein family. J Biol Chem 2002; 277:27273-81. [PMID: 12016211 DOI: 10.1074/jbc.m201534200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zyme/protease M/neurosin/human kallikrein 6 (hK6) is a member of the human kallikrein family of trypsin-like serine proteinases and was originally identified as being down-regulated in metastatic breast and ovarian tumors when compared with corresponding primary tumors. Recent evidence suggests that hK6 may serve as a circulating tumor marker in ovarian cancers. In addition, it was described in the brain of Parkinson's disease and Alzheimer's disease patients, where it is implicated in amyloid precursor protein processing. It is thus a biomarker for these diseases. To examine the mechanism of activation of hK6, we have solved the structure of its proform, the first of a human kallikrein family member. The proenzyme displays a fold that exhibits chimeric features between those of trypsinogen and other family members. It lacks the characteristic "kallikrein loop" and forms the six disulfide bridges of trypsin. Pro-hK6 displays a completely closed specificity pocket and a unique conformation of the regions involved in structural rearrangements upon proteolytic cleavage activation. This points to a novel activation mechanism, which could be extrapolated to other human kallikreins.
Collapse
Affiliation(s)
- F Xavier Gomis-Rüth
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, c/Jordi Girona 18-26, Barcelona 08034, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bernett MJ, Blaber SI, Scarisbrick IA, Dhanarajan P, Thompson SM, Blaber M. Crystal structure and biochemical characterization of human kallikrein 6 reveals that a trypsin-like kallikrein is expressed in the central nervous system. J Biol Chem 2002; 277:24562-70. [PMID: 11983703 DOI: 10.1074/jbc.m202392200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human kallikreins are a large multigene family of closely related serine-type proteases. In this regard, they are similar to the multigene kallikrein families characterized in mice and rats. There is a much more extensive body of knowledge regarding the function of mouse and rat kallikreins in comparison with the human kallikreins. Human kallikrein 6 has been proposed as the homologue to rat myelencephalon-specific protease, an arginine-specific degradative-type protease abundantly expressed in the central nervous system and implicated in demyelinating disease. We present the x-ray crystal structure of mature, active recombinant human kallikrein 6 at 1.75-A resolution. This high resolution model provides the first three-dimensional view of one of the human kallikreins and one of only a few structures of serine proteases predominantly expressed in the central nervous system. Enzymatic data are presented that support the identification of human kallikrein 6 as the functional homologue of rat myelencephalon-specific protease and are corroborated by a molecular phylogenetic analysis. Furthermore, the x-ray data provide support for the characterization of human kallikrein 6 as a degradative protease with structural features more similar to trypsin than the regulatory kallikreins.
Collapse
Affiliation(s)
- Matthew J Bernett
- Institute of Molecular Biophysics, Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4380, USA
| | | | | | | | | | | |
Collapse
|
34
|
Bianchini EP, Louvain VB, Marque PE, Juliano MA, Juliano L, Le Bonniec BF. Mapping of the catalytic groove preferences of factor Xa reveals an inadequate selectivity for its macromolecule substrates. J Biol Chem 2002; 277:20527-34. [PMID: 11925440 DOI: 10.1074/jbc.m201139200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Factor Xa (FXa) hydrolyzes two peptide bonds in prothrombin having (Glu/Asp)-Gly-Arg-(Thr/Ile) for P(3)-P(2)-P(1)-P(1)' residues, but the exact preferences of its catalytic groove remain largely unknown. To investigate the specificity of FXa, we synthesized full sets of fluorescence-quenched substrates carrying all natural amino acids (except Cys) in P(3), P(2), P(1)', P(2)', and P(3)' and determined the k(cat)/K(m) values of cleavage. Contrary to expectation, glycine was not the "best" P(2) residue; peptide with phenylalanine was cleaved slightly faster. In fact, FXa had surprisingly limited preferences, barely more pronounced than trypsin; in P(2), the ratio of the k(cat)/K(m) values for the most favorable side chain over the least was 289 (12 with trypsin), but in P(1)', this ratio was only 30 (versus 80 with trypsin). This unexpected selectivity undoubtedly distinguished FXa from thrombin, which exhibited ratios higher than 19,000 in P(2) and P(1)'. Thus, with respect to the catalytic groove, FXa resembles a low efficiency trypsin rather than the highly selective thrombin. The rates of cleavage of the peptidyl substrates were virtually identical whether or not FXa was in complex with factor Va, suggesting that the cofactor did not exert a direct allosteric control on the catalytic groove. We conclude that the remarkable efficacy of FXa within prothrombinase originates from exosite interaction(s) with factor Va and/or prothrombin rather than from the selectivity of its catalytic groove.
Collapse
Affiliation(s)
- Elsa P Bianchini
- INSERM U428, Faculté de Pharmacie, Université Paris V, Paris, France
| | | | | | | | | | | |
Collapse
|
35
|
Hsieh MC, Cooperman BS. Inhibition of prostate-specific antigen (PSA) by alpha(1)-antichymotrypsin: salt-dependent activation mediated by a conformational change. Biochemistry 2002; 41:2990-7. [PMID: 11863437 DOI: 10.1021/bi0117450] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prostate-specific antigen (PSA) and its SDS-stable complex with the serine proteinase inhibitor (serpin) alpha(1)-antichymotrypsin (ACT), which is the dominant form of PSA in serum, are in widespread use as markers for the diagnosis of prostate cancer, and there is increasing evidence for the involvement of PSA proteinase activity itself in the development of prostate and other cancers. However, both the formation and degradation of the PSA-ACT complex, denoted PSA*ACT* to indicate substantial changes in the structure of both proteins on complex formation, have been incompletely studied. Here we determine rate and equilibrium constants for the steps involved in PSA*ACT* formation and demonstrate that (a) the effects of added NaCl, polyamines, and Zn(2+) on this process parallel their effects on PSA catalytic activity [Hsieh, M.-C., and Cooperman, B. S. (2000) Biochim. Biophys. Acta 1481, 75-87], (b) the effect of added NaCl in dramatically increasing the rate of ACT inhibition of PSA correlates with salt-induced changes in PSA conformation, and (c) the PSA*ACT* complex is subject to proteolysis by human neutrophil elastase. Possible clinical implications of these findings are considered.
Collapse
Affiliation(s)
- Ming-Ching Hsieh
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | | |
Collapse
|
36
|
Mosbach K, Yu Y, Andersch J, Ye L. Generation of new enzyme inhibitors using imprinted binding sites: the anti-idiotypic approach, a step toward the next generation of molecular imprinting. J Am Chem Soc 2001; 123:12420-1. [PMID: 11734048 DOI: 10.1021/ja017096x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K Mosbach
- Pure and Applied Biochemistry, Chemical Center, Lund University, Box 124, 221 00 Lund, Sweden.
| | | | | | | |
Collapse
|
37
|
Toyota E, Ng KK, Sekizaki H, Itoh K, Tanizawa K, James MN. X-ray crystallographic analyses of complexes between bovine beta-trypsin and Schiff base copper(II) or iron(III) chelates. J Mol Biol 2001; 305:471-9. [PMID: 11152605 DOI: 10.1006/jmbi.2000.4303] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To establish the structural basis underlying the activity of a novel series of metal-chelate trypsin inhibitors, the structures of p-amidinosalicylidene-l-alaninato(aqua)copper(II) (1a), m-amidinosalicylidene-l-alaninato(aqua)copper(II) (1b), bis(p-amidinosalicylidene-l-alaninato)iron(III) (2a), and bis(m-amidinosalicylidene-l-alaninato)iron(III) (2b) bound to bovine beta-trypsin were studied by X-ray crystallography. The amidinium group of the inhibitor donates hydrogen bonds to Asp189, Gly219 and Ser190, as seen before in trypsin-benzamidine complexes. The copper(II) ion of 1a is situated away from trypsin's catalytic triad residues, and is octahedrally coordinated by a Schiff base and three water molecules. In contrast, the copper(II) ion of 1b is situated close to the catalytic triad and adopts a square pyramidal coordination geometry. The iron(III) ion of 2a is octahedrally coordinated by two Schiff base ligands and, like the copper(II) ion of 1a, is situated away from the catalytic triad. The p-amidinophenyl ring of a second Schiff base ligand of 2a is directed toward a hydrophobic groove formed by Trp215 and Leu99. Finally, the iron(III) ion of 2b appears to be replaced by magnesium(II), which is octahedrally coordinated by a Schiff base, Gln192 and two water molecules. One of the Schiff base ligands seen in the trypsin-2a complex or in the unbound form of 2b is replaced by water molecules and Gln192. His57 and Ser195 form water-mediated interactions with the magnesium(II) ion of 2b, and Ser195 also forms a hydrogen bond with the phenolic oxygen atom of the Schiff base ligand. These structures reveal a novel mode of interaction between metal-chelate inhibitors and serine proteases, thus providing a structural basis for the development of more potent inhibitors against a variety of trypsin-like enzymes.
Collapse
Affiliation(s)
- E Toyota
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobestu, Hokkaido 061-0293, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Chen VC, Chao L, Chao J. Roles of the P1, P2, and P3 residues in determining inhibitory specificity of kallistatin toward human tissue kallikrein. J Biol Chem 2000; 275:38457-66. [PMID: 10993887 DOI: 10.1074/jbc.m005605200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kallistatin is a serpin with a unique P1 Phe, which confers an excellent inhibitory specificity toward tissue kallikrein. In this study, we investigated the P3-P2-P1 residues (residues 386-388) of human kallistatin in determining inhibitory specificity toward human tissue kallikrein by site-directed mutagenesis and molecular modeling. Human kallistatin mutants with 19 different amino acid substitutions at each P1, P2, or P3 residue were created and purified to compare their kallikrein binding activity. Complex formation assay showed that P1 Arg, P1 Phe (wild type), P1 Lys, P1 Tyr, P1 Met, and P1 Leu display significant binding activity with tissue kallikrein among the P1 variants. Kinetic analysis showed the inhibitory activities of the P1 mutants toward tissue kallikrein in the order of P1 Arg > P1 Phe > P1 Lys >/= P1 Tyr > P1 Leu >/= P1 Met. P1 Phe displays a better selectivity for human tissue kallikrein than P1 Arg, since P1 Arg also inhibits several other serine proteinases. Heparin distinguishes the inhibitory specificity of kallistatin toward kallikrein versus chymotrypsin. For the P2 and P3 variants, the mutants with hydrophobic and bulky amino acids at P2 and basic amino acids at P3 display better binding activity with tissue kallikrein. The inhibitory activities of these mutants toward tissue kallikrein are in the order of P2 Phe (wild type) > P2 Leu > P2 Trp > P2 Met and P3 Arg > P3 Lys (wild type). Molecular modeling of the reactive center loop of kallistatin bound to the reactive crevice of tissue kallikrein indicated that the P2 residue required a long and bulky hydrophobic side chain to reach and fill the hydrophobic S2 cleft generated by Tyr(99) and Trp(219) of tissue kallikrein. Basic amino acids at P3 could stabilize complex formation by forming electrostatic interaction with Asp(98J) and hydrogen bond with Gln(174) of tissue kallikrein. Our results indicate that tissue kallikrein is a specific target proteinase for kallistatin.
Collapse
Affiliation(s)
- V C Chen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
39
|
|
40
|
Clonis YD, Labrou NE, Kotsira VP, Mazitsos C, Melissis S, Gogolas G. Biomimetic dyes as affinity chromatography tools in enzyme purification. J Chromatogr A 2000; 891:33-44. [PMID: 10999623 DOI: 10.1016/s0021-9673(00)00577-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Affinity adsorbents based on immobilized triazine dyes offer important advantages circumventing many of the problems associated with biological ligands. The main drawback of dyes is their moderate selectivity for proteins. Rational attempts to tackle this problem are realized through the biomimetic dye concept according to which new dyes, the biomimetic dyes, are designed to mimic natural ligands. Biomimetic dyes are expected to exhibit increased affinity and purifying ability for the targeted proteins. Biocomputing offers a powerful approach to biomimetic ligand design. The successful exploitation of contemporary computational techniques in molecular design requires the knowledge of the three-dimensional structure of the target protein, or at least, the amino acid sequence of the target protein and the three-dimensional structure of a highly homologous protein. From such information one can then design, on a graphics workstation, the model of the protein and also a number of suitable synthetic ligands which mimic natural biological ligands of the protein. There are several examples of enzyme purifications (trypsin, urokinase, kallikrein, alkaline phosphatase, malate dehydrogenase, formate dehydrogenase, oxaloacetate decarboxylase and lactate dehydrogenase) where synthetic biomimetic dyes have been used successfully as affinity chromatography tools.
Collapse
Affiliation(s)
- Y D Clonis
- Department of Agricultural Biotechnology, Agricultural University of Athens, Greece.
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Vonnahme KA, Malayer JR, Spivey HO, Ford SP, Clutter A, Geisert RD. Detection of kallikrein gene expression and enzymatic activity in porcine endometrium during the estrous cycle and early pregnancy. Biol Reprod 1999; 61:1235-41. [PMID: 10529269 DOI: 10.1095/biolreprod61.5.1235] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Porcine conceptuses rapidly elongate within the uterine horns prior to the period of placental attachment. During the time of elongation, secretion of estrogen by the developing conceptuses occurs for the establishment of pregnancy through maintenance of corpora lutea and facilitation of placental attachment. Factors associated with the uterine luminal epithelium accentuate embryo attachment by allowing close contact between the conceptus and the uterine epithelium. Kallikrein, a serine protease, may be involved with the timing of conceptus expansion and placental attachment to the uterine surface. The objective of this study was to evaluate kallikrein enzymatic activity, protein, and gene expression in the pig during the estrous cycle and early pregnancy. Enzymatic activity was first detected in uterine flushings (UTF) on Day 12 of the estrous cycle and pregnancy. Activity was enhanced on Day 12 of pregnancy compared to that in cyclic gilts, with a reversal of increased kallikrein activity in cyclic compared to pregnant flushings on Day 15. Western blot analysis with antiserum to human plasma kallikrein detected a 50-kDa product similar to human plasma kallikrein from Day 10 to Day 15 of the estrous cycle and pregnancy. Kallikrein enzymatic activity in UTF was associated with the presence of a 23-kDa reactive product. Gene expression of kallikrein as determined by reverse transcription-polymerase chain reaction indicated the presence of kallikrein mRNA in the porcine endometrium and conceptuses. Results indicate that an increase in uterine luminal kallikrein activity occurs during the estrous cycle at a period that corresponds to rapid conceptus elongation during pregnancy of the pig. The present information suggests that kallikrein may play a role in opening the window for establishment of pregnancy in the pig.
Collapse
Affiliation(s)
- K A Vonnahme
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma 74078-6051, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Serine proteases of the chymotrypsin family have maintained a common fold over an evolutionary span of more than one billion years. Notwithstanding modest changes in sequence, this class of enzymes has developed a wide variety of substrate specificities and important biological functions. Remarkably, the C-terminal portion of the sequence in the protease domain accounts fully for this functional diversity. This portion is often encoded by a single exon and contains most of the residues forming the contact surface in the active site for the P1-P3 residues of the substrate, as well as domains responsible for the modulation of catalytic activity. The evolution of serine proteases was therefore driven by optimization of contacts made with the unprimed subsites of the substrate and targeted a relatively short portion of the sequence toward the C-terminal end. The dominant role of the C-terminal sequence should facilitate the identification of function in newly discovered genes belonging to this class of enzymes.
Collapse
Affiliation(s)
- M M Krem
- Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
44
|
Hopfner KP, Lang A, Karcher A, Sichler K, Kopetzki E, Brandstetter H, Huber R, Bode W, Engh RA. Coagulation factor IXa: the relaxed conformation of Tyr99 blocks substrate binding. Structure 1999; 7:989-96. [PMID: 10467148 DOI: 10.1016/s0969-2126(99)80125-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Among the S1 family of serine proteinases, the blood coagulation factor IXa (fIXa) is uniquely inefficient against synthetic peptide substrates. Mutagenesis studies show that a loop of residues at the S2-S4 substrate-binding cleft (the 99-loop) contributes to the low efficiency. The crystal structure of porcine fIXa in complex with the inhibitor D-Phe-Pro-Arg-chloromethylketone (PPACK) was unable to directly clarify the role of the 99-loop, as the doubly covalent inhibitor induced an active conformation of fIXa. RESULTS The crystal structure of a recombinant two-domain construct of human fIXa in complex with p-aminobenzamidine shows that the Tyr99 sidechain adopts an atypical conformation in the absence of substrate interactions. In this conformation, the hydroxyl group occupies the volume corresponding to the mainchain of a canonically bound substrate P2 residue. To accommodate substrate binding, Tyr99 must adopt a higher energy conformation that creates the S2 pocket and restricts the S4 pocket, as in fIXa-PPACK. The energy cost may contribute significantly to the poor K(M) values of fIXa for chromogenic substrates. In homologs, such as factor Xa and tissue plasminogen activator, the different conformation of the 99-loop leaves Tyr99 in low-energy conformations in both bound and unbound states. CONCLUSIONS Molecular recognition of substrates by fIXa seems to be determined by the action of the 99-loop on Tyr99. This is in contrast to other coagulation enzymes where, in general, the chemical nature of residue 99 determines molecular recognition in S2 and S3-S4. This dominant role on substrate interaction suggests that the 99-loop may be rearranged in the physiological fX activation complex of fIXa, fVIIIa, and fX.
Collapse
Affiliation(s)
- K P Hopfner
- Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Barbato G, Cicero DO, Nardi MC, Steinkühler C, Cortese R, De Francesco R, Bazzo R. The solution structure of the N-terminal proteinase domain of the hepatitis C virus (HCV) NS3 protein provides new insights into its activation and catalytic mechanism. J Mol Biol 1999; 289:371-84. [PMID: 10366511 DOI: 10.1006/jmbi.1999.2745] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The solution structure of the hepatitis C virus (BK strain) NS3 protein N-terminal domain (186 residues) has been solved by NMR spectroscopy. The protein is a serine protease with a chymotrypsin-type fold, and is involved in the maturation of the viral polyprotein. Despite the knowledge that its activity is enhanced by the action of a viral protein cofactor, NS4A, the mechanism of activation is not yet clear. The analysis of the folding in solution and the differences from the crystallographic structures allow the formulation of a model in which, in addition to the NS4A cofactor, the substrate plays an important role in the activation of the catalytic mechanism. A unique structural feature is the presence of a zinc-binding site exposed on the surface, subject to a slow conformational exchange process.
Collapse
Affiliation(s)
- G Barbato
- IRBM "P. Angeletti", Via Pontina km 30.600, Pomezia, Roma, 00040, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Czapinska H, Otlewski J. Structural and energetic determinants of the S1-site specificity in serine proteases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:571-95. [PMID: 10102985 DOI: 10.1046/j.1432-1327.1999.00160.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In recent years the number of determined three-dimensional structures of serine proteases that are accompanied by detailed mutational studies has grown rapidly. In particular, spatial structures have been described for enzymes involved in processes of critical medical significance, often related to severe pathophysiological diseases. There has also been significant progress in the understanding of the structural grounds for the substrate specificity of serine proteases. This review is concerned mainly with primary structural determinants of the S1 specificity, the crucial component of substrate selectivity, often in relation to more distant specificity elements, which cooperatively influence the S1 site.
Collapse
Affiliation(s)
- H Czapinska
- Institute of Biochemistry, University of Wroclaw, Poland
| | | |
Collapse
|
48
|
Kishi T, Kato M, Shimizu T, Kato K, Matsumoto K, Yoshida S, Shiosaka S, Hakoshima T. Crystal structure of neuropsin, a hippocampal protease involved in kindling epileptogenesis. J Biol Chem 1999; 274:4220-4. [PMID: 9933620 DOI: 10.1074/jbc.274.7.4220] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuropsin is a novel serine protease, the expression of which is highly localized in the limbic areas of the mouse brain and which is suggested to be involved in kindling epileptogenesis and hippocampal plasticity. The 2.1-A resolution crystal structure of neuropsin provides the first three-dimensional view of one of the serine proteases highly expressed in the nervous system, and reveals a serine protease fold that exhibits chimeric features between trypsin and nerve growth factor-gamma (NGFgamma), a member of the kallikrein family. Neuropsin possesses an N-glycosylated "kallikrein loop" but forms six disulfide bonds corresponding to those of trypsin. The ordered kallikrein loop projects proline toward the active site to restrict smaller residues or proline at the P2 position of substrates. Loop F, which participates in forming the S3/S4 sites, is similar to trypsin rather than NGFgamma. The unique conformations of loops G and H form an S1 pocket specific for both arginine and lysine. These characteristic loop structures forming the substrate-binding site suggest the novel substrate specificity of neuropsin and give a clue to the design of its specific inhibitors.
Collapse
Affiliation(s)
- T Kishi
- Department of Molecular Biology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Garrett GS, McPhail SJ, Tornheim K, Correa PE, McIver JM. Synthesis of potent and selective inhibitors of human plasma kallikrein. Bioorg Med Chem Lett 1999; 9:301-6. [PMID: 10091673 DOI: 10.1016/s0960-894x(98)00562-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The synthesis and in vitro enzyme inhibition profile of a series of novel trifluoromethylketone (TFMK) inhibitors of human plasma kallikrein (PK) are described. We have developed an efficient method for the construction of peptide TFMKs that provides the final product devoid of compromised stereochemical integrity. Many of these compounds are potent inhibitors of PK and exhibit reduced inhibition of tissue kallikrein (TK) and plasmin (HP).
Collapse
Affiliation(s)
- G S Garrett
- Corporate Research Division, Miami Valley Laboratories, The Procter & Gamble Company, Cincinnati, OH 45253-8707, USA
| | | | | | | | | |
Collapse
|
50
|
Parry MA, Jacob U, Huber R, Wisner A, Bon C, Bode W. The crystal structure of the novel snake venom plasminogen activator TSV-PA: a prototype structure for snake venom serine proteinases. Structure 1998; 6:1195-206. [PMID: 9753698 DOI: 10.1016/s0969-2126(98)00119-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Trimeresurus stejnejeri venom plasminogen activator (TSV-PA) is a snake venom serine proteinase that specifically activates plasminogen. Snake venom serine proteinases form a subfamily of trypsin-like proteinases that are characterised by a high substrate specificity and resistance to inhibition. Many of these venom enzymes specifically interfere with haemostatic mechanisms and display a long circulating half-life. For these reasons several of them have commercial applications and are potentially attractive pharmacological tools. RESULTS The crystal structure of TSV-PA has been determined to 2.5 A resolution and refined to an R factor of 17.8 (R free, 24.4). The enzyme, showing the overall polypeptide fold of trypsin-like serine proteinases, displays unique structural elements such as the presence of a phenylalanine at position 193, a C-terminal tail clamped via a disulphide bridge to the 99-loop, and a structurally conserved Asp97 residue. The presence of a cis proline at position 218 is in agreement with evolutionary relationships to glandular kallikrein. CONCLUSIONS We postulate that Phe 193 accounts for the high substrate specificity of TSV-PA and renders it incapable of forming a stable complex with bovine pancreatic trypsin inhibitor and other extended substrates and inhibitors. Mutational studies previously showed that Asp97 is crucial for the plasminogenolytic activity of TSV-PA, here we identify the conservation of Asp97 in both types of mammalian plasminogen activator - tissue-type (tPA) and urokinase-type (uPA). It seems likely that Asp97 of tPA and uPA will have a similar role in plasminogen recognition. The C-terminal extension of TSV-PA is conserved among snake venom serine proteinases, although its function is unknown. The three-dimensional structure presented here is the first of a snake venom serine proteinase and provides an excellent template for modelling other homologous family members.
Collapse
Affiliation(s)
- M A Parry
- Max-Planck Institute of Biochemistry Department for Structural Research Am Klopferspitz 18a, 82152, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|