1
|
Jaswandkar SV, Faisal HMN, Katti KS, Katti DR. Dissociation Mechanisms of G-actin Subunits Govern Deformation Response of Actin Filament. Biomacromolecules 2021; 22:907-917. [PMID: 33481563 DOI: 10.1021/acs.biomac.0c01602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Actin molecules are essential structural components of the cellular cytoskeleton. Here, we report a comprehensive analysis of F-actin's deformation behavior and highlight underlying mechanisms using steered molecular dynamics simulations (SMD). The investigation of F-actin was done under tension, compression, bending, and torsion. We report that the dissociation pattern of conformational locks at intrastrand and interstrand G-actin interfaces regulates the deformation response of F-actin. The conformational locks at the G-actin interfaces are portrayed by a spheroidal joint, interlocking serrated plates' analogy. Further, the SMD simulation approach was utilized to evaluate Young's modulus, flexural rigidity, persistent length, and torsional rigidity of F-actin, and the values obtained were found to be consistent with available experimental data. The evaluation of the mechanical properties of actin and the insight into the fundamental mechanisms contributing to its resilience described here are necessary for developing accurate models of eukaryotic cells and for assessing cellular viability and mobility.
Collapse
Affiliation(s)
- Sharad V Jaswandkar
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58105, United States
| | - H M Nasrullah Faisal
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Kalpana S Katti
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Dinesh R Katti
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
2
|
Gaetani R, Zizzi EA, Deriu MA, Morbiducci U, Pesce M, Messina E. When Stiffness Matters: Mechanosensing in Heart Development and Disease. Front Cell Dev Biol 2020; 8:334. [PMID: 32671058 PMCID: PMC7326078 DOI: 10.3389/fcell.2020.00334] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
During embryonic morphogenesis, the heart undergoes a complex series of cellular phenotypic maturations (e.g., transition of myocytes from proliferative to quiescent or maturation of the contractile apparatus), and this involves stiffening of the extracellular matrix (ECM) acting in concert with morphogenetic signals. The maladaptive remodeling of the myocardium, one of the processes involved in determination of heart failure, also involves mechanical cues, with a progressive stiffening of the tissue that produces cellular mechanical damage, inflammation, and ultimately myocardial fibrosis. The assessment of the biomechanical dependence of the molecular machinery (in myocardial and non-myocardial cells) is therefore essential to contextualize the maturation of the cardiac tissue at early stages and understand its pathologic evolution in aging. Because systems to perform multiscale modeling of cellular and tissue mechanics have been developed, it appears particularly novel to design integrated mechano-molecular models of heart development and disease to be tested in ex vivo reconstituted cells/tissue-mimicking conditions. In the present contribution, we will discuss the latest implication of mechanosensing in heart development and pathology, describe the most recent models of cell/tissue mechanics, and delineate novel strategies to target the consequences of heart failure with personalized approaches based on tissue engineering and induced pluripotent stem cell (iPSC) technologies.
Collapse
Affiliation(s)
- Roberto Gaetani
- Department of Molecular Medicine, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy.,Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, United States
| | - Eric Adriano Zizzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco Agostino Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Maurizio Pesce
- Tissue Engineering Research Unit, "Centro Cardiologico Monzino," IRCCS, Milan, Italy
| | - Elisa Messina
- Department of Maternal, Infantile, and Urological Sciences, "Umberto I" Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Li S, Zhang J, Wang C, Nithiarasu P. Atomistic Modeling of F-Actin Mechanical Responses and Determination of Mechanical Properties. ACS Biomater Sci Eng 2018; 4:2794-2803. [DOI: 10.1021/acsbiomaterials.8b00640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Si Li
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, Wales SA1 8EN, U.K
| | - Jin Zhang
- Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chengyuan Wang
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, Wales SA1 8EN, U.K
| | - Perumal Nithiarasu
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, Wales SA1 8EN, U.K
| |
Collapse
|
4
|
Shamloo A, Mehrafrooz B. Nanomechanics of actin filament: A molecular dynamics simulation. Cytoskeleton (Hoboken) 2018; 75:118-130. [PMID: 29272080 DOI: 10.1002/cm.21429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 11/08/2022]
Abstract
Actin is known as the most abundant essentially protein in eukaryotic cells. Actin plays a crucial role in many cellular processes involving mechanical forces such as cell motility, adhesion, muscle contraction, and intracellular transport. However, little is known about the mechanical properties of this protein when subjected to mechanical forces in cellular processes. In this article, a series of large-scale molecular dynamics simulations are carried out to elucidate nanomechanical behavior such as elastic and viscoelastic properties of a single actin filament. Here, we used two individual methods namely, all-atoms and coarse-grained molecular dynamics, to evaluate elastic properties of a single actin filament. In the other word, based on Brownian motions of the filament and using the principle of the equipartition theorem, in aqueous solution, tensile stiffness, torsional rigidity, and bending rigidity of the single actin filament are studied. The results revealed that increasing the sampling window time leads to convergence of obtained mechanical properties to the experimental values. Moreover, in order to investigate viscoelastic properties of a single actin filament, constant force steered molecular dynamics method is used to apply different external tensile loads and perform five individual creep tests on the molecule. The strain-time response of the filament for each creep test is obtained. Based on the Kelvin-Voigt model, the results reveal that a single actin filament shows a nonlinear viscoelastic behavior, with a Young's modulus of 2.85 GPa, a viscosity of 4.06 GPa.ns, and a relaxation time in the range of 1.42 ns which were measured here for the first time at the single filament level. The findings of this article suggest that molecular dynamics simulations could also be a useful tool for investigating the mechanical behavior of bio-nanomaterials.
Collapse
Affiliation(s)
- Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Behzad Mehrafrooz
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
5
|
Multivalent cross-linking of actin filaments and microtubules through the microtubule-associated protein Tau. Nat Commun 2017; 8:1981. [PMID: 29215007 PMCID: PMC5719408 DOI: 10.1038/s41467-017-02230-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 11/15/2017] [Indexed: 11/17/2022] Open
Abstract
Microtubule-associated proteins regulate microtubule dynamics, bundle actin filaments, and cross-link actin filaments with microtubules. In addition, aberrant interaction of the microtubule-associated protein Tau with filamentous actin is connected to synaptic impairment in Alzheimer’s disease. Here we provide insight into the nature of interaction between Tau and actin filaments. We show that Tau uses several short helical segments to bind in a dynamic, multivalent process to the hydrophobic pocket between subdomains 1 and 3 of actin. Although a single Tau helix is sufficient to bind to filamentous actin, at least two, flexibly linked helices are required for actin bundling. In agreement with a structural model of Tau repeat sequences in complex with actin filaments, phosphorylation at serine 262 attenuates binding of Tau to filamentous actin. Taken together the data demonstrate that bundling of filamentous actin and cross-linking of the cellular cytoskeleton depend on the metamorphic and multivalent nature of microtubule-associated proteins. The microtubule associated protein Tau also interacts with filamentous actin. Here the authors combine biophysical experiments and NMR studies to characterize the structural changes that occur in Tau upon binding to filamentous actin and show that phosphorylation of serine 262 attenuates actin binding of Tau.
Collapse
|
6
|
Inoue Y, Adachi T. Mechanosensitive kinetic preference of actin-binding protein to actin filament. Phys Rev E 2016; 93:042403. [PMID: 27176325 DOI: 10.1103/physreve.93.042403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Indexed: 06/05/2023]
Abstract
The kinetic preference of actin-binding proteins to actin filaments is altered by external forces on the filament. Such an altered kinetic preference is largely responsible for remodeling the actin cytoskeletal structure in response to intracellular forces. During remodeling, actin-binding proteins and actin filaments interact under isothermal conditions, because the cells are homeostatic. In such a temperature homeostatic state, we can rigorously and thermodynamically link the chemical potential of actin-binding proteins to stresses on the actin filaments. From this relationship, we can construct a physical model that explains the force-dependent kinetic preference of actin-binding proteins to actin filaments. To confirm the model, we have analyzed the mechanosensitive alternation of the kinetic preference of Arp2/3 and cofilin to actin filaments. We show that this model captures the qualitative responses of these actin-binding proteins to the forces, as observed experimentally. Moreover, our theoretical results demonstrate that, depending on the structural parameters of the binding region, actin-binding proteins can show different kinetic responses even to the same mechanical signal tension, in which the double-helix nature of the actin filament also plays a critical role in a stretch-twist coupling of the filament.
Collapse
Affiliation(s)
- Yasuhiro Inoue
- Department of Biomechanics, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Taiji Adachi
- Department of Biomechanics, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
7
|
Kim JI, Kwon J, Baek I, Park HS, Na S. Cofilin reduces the mechanical properties of actin filaments: approach with coarse-grained methods. Phys Chem Chem Phys 2015; 17:8148-58. [PMID: 25727245 DOI: 10.1039/c4cp06100d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An actin filament is an essential cytoskeleton protein in a cell. Various proteins bind to actin for cell functions such as migration, division, and shape control. ADF/cofilin is a protein that severs actin filaments and is related to their dynamics. Actin is known to have excellent mechanical properties. Binding cofilin reduces its mechanical properties, and is related to the severing process. In this research, we applied a coarse-grained molecular dynamics simulation (CGMD) method to obtain actin filaments and cofilin-bound actin (cofilactin) filaments. Using these two obtained models, we constructed an elastic network model-based structure and conducted a normal mode analysis. Based on the low-frequency normal modes of the filament structure, we applied the continuum beam theory to calculate the mechanical properties of the actin and cofilactin filaments. The CGMD method provided structurally accurate actin and cofilactin filaments in relation to the mechanical properties, which showed good agreement with the established experimental results.
Collapse
Affiliation(s)
- Jae In Kim
- Department of Mechanical Engineering, Korea University, Seoul 136-701, Republic of Korea.
| | | | | | | | | |
Collapse
|
8
|
Türmer K, Orbán J, Gróf P, Nyitrai M. FASCIN and alpha-actinin can regulate the conformation of actin filaments. Biochim Biophys Acta Gen Subj 2015; 1850:1855-61. [PMID: 26025636 DOI: 10.1016/j.bbagen.2015.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Actin filament bundling proteins mediate numerous processes in cells such as the formation of cell membrane protrusions or cell adhesions and stress fiber based locomotion. Among them alpha-actinin and fascin are the most abundant ones. This work characterizes differences in molecular motions in actin filaments due to the binding of these two actin bundling proteins. METHODS We investigated how alpha-actinin and fascin binding modify the conformation of actin filaments by using conventional and saturation transfer EPR methods. RESULTS The result characteristic for motions on the microsecond time scale showed that both actin bundling proteins made the bending and torsional twisting of the actin filaments slower. When nanosecond time scale molecular motions were described the two proteins were found to induce opposite changes in the actin filaments. The binding of one molecule of alpha-actinin or fascin modified the conformation of numerous actin protomers. CONCLUSION As fascin and alpha-actinin participates in different cellular processes their binding can serve the proper tuning of the structure of actin by establishing the right conformation for the interactions with other actin binding proteins. Our observations are in correlation with the model where actin filaments fulfill their biological functions under the regulation by actin-binding proteins. GENERAL SIGNIFICANCE Supporting the general model for the cellular regulation of the actin cytoskeleton we showed that two abundant actin bundling proteins, fascin and alpha-actinin, alter the conformation of actin filaments through long range allosteric interactions in two different ways providing the structural framework for the adaptation to specific biological functions.
Collapse
Affiliation(s)
- Katalin Türmer
- Department of Biophysics, Medical School, University of Pécs, Szigeti u. 12, Pécs H-7624, Hungary; János Szentágothai Research Center, Pécs H-7624, Hungary
| | - József Orbán
- Department of Biophysics, Medical School, University of Pécs, Szigeti u. 12, Pécs H-7624, Hungary; János Szentágothai Research Center, Pécs H-7624, Hungary; MTA-PTE High Intensity Terahertz Research Group, Hungary
| | - Pál Gróf
- Department of Biophysics and Radiation Biology, Semmelweis University of Medicine, IX. Tűzoltó u. 37-47, Budapest H-1095, Hungary
| | - Miklós Nyitrai
- Department of Biophysics, Medical School, University of Pécs, Szigeti u. 12, Pécs H-7624, Hungary; János Szentágothai Research Center, Pécs H-7624, Hungary; MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Hungary.
| |
Collapse
|
9
|
Fan J, Saunders MG, Voth GA. Coarse-graining provides insights on the essential nature of heterogeneity in actin filaments. Biophys J 2013; 103:1334-42. [PMID: 22995506 DOI: 10.1016/j.bpj.2012.08.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/21/2012] [Accepted: 08/08/2012] [Indexed: 10/27/2022] Open
Abstract
Experiments have shown that actin is structurally polymorphic, but knowledge of the details of molecular level heterogeneity in both the dynamics of a single subunit and the interactions between subunits is still lacking. Here, using atomistic molecular dynamics simulations of the actin filament, we identify domains of atoms that move in a correlated fashion, quantify interactions between these domains using coarse-grained (CG) analysis methods, and perform CG simulations to explore the importance of filament heterogeneity. The persistence length and torsional stiffness calculated from molecular dynamics simulation data agree with experimental values. We additionally observe that distinct actin conformations coexist in actin filaments. The filaments also exhibit random twist angles that are broadly distributed. CG analysis reveals that interactions between equivalent CG pairs vary from one subunit to another. To explore the importance of heterogeneity on filament dynamics, we perform CG simulations using different methods of parameterization to show that only by including heterogeneous interactions can we reproduce the twist angles and related properties. Free energy calculations further suggest that in general the actin filament is best represented as a set of subunits with differing CG sites and interactions, and the incorporating heterogeneity into the CG interactions is more important than including that in the CG sites. Our work therefore presents a systematic method to explore molecular level detail in this large and complex biopolymer.
Collapse
Affiliation(s)
- Jun Fan
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
10
|
Hild G, Bugyi B, Nyitrai M. Conformational dynamics of actin: effectors and implications for biological function. Cytoskeleton (Hoboken) 2010; 67:609-29. [PMID: 20672362 PMCID: PMC3038201 DOI: 10.1002/cm.20473] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 07/15/2010] [Indexed: 12/30/2022]
Abstract
Actin is a protein abundant in many cell types. Decades of investigations have provided evidence that it has many functions in living cells. The diverse morphology and dynamics of actin structures adapted to versatile cellular functions is established by a large repertoire of actin-binding proteins. The proper interactions with these proteins assume effective molecular adaptations from actin, in which its conformational transitions play essential role. This review attempts to summarise our current knowledge regarding the coupling between the conformational states of actin and its biological function.
Collapse
Affiliation(s)
- Gábor Hild
- Department of Biophysics, University of Pécs, Faculty of Medicine, Pécs, Szigeti str. 12, H-7624, Hungary
| | | | | |
Collapse
|
11
|
Comparative biomechanics of thick filaments and thin filaments with functional consequences for muscle contraction. J Biomed Biotechnol 2010; 2010:473423. [PMID: 20625489 PMCID: PMC2896680 DOI: 10.1155/2010/473423] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/26/2010] [Indexed: 02/02/2023] Open
Abstract
The scaffold of striated muscle is predominantly comprised of myosin and actin polymers known as thick filaments and thin filaments, respectively. The roles these filaments play in muscle contraction are well known, but the extent to which variations in filament mechanical properties influence muscle function is not fully understood. Here we review information on the material properties of thick filaments, thin filaments, and their primary constituents; we also discuss ways in which mechanical properties of filaments impact muscle performance.
Collapse
|
12
|
Kupi T, Gróf P, Nyitrai M, Belágyi J. The uncoupling of the effects of formins on the local and global dynamics of actin filaments. Biophys J 2009; 96:2901-11. [PMID: 19348771 DOI: 10.1016/j.bpj.2008.11.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 11/30/2022] Open
Abstract
In this study, experiments were carried out in the conventional and saturation-transfer electron paramagnetic resonance (EPR) time domains to explore the effect of mDia1-FH2 formin fragments on the dynamic and conformational properties of actin filaments. Conventional EPR measurements showed that addition of formin to actin filaments produced local conformational changes in the vicinity of Cys-374 by increasing the flexibility of the protein matrix in the environment of the label. The results indicated that it was the binding of formin to the barbed end that resulted in these conformational changes. The conventional EPR results obtained with actin labeled on the Lys-61 site showed that the binding of formins could only slightly affect the structure of the subdomain 2 of actin, reflecting the heterogeneity of the formin-induced conformational changes. Saturation transfer EPR measurements revealed that the binding of formins decreased the torsional flexibility of the actin filaments in the microsecond time range. We concluded that changes in the local and the global conformational fluctuations of the actin filaments are associated with the binding of formins to actin. The results on the two EPR time domains showed that the effects of formins on the substantially different types of motions were uncoupled.
Collapse
Affiliation(s)
- Tünde Kupi
- Department of Biophysics, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | | | | | |
Collapse
|
13
|
Fujiwara S, Plazanet M, Matsumoto F, Oda T. Differences in internal dynamics of actin under different structural states detected by neutron scattering. Biophys J 2008; 94:4880-9. [PMID: 18326640 PMCID: PMC2397340 DOI: 10.1529/biophysj.107.125302] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 02/08/2008] [Indexed: 11/18/2022] Open
Abstract
F-actin, a helical polymer formed by polymerization of the monomers (G-actin), plays crucial roles in various aspects of cell motility. Flexibility of F-actin has been suggested to be important for such a variety of functions. Understanding the flexibility of F-actin requires characterization of a hierarchy of dynamical properties, from internal dynamics of the actin monomers through domain motions within the monomers and relative motions between the monomers within F-actin to large-scale motions of F-actin as a whole. As a first step toward this ultimate purpose, we carried out elastic incoherent neutron scattering experiments on powders of F-actin and G-actin hydrated with D(2)O and characterized the internal dynamics of F-actin and G-actin. Well established techniques and analysis enabled the extraction of mean-square displacements and their temperature dependence in F-actin and in G-actin. An effective force constant analysis with a model consisting of three energy states showed that two dynamical transitions occur at approximately 150 K and approximately 245 K, the former of which corresponds to the onset of anharmonic motions and the latter of which couples with the transition of hydration water. It is shown that behavior of the mean-square displacements is different between G-actin and F-actin, such that G-actin is "softer" than F-actin. The differences in the internal dynamics are detected for the first time between the different structural states (the monomeric state and the polymerized state). The different behavior observed is ascribed to the differences in dynamical heterogeneity between F-actin and G-actin. Based on structural data, the assignment of the differences observed in the two samples to dynamics of specific loop regions involved in the polymerization of G-actin into F-actin is proposed.
Collapse
Affiliation(s)
- Satoru Fujiwara
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan.
| | | | | | | |
Collapse
|
14
|
Greenberg MJ, Wang CLA, Lehman W, Moore JR. Modulation of actin mechanics by caldesmon and tropomyosin. ACTA ACUST UNITED AC 2008; 65:156-64. [PMID: 18000881 DOI: 10.1002/cm.20251] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The ability of cells to sense and respond to physiological forces relies on the actin cytoskeleton, a dynamic structure that can directly convert forces into biochemical signals. Because of the association of muscle actin-binding proteins (ABPs) may affect F-actin and hence cytoskeleton mechanics, we investigated the effects of several ABPs on the mechanical properties of the actin filaments. The structural interactions between ABPs and helical actin filaments can vary between interstrand interactions that bridge azimuthally adjacent actin monomers between filament strands (i.e. by molecular stapling as proposed for caldesmon) or, intrastrand interactions that reinforce axially adjacent actin monomers along strands (i.e. as in the interaction of tropomyosin with actin). Here, we analyzed thermally driven fluctuations in actin's shape to measure the flexural rigidity of actin filaments with different ABPs bound. We show that the binding of phalloidin increases the persistence length of actin by 1.9-fold. Similarly, the intrastrand reinforcement by smooth and skeletal muscle tropomyosins increases the persistence length 1.5- and 2- fold respectively. We also show that the interstrand crosslinking by the C-terminal actin-binding fragment of caldesmon, H32K, increases persistence length by 1.6-fold. While still remaining bound to actin, phosphorylation of H32K by ERK abolishes the molecular staple (Foster et al. 2004. J Biol Chem 279;53387-53394) and reduces filament rigidity to that of actin with no ABPs bound. Lastly, we show that the effect of binding both smooth muscle tropomyosin and H32K is not additive. The combination of structural and mechanical studies on ABP-actin interactions will help provide information about the biophysical mechanism of force transduction in cells.
Collapse
Affiliation(s)
- M J Greenberg
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
15
|
Nosaka M. Geometrical correspondence identified and a new interaction unit suggested in striated muscle. J Theor Biol 2006; 238:464-73. [PMID: 16112137 DOI: 10.1016/j.jtbi.2005.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 06/01/2005] [Accepted: 06/03/2005] [Indexed: 11/25/2022]
Abstract
It has long been believed that the periodic structure of the myosin helix is a consequence only of compressing the actin-myosin interaction sites. Here, we identify a length correspondence between the smallest helical unit on the thick filament and the helical pitch of the actin filaments in two different contractile muscles. This suggests a rotation/swing of the filaments that creates a new interaction unit in addition to the single interaction between an actin filament and a myosin head. Numerical characteristics of the single interaction are estimated from discussion about an in vivo interaction utilizing the new unit. The estimated twisted angle of the actin filaments is consistent with that calculated from its torsion rigidity and the evaluated step sizes per cross-bridge can be performed by a single bend of a myosin head. By comparing our evaluated step sizes with experimental results, we conclude that the most plausible mechanism at the force-recovery stage involves swings or rotations of both filaments in the same direction (clockwise).
Collapse
Affiliation(s)
- Michiko Nosaka
- Sasebo National College of Technology, Material and Biological Engineering, 1-1 Okishin-chou, Sasebo, Nagasaki 857-1193, Japan.
| |
Collapse
|
16
|
Prochniewicz E, Janson N, Thomas DD, De la Cruz EM. Cofilin Increases the Torsional Flexibility and Dynamics of Actin Filaments. J Mol Biol 2005; 353:990-1000. [PMID: 16213521 DOI: 10.1016/j.jmb.2005.09.021] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 09/06/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
We have measured the effects of cofilin on the conformation and dynamics of actin filaments labeled at Cys374 with erythrosin-iodoacetemide (ErIA), using time-resolved phosphorescence anisotropy (TPA). Cofilin quenches the phosphorescence intensity of actin-bound ErIA, indicating that binding changes the local environment of the probe. The cofilin concentration-dependence of the phosphorescence intensity is sigmoidal, consistent with cooperative actin filament binding. Model-independent analysis of the anisotropies indicates that cofilin increases the rates of the microsecond rotational motions of actin. In contrast to the reduction in phosphorescence intensity, the changes in the rates of rotational motions display non-nearest-neighbor cooperative interactions and saturate at substoichiometric cofilin binding densities. Detailed analysis of the TPA decays indicates that cofilin decreases the torsional rigidity (C) of actin, increasing the thermally driven root-mean-square torsional angle between adjacent filament subunits from approximately 4 degrees (C = 2.30 x 10(-27) Nm2 radian(-1)) to approximately 17 degrees (C = 0.13 x 10(-27) Nm2 radian(-1)) at 25 degrees C. We favor a mechanism in which cofilin binding shifts the equilibrium between thermal ErIA-actin filament conformers, and facilitates two distinct structural changes in actin. One is local in nature, which affects the structure of actin's C terminus and is likely to mediate nearest-neighbor cooperative binding and filament severing. The second is a change in the internal dynamics of actin, which displays non-nearest-neighbor cooperativity and increases the torsional flexibility of filaments. The long-range effects of cofilin on the torsional dynamics of actin may accelerate P(i) release from filaments and modulate interactions with other regulatory actin filament binding proteins.
Collapse
Affiliation(s)
- Ewa Prochniewicz
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
17
|
Forkey JN, Quinlan ME, Goldman YE. Measurement of single macromolecule orientation by total internal reflection fluorescence polarization microscopy. Biophys J 2005; 89:1261-71. [PMID: 15894632 PMCID: PMC1366610 DOI: 10.1529/biophysj.104.053470] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new approach is presented for measuring the three-dimensional orientation of individual macromolecules using single molecule fluorescence polarization (SMFP) microscopy. The technique uses the unique polarizations of evanescent waves generated by total internal reflection to excite the dipole moment of individual fluorophores. To evaluate the new SMFP technique, single molecule orientation measurements from sparsely labeled F-actin are compared to ensemble-averaged orientation data from similarly prepared densely labeled F-actin. Standard deviations of the SMFP measurements taken at 40 ms time intervals indicate that the uncertainty for individual measurements of axial and azimuthal angles is approximately 10 degrees at 40 ms time resolution. Comparison with ensemble data shows there are no substantial systematic errors associated with the single molecule measurements. In addition to evaluating the technique, the data also provide a new measurement of the torsional rigidity of F-actin. These measurements support the smaller of two values of the torsional rigidity of F-actin previously reported.
Collapse
Affiliation(s)
- Joseph N Forkey
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania, Philadelphia, 19104-6083, USA
| | | | | |
Collapse
|
18
|
Thomas DD, Prochniewicz E, Roopnarine O. Changes in actin and myosin structural dynamics due to their weak and strong interactions. Results Probl Cell Differ 2002; 36:7-19. [PMID: 11892285 PMCID: PMC10712373 DOI: 10.1007/978-3-540-46558-4_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Figure 3 summarizes the effects of actomyosin binding on the internal and global dynamics of either protein, as discussed in this chapter. These effects depend primarily on the strength of the interaction; which in turn depends on the state of the nucleotide at the myosin active site. When either no nucleotide or ADP is bound, the interaction is strong and the effect on each protein is maximal. When the nucleotide is ATP or ADP.Pi, or the equivalent nonhydrolyzable analogs, the interaction is weak and the effect on molecular dynamics of each protein is minimal. The weaker effects in weak-binding states are not simply the reflection of lower occupancy of binding sites--the molecular models in Fig. 3 illustrate the effects of the formation of the ternary complex, after correction for the free actin and myosin in the system. Thus EPR on myosin (Berger and Thomas 1991; Thomas et al. 1995) and pyrene fluorescence studies on actin (Geeves 1991) have shown that the formation of a ternary complex has a negligible effect on the internal dynamics of both [figure: see text] proteins (left side of Fig. 3, white arrows). As shown by both EPR (Baker et al. 1998; Roopnarine et al. 1998) and phosphorescence (Ramachandran and Thomas 1999), both domains of myosin are dynamically disordered in weak-binding states, and this is essentially unaffected by the formation of the ternary complex (left side of Fig. 3, indicated by disordered myosin domains). The only substantial effect of the formation of the weak interaction that has been reported is the EPR-detected (Ostap and Thomas 1991) restriction of the global dynamics of actin upon weak myosin binding (left column of Fig. 3, gray arrow). The effects of strong actomyosin formation are much more dramatic. While substantial rotational dynamics, both internal and global, exist in both myosin and actin in the presence of ADP or the absence of nucleotides, spin label EPR, pyrene fluorescence, and phosphorescence all show dramatic restrictions in these motions upon formation of the strong ternary complex (right column of Fig. 3). One implication of this is that the weak-to-strong transition is accompanied by a disorder-to-order transition in both actin and myosin, and this is itself an excellent candidate for the structural change that produces force (Thomas et al. 1995). Another clear implication is that the crystal structures obtained for isolated myosin and actin are not likely to be reliable representations of structures that exist in ternary complexes of these proteins (Rayment et al. 1993a and 1993b; Dominguez et al. 1998; Houdusse et al. 1999). This is clearly true of the strong-binding states, since the spectroscopic studies indicate consistently that substantial changes occur in both proteins upon strong complex formation. For the weak complexes, the problem is not that complex formation induces large structural changes, but that the structures themselves are dynamically disordered. This is probably why so many different structures have been obtained for myosin S1 with nucleotides bound--each crystal is selecting one of the many different substates represented by the dynamic ensemble. Finally, there is the problem that the structures of actomyosin complexes are probably influenced strongly by their mechanical coupling to muscle protein lattice (Baker at al. 2000). Thus, even if co-crystals of actin and myosin are obtained in the future, an accurate description of the structural changes involved in force generation will require further experiments using site-directed spectroscopic probes of both actin and myosin, in order to detect the structural dynamics of these ternary complexes under physiological conditions.
Collapse
Affiliation(s)
- David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
19
|
Abstract
Modifications can be made to F-actin that do not interfere with the binding of myosin but inhibit force generation, suggesting that actin's internal dynamics are important for muscle contraction. Observations from electron microscopy and x-ray diffraction have shown that subunits in F-actin have a relatively fixed axial rise but a variable twist. One possible explanation for this is that the actin subunits randomly exist in different discrete states of "twist, " with a significant energy barrier separating these states. This would result in very slow torsional transitions. Paracrystals impose increased order on F-actin filaments by reducing the variability in twist. By looking at filaments that have recently been dissociated from paracrystals, we find that F-actin retains a "memory" of its previous environment that persists for many seconds. This would be consistent with slow torsional transitions between discrete states of twist.
Collapse
Affiliation(s)
- A Orlova
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908-0733, USA
| | | |
Collapse
|
20
|
Chandy IK, Lo JC, Ludescher RD. Differential mobility of skeletal and cardiac tropomyosin on the surface of F-actin. Biochemistry 1999; 38:9286-94. [PMID: 10413502 DOI: 10.1021/bi983073s] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polarized phosphorescence from the triplet probe erythrosin-5-iodoacetamide attached to sulfhydryls in rabbit skeletal and cardiac muscle tropomyosin (Tm) was used to measure the microsecond rotational dynamics of these tropomyosins in a complex with F-actin. The steady-state phosphorescence anisotropy of skeletal tropomyosin on F-actin was 0.025 +/- 0.005 at 20 degrees C; the comparable anisotropy for cardiac tropomyosin was 0.010 +/- 0. 003. Measurements of the anisotropy as a function of temperature and solution viscosity (modulated by addition of glycerol) indicated that both skeletal and cardiac tropomyosin undergo complex rotational motions on the surface of F-actin. Models assuming either long axis rotation of a rigid rod or torsional twisting of a flexible rod adequately fit these data; both analyses indicated that cardiac Tm is more mobile than skeletal Tm and that the increased mobility on the surface of F-actin reflected either the rotational motion of a smaller physical unit or the torsional twisting of a less rigid molecule. The binding of myosin heads (S1) to the Tm-F-actin complexes increased the anisotropy to 0.049 +/- 0.004 for skeletal and 0.054 +/- 0.007 for cardiac tropomyosin. The titration of the skeletal tropomyosin-F-actin complex by S1 showed a break at an S1/actin ratio of 0.14; this complex had an anisotropy of 0.040 +/- 0.007, suggesting that one bound head effectively restricted the motion of each skeletal tropomyosin. A similar titration with cardiac tropomyosin reached a plateau at an S1/actin ratio of 0.4, suggesting that 2-3 myosin heads are required to immobilize cardiac Tm. Surface mobility is predicted by structural models of the interaction of tropomyosin with the actin filament while the decrease in tropomyosin mobility upon S1 binding is consistent with current theories for the proposed role of myosin binding in the mechanism of tropomyosin-based regulation of muscle contraction.
Collapse
Affiliation(s)
- I K Chandy
- Department of Food Science, Rutgers, The State University, New Brunswick, New Jersey 08901-8520, USA
| | | | | |
Collapse
|
21
|
Smith DA. Direct tests of muscle cross-bridge theories: predictions of a Brownian dumbbell model for position-dependent cross-bridge lifetimes and step sizes with an optically trapped actin filament. Biophys J 1998; 75:2996-3007. [PMID: 9826619 PMCID: PMC1299970 DOI: 10.1016/s0006-3495(98)77740-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Force and displacement events from a single myosin molecule interacting with an actin filament suspended between optically trapped beads (Finer, J. T., R. M. Simmons, and J. A. Spudich. 1994. Nature. 368:113-119) can be interpreted in terms of a generalized cross-bridge model that includes the effects of Brownian forces on the beads. Steady-state distributions of force and displacement can be obtained directly from a generalized Smoluchowski equation for Brownian motion of the actin-bead "dumbbell," and time series from Monte Carlo simulations of the corresponding Langevin equation. When the frequency spectrum of Brownian motion extends beyond cross-bridge transition rates, the inverse mean lifetimes of force/displacement pulses are given by cross-bridge rate constants averaged over a Boltzmann distribution of Brownian noise. These averaged rate constants reflect the strain-dependence of the rate constants for the stationary filament, most faithfully at high trap stiffness. Hence, measurements of the lifetimes and displacements of single events as a function of the resting position of the dumbbell can provide a direct test of different cross-bridge theories of muscle contraction. Quantitative demonstrations are given for Huxley models with 1) faster binding or 2) slower dissociation at positive cross-bridge strain. Predictions for other models can be inferred from the averaging procedure.
Collapse
Affiliation(s)
- D A Smith
- The Randall Institute, King's College, London WC2B 5RL, United Kingdom.
| |
Collapse
|
22
|
Rebello CA, Ludescher RD. Influence of tightly bound Mg2+ and Ca2+, nucleotides, and phalloidin on the microsecond torsional flexibility of F-actin. Biochemistry 1998; 37:14529-38. [PMID: 9772181 DOI: 10.1021/bi981240i] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To better understand the relationship between structure and molecular dynamics in F-actin, we have monitored the torsional flexibility of actin filaments as a function of the type of tightly bound divalent cation (Ca2+ or Mg2+) or nucleotide (ATP or ADP), the level of inorganic phosphate and analogues, KCl concentration, and the level of phalloidin. Torsional flexibility on the microsecond time scale was monitored by measuring the steady-state phosphorescence emission anisotropy (rFA) of the triplet probe erythrosin-5-iodoacetamide covalently bound to Cys-374 of skeletal muscle actin; extrapolations to an infinite actin concentration corrected the measured anisotropy values for the influence of variable amounts of rotationally mobile G-actin in solution. The type of tightly bound divalent cation modulated the torsional flexibility of F-actin polymerized in the presence of ATP; filaments with Mg2+ bound (rFA = 0.066) at the active site cleft were more flexible than those with Ca2+ bound (rFA = 0.083). Filaments prepared from G-actin in the presence of MgADP were more flexible (rFA = 0.051) than those polymerized with MgATP; the addition of exogenous inorganic phosphate or beryllium trifluoride to ADP filaments, however, decreased the filament flexibility (increased the anisotropy) to that seen in the presence of MgATP. While variations in KCl concentration from 0 to 150 mM did not modulate the torsional flexibility of the filament, the binding of phalloidin decreased the torsional flexibility of all filaments regardless of the type of cation or nucleotide bound at the active site. These results emphasize the dynamic malleability of the actin filament, the role of the cation-nucleotide complex in modulating the torsional flexibility, and suggest that the structural differences that have previously been seen in electron micrographs of actin filaments manifest themselves as differences in torsional flexibility of the filament.
Collapse
Affiliation(s)
- C A Rebello
- Department of Food Science, Rutgers, The State University, New Brunswick, New Jersey 08901-8520, USA
| | | |
Collapse
|
23
|
Prochniewicz E, Thomas DD. Perturbations of functional interactions with myosin induce long-range allosteric and cooperative structural changes in actin. Biochemistry 1997; 36:12845-53. [PMID: 9335542 DOI: 10.1021/bi971201r] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of the rotational dynamics of actin filaments in their interaction with myosin was studied by comparing the effect of myosin subfragment 1 (S1) with two other structural perturbations, which have substantial inhibitory effects on activation of myosin ATPase and in vitro motility of F-actin: (1) binding of the antibody fragment Fab(1-7) against the first seven N-terminal residues and (2) copolymerization with monomers treated with the zero-length cross-linker 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), referred to as EDC-actin. The rotational motion of actin was measured by time-resolved phosphorescence anisotropy (TPA) of erythrosin iodoacetamide (ErIA) attached to Cys 374 on actin. The binding of S1 in a rigor complex (no nucleotide) induced intramonomer (allosteric) and intermonomer (cooperative) structural changes that increased the residual anisotropy of labeled F-actin, indicating a conformational change in the region of the C terminus. Similar allosteric and cooperative changes were induced by binding of Fab(1-7) and by copolymerization of the ErIA-labeled actin monomers with EDC-actin. This suggests that the functional perturbations transform actin to a form resembling the rigor actomyosin complex. The correlation of the perturbation-induced changes in TPA of actin with the functional effects suggests that the actomyosin interaction can be inhibited by stabilization of actin in one of its structural intermediates.
Collapse
Affiliation(s)
- E Prochniewicz
- Department of Biochemistry, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
24
|
Abstract
Actin is now realised to play a dynamic role in muscle contraction and many cellular motility events that occur when the motor domain of myosin uses the energy of ATP hydrolysis to move along the actin filament. Optical and electron microscopic studies have led to seemingly contradictory pictures of actin filament dynamics.
Collapse
Affiliation(s)
- E H Egelman
- Department of Cell Biology and Neuroanatomy, University of Minnesota Medical School, Minneapolis 55455, USA.
| |
Collapse
|
25
|
Tsuda Y, Yasutake H, Ishijima A, Yanagida T. Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation. Proc Natl Acad Sci U S A 1996; 93:12937-42. [PMID: 8917522 PMCID: PMC24024 DOI: 10.1073/pnas.93.23.12937] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/1996] [Accepted: 07/24/1996] [Indexed: 02/03/2023] Open
Abstract
Knowledge of the elastic properties of actin filaments is crucial for considering its role in muscle contraction, cellular motile events, and formation of cell shape. The stiffness of actin filaments in the directions of stretching and bending has been determined. In this study, we have directly determined the torsional rigidity and breaking force of single actin filaments by measuring the rotational Brownian motion and tensile strength using optical tweezers and microneedles, respectively. Rotational angular fluctuations of filaments supplied the torsional rigidity as (8.0 +/- 1.2) x 10(-26) Nm2. This value is similar to that deduced from the longitudinal rigidity, assuming the actin filament to be a homogeneous rod. The breaking force of the actin-actin bond was measured while twisting a filament through various angles using microneedles. The breaking force decreased greatly under twist, e.g., from 600-320 pN when filaments were turned through 90 degrees, independent of the rotational direction. Our results indicate that an actin filament exhibits comparable flexibility in the rotational and longitudinal directions, but breaks more easily under torsional load.
Collapse
Affiliation(s)
- Y Tsuda
- Department of Anesthesiology, Osaka University Medical School, Japan
| | | | | | | |
Collapse
|
26
|
Miki M, Kouyama T. Domain motion in actin observed by fluorescence resonance energy transfer. Biochemistry 1994; 33:10171-7. [PMID: 8060983 DOI: 10.1021/bi00199a045] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Actin is composed of two well-separated globular domains which are further subdivided into two subdomains [Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F., & Holmes, K. C. (1990) Nature 347, 37-44]. Subdomains 1 and 2 constitute the small domain, and subdomains 3 and 4 comprise the large domain. In order to test a hinge bending domain motion in actin such as observed in many kinases, fluorescence resonance energy transfer between two probes attached to each of the two domains was measured by steady-state and time-resolved fluorometers. The adenine base is bound in a hydrophobic pocket between subdomains 3 and 4, and Tyr-69 is located at subdomain 2. In the present study, the adenine moiety was labeled with a fluorescence donor, epsilon ATP, and tyrosine-69 was labeled with the energy acceptor, dansyl chloride. Assuming the random orientation factor k2 = 2/3, the distance between epsilon-adenine moiety and dansyl chloride attached to Tyr-69 in G-actin was determined to be 2.46 nm from steady-state fluorescence measurements. The addition of DNase I did not appreciably change the distance (less than 0.1 nm). The distance decreased to 2.27 nm during polymerization by the addition of phalloidin under physiological salt conditions. On the other hand, time-resolved fluorescence energy transfer measurements have been used to investigate a distribution of distances for a donor-acceptor pair. In G-actin, the mean distance between probes was 2.79 nm with a full width at half-maximum of 3.91 nm, indicating a large number of conformational substates in solution.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Miki
- Department of Applied Chemistry and BioTechnology, Fukui University, Japan
| | | |
Collapse
|
27
|
Belágyi J, Frey I, Pótó L. ADP-induced changes in ordering of spin-labelled myosin heads in muscle fibres. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 224:215-22. [PMID: 8076642 DOI: 10.1111/j.1432-1033.1994.tb20014.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rotational dynamics and ordering of myosin heads in glycerinated skeletal muscle fibres were studied using an isothiocyanate-based spin label attached to the fast-reacting thiol sites of myosin and were compared with data obtained for maleimide and iodoacetamide spin labels attached to the same sites. The ordering of probe molecules on the millisecond time scale in the rigor state, at sarcomere length 2.2-2.3 +/- 0.1 microns, was static. Isothiocyanate probe molecules showed greater mobility; the segment holding the label rotated in the microsecond time range. In the saturation transfer EPR time domain, MgADP did not produce a significant change in the mobility of spin labels. The spectra of isothiocyanate spin-labelled fibres were analyzed in terms of two narrow distributions with mean angles of 75 degrees and 56 degrees. In the rigor state, the fractions represented approximately 76% and 24% of the total EPR absorbance. In the presence of MgADP, the conventional EPR spectra showed large changes in the ordering of isothiocyanate probe molecules towards a new distribution, the population with a theta value of 56% increased from 24% to 71% at the expense of the 75% population with no change in the mean angles of the distributions. In the case of maleimide and iodoacetamide spin-labelled fibres, however, the effect of MgADP on the probe angular distribution was small.
Collapse
Affiliation(s)
- J Belágyi
- Central Research Laboratory, University Medical School, Pécs, Hungary
| | | | | |
Collapse
|
28
|
Ng CM, Ludescher RD. Microsecond rotational dynamics of F-actin in ActoS1 filaments during ATP hydrolysis. Biochemistry 1994; 33:9098-104. [PMID: 8049212 DOI: 10.1021/bi00197a011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rabbit skeletal muscle F-actin labeled at Cys374 with the triplet probe erythrosin-5-iodoacetamide had a steady-state phosphorescence anisotropy (rp) of 0.090 +/- 0.005 at 20 degrees C in 100 mM KCl, pH 7.0, buffer. Titration with skeletal muscle S1 fragment increased rp to 0.138 +/- 0.006 at a mole ratio of 1:1. In the presence of ATP, the anisotropy of the actoS1 complex initially decreased to 0.050 +/- 0.005, a value significantly smaller than the anisotropy of pure F-actin; rp subsequently increased to 0.126 +/- 0.002. The time course of the increase matched that expected from the measured actin-activated ATPase of S1. The plateau value at long time, 0.126, was identical to that of actoS1 in the presence of exogenous ADP or ADP plus phosphate. Characterization of the spectroscopic properties of the erythrosin probe indicated that the changes in rp were not due to changes in fast probe motions on the surface of the filament or the phosphorescence emission lifetime, or in the orientation of the probe on the surface of F-actin, suggesting that they reflect large-scale changes in the microsecond rotational dynamics of actin. ATP hydrolysis by actoS1 thus appeared to induce rotational motions of or within F-actin on the phosphorescence time scale (approximately 300 microseconds). Although the precise physical origin of the induced rotational motions is unknown, this study provides direct evidence that large-scale conformational fluctuations of the actin filament are associated with the force-generating event in actomyosin.
Collapse
Affiliation(s)
- C M Ng
- Department of Food Science, Rutgers University, New Brunswick, New Jersey
| | | |
Collapse
|
29
|
Naber N, Ostap EM, Thomas DD, Cooke R. Orientation and rotational dynamics of spin-labeled phalloidin bound to actin in muscle fibers. Proteins 1993; 17:347-54. [PMID: 8108377 DOI: 10.1002/prot.340170403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have used electron paramagnetic resonance spectroscopy (EPR) to investigate the orientational distribution of actin in thin filaments of glycerinated muscle fibers in rigor, relaxation, and contraction. A spin-labeled derivative of a mushroom toxin, phalloidin (PHSL), was bound to actin in the muscle fibers (PHSL-fibers). The EPR spectrum of unoriented PHSL-labeled myofibrils consisted of three sharp lines with a splitting between the outer extrema (2T parallel') of 42.8 +/- 0.1 G, indicating that the spin labels undergo restricted nanosecond rotational motion within an estimated half-cone angle of 76 degrees. When the PHSL-fiber bundle was oriented parallel to the magnetic field, the splitting between the zero-crossing points (2T') was 42.7 +/- 0.1 G. When the fiber bundle was perpendicular to the magnetic field, 2T' decreased to 34.5 +/- 0.2 G. This anisotropy shows that the motion of the probe is restricted in orientation by its binding site on actin, so that the EPR spectrum of PHSL-fiber bundles would be sensitive to small changes in the mean axial orientation of the PHSL-actin interface. No differences in the EPR spectra were observed in fibers during rigor, relaxation, or contraction, indicating that the mean axial orientation of the PHSL binding site changes by less than 5 degrees, and that the amplitude of nanosecond probe rotational motion, which should be quite sensitive to the local environment of the phalloidin, changes by no more than 1 degree.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N Naber
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0524
| | | | | | | |
Collapse
|
30
|
Ludescher RD, Ludescher WH. STEADY-STATE OPTICAL POLARIZATION ANISOTROPY OF RODLIKE MOLECULES UNDERGOING TORSIONAL TWISTING MOTIONS. Photochem Photobiol 1993. [DOI: 10.1111/j.1751-1097.1993.tb04987.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Ludescher RD, Liu Z. Characterization of skeletal muscle actin labeled with the triplet probe erythrosin-5-iodoacetamide. Photochem Photobiol 1993; 58:858-66. [PMID: 8310009 DOI: 10.1111/j.1751-1097.1993.tb04984.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have labeled rabbit skeletal muscle actin with the triplet probe erythrosin-5-iodoacetamide and characterized the labeled protein. Labeling decreased the critical concentration and lowered the intrinsic viscosity of F-actin filaments; labeled filaments were motile in an in vitro motility assay but were less effective than unlabeled F-actin in activating myosin S1 ATPase activity. In unpolymerized globular actin (G-actin), both the prompt and delayed luminescence were red-shifted from the spectra of the free dye in solution and the fluorescence anisotropy of the label was high (0.356); filament formation red shifted all excitation and emission spectra and increased the fluorescence anisotropy to 0.370. The erythrosin phosphorescence decay was at least biexponential in G-actin with an average lifetime of 99 microseconds while in F-actin the decay was approximately monoexponential with a lifetime of 278 microseconds. These results suggest that the erythrosin dye was bound at the interface between two actin monomers along the two-start helix. The steady-state phosphorescence anisotropy of F-actin was 0.087 at 20 degrees C and the anisotropy increased to approximately 0.16 in immobilized filaments. The phosphorescence anisotropy was also sensitive to binding the physiological ligands phalloidin, cytochalasin B and tropomyosin. This study lays a firm foundation for the use of this triplet probe to study the large-scale molecular dynamics of F-actin.
Collapse
Affiliation(s)
- R D Ludescher
- Department of Food Science, Rutgers, State University, New Brunswick, NJ 08903-0231
| | | |
Collapse
|
32
|
Abstract
History of actin research is reviewed with special emphasis on dynamics of the G-F transformation and flexibility or intrafilamentous mobility of F-actin. Good correlation was found between the flexibility of F-actin and its activity in cell motility. In molecular machines such as the flagellar motor and the sliding machine of F-actin and myosin, the coupling between influx and efflux seems to be loose. F-actin would assume multiple active states during sliding on myosin with hydrolysis of ATP. Recently, the three-dimensional structure of actin molecule in crystals has been determined. Actin research is expected to give an answer to the question on the physiological significance of internal mobility of protein molecules and their assemblies and the structural origin of such mobility.
Collapse
Affiliation(s)
- F Oosawa
- Aichi Institute of Technology, Toyota, Japan
| |
Collapse
|
33
|
Burlacu S, Janmey PA, Borejdo J. Distribution of actin filament lengths measured by fluorescence microscopy. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 262:C569-77. [PMID: 1312777 DOI: 10.1152/ajpcell.1992.262.3.c569] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We analyzed the distribution of actin filament lengths by optical microscopy (OM). OM avoids possible alterations in the size or structure of actin filaments occurring during sample preparation for electron microscopy (EM). Images of F-actin labeled with tetramethylrhodamine isothiocyanate (TRITC)-phalloidin were analyzed for both size distribution and flexibility. In the standard buffer [25 mM potassium acetate, 4 mM MgSO4, 25 mM tris(hydroxymethyl)aminomethane acetate, pH 7.5, 20 mM beta-mercaptoethanol] filaments did not aggregate into bundles and remained stable at nanomolar concentrations for at least 1 h. At the same concentration, actin labeled directly with rhodamine (no phalloidin) formed unstable filaments whose average length decreased with time. The number average length of TRITC-phalloidin labeled filaments (Ln) was 4.90 microns, the ratio (rho) of the weight average length to the number average length was 2.06, and the correlation length (1/lambda) was 8.33 microns. These parameters were in good agreement with the values determined by EM for filaments shorter than 8 microns. Passing G-actin through a Sephadex G-150 column before polymerization did not have a significant effect on the distribution of lengths but made filaments more stiff (1/lambda = 12.5 microns). Millimolar concentration of ATP increased the correlation length, and gelsolin had the expected fragmenting effect on filaments. These results show that OM can be used as a fast and reliable method to analyze the distribution and flexibility of actin filaments and suggest that, in spite of extensive manipulation of actin filaments during sample preparation, EM is a valid tool for determination of size parameters of actin filaments.
Collapse
Affiliation(s)
- S Burlacu
- Baylor Research Institute, Baylor University Medical Center, Dallas, Texas 75226
| | | | | |
Collapse
|
34
|
Ostap EM, Thomas DD. Rotational dynamics of spin-labeled F-actin during activation of myosin S1 ATPase using caged ATP. Biophys J 1991; 59:1235-41. [PMID: 1651780 PMCID: PMC1281203 DOI: 10.1016/s0006-3495(91)82338-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The most probable source of force generation in muscle fibers in the rotation of the myosin head when bound to actin. This laboratory has demonstrated that ATP induces microsecond rotational motions of spin-labeled myosin heads bound to actin (Berger, C. L. E. C. Svensson, and D. D. Thomas. 1989. Proc. Natl. Acad. Sci. USA. 86:8753-8757). Our goal is to determine whether the observed ATP-induced rotational motions of actin-bound heads are accompanied by changes in actin rotational motions. We have used saturation transfer electron paramagnetic resonance (ST-EPR) and laser-induced photolysis of caged ATP to monitor changes in the microsecond rotational dynamics of spin-labeled F-actin in the presence of myosin subfragment-1 (S1). A maleimide spin label was attached selectively to cys-374 on actin. In the absence of ATP (with or without caged ATP), the ST-EPR spectrum (corresponding to an effective rotational time of approximately 150 microseconds) was essentially the same as observed for the same spin label bound to cys-707 (SH1) on S1, indicating that S1 is rigidly bound to actin in rigor. At normal ionic strength (micro = 186 mM), a decrease in ST-EPR intensity (increase in microsecond F-actin mobility) was clearly indicated upon photolysis of 1 mM caged ATP with a 50-ms, 351-nm laser pulse. This increase in mobility is due to the complete dissociation of Si from the actin filament. At low ionic strength (micro, = 36 mM), when about half the Si heads remain bound during ATP hydrolysis, no change in the actin mobility was detected, despite much faster motions of labeled S1 bound to actin. Therefore, we conclude that the active interaction of Si, actin,and ATP induces rotation of myosin heads relative to actin, but does not affect the microsecond rotational motion of actin itself, as detected at cys-374 of actin.
Collapse
Affiliation(s)
- E M Ostap
- Department of Biochemistry, University of Minnesota Medical School, Minneapolis 55455
| | | |
Collapse
|
35
|
|
36
|
Abstract
In the X-ray diffraction pattern from oriented gels of actin-containing filaments sampling of layer lines indicating the development of a well-ordered pseudo-hexagonal lattice within the gels at interfilament spacings as large as 13 nm is observed. This value exceeds by 3 nm the largest estimate of an external diameter of pure f-actin. The development of layer line sampling is always accompanied by: (i) the appearance of strong forbidden meridional reflections on the 5.9- and 5.1-nm layer lines; (ii) a drastic intensification of the first (expected) 2.75-nm meridional reflection by a factor of about 4; (iii) the appearance of streaks, connecting near-meridional reflections on the 5.9-, 5.1-, and 37-nm layer lines; and (iv) a slight decrease in the number of subunits per turn of the basic f-actin helix. All these features strongly indicate that f-actin filaments are supercoiled and make regular local contacts between themselves, which may lead to periodic distortions of the mobile external domain in the actin subunits.
Collapse
Affiliation(s)
- V V Lednev
- Institute of Biological Physics, USSR Academy of Science, Pouchino, Moskow Region
| | | |
Collapse
|
37
|
Geacintov NE, Brenner HC. The triplet state as a probe of dynamics and structure in biological macromolecules. Photochem Photobiol 1989; 50:841-58. [PMID: 2696992 DOI: 10.1111/j.1751-1097.1989.tb02916.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
38
|
Taylor KA, Reedy MC, Córdova L, Reedy MK. Three-dimensional image reconstruction of insect flight muscle. I. The rigor myac layer. J Cell Biol 1989; 109:1085-102. [PMID: 2768334 PMCID: PMC2115762 DOI: 10.1083/jcb.109.3.1085] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have obtained detailed three-dimensional images of in situ cross-bridge structure in insect flight muscle by electron microscopy of multiple tilt views of single filament layers in ultrathin sections, supplemented with data from thick sections. In this report, we describe the images obtained of the myac layer, a 25-nm longitudinal section containing a single layer of alternating myosin and actin filaments. The reconstruction reveals averaged rigor cross-bridges that clearly separate into two classes constituting lead and rear chevrons within each 38.7-nm axial repeat. These two classes differ in tilt angle, size and shape, density, and slew. This new reconstruction confirms our earlier interpretation of the lead bridge as a two-headed cross-bridge and the rear bridge as a single-headed cross-bridge. The importance of complementing tilt series with additional projections outside the goniometer tilt range is demonstrated by comparison with our earlier myac layer reconstruction. Incorporation of this additional data reveals new details of rigor cross-bridge structure in situ which include clear delineation of (a) a triangular shape for the lead bridge, (b) a smaller size for the rear bridge, and (c) density continuity across the thin filament in the lead bridge. Within actin's regular 38.7-nm helical repeat, local twist variations in the thin filament that correlate with the two cross-bridge classes persist in this new reconstruction. These observations show that in situ rigor cross-bridges are not uniform, and suggest three different myosin head conformations in rigor.
Collapse
Affiliation(s)
- K A Taylor
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710-3011
| | | | | | | |
Collapse
|
39
|
Vanderkooi JM, Berger JW. Excited triplet states used to study biological macromolecules at room temperature. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 976:1-27. [PMID: 2669975 DOI: 10.1016/s0005-2728(89)80185-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- J M Vanderkooi
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
40
|
Mihashi K, Suzuki N, Ooi A. Ca2+-dependent regulation of the dynamic polarity of F-actin under the influence of tropomyosin and troponin. Biophys Chem 1989; 33:195-204. [PMID: 2752094 DOI: 10.1016/0301-4622(89)80021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel method that we have developed in the preceding paper to study the subunit exchange rates of F-actin (N. Suzuki and K. Mihashi, Biophys. Chem. 33 (1989) 177) was applied to regulated F-actin (a complex of F-actin, tropomyosin and troponin). We found that the dynamic polarity of regulated F-actin is modulated in a Ca2+-dependent manner, giving rise to strong suppression of the on/off rates of subunit exchange at the P-end. We interpreted this characteristic suppression as follows. Removal of Ca2+ from troponin C in regulated F-actin produces strong constraints on fluctuations in potential energy of an intermediate conformation of the terminal structure (P-end) which would be formed in the course of association and dissociation of the actin subunit.
Collapse
Affiliation(s)
- K Mihashi
- Department of Physics, Faculty of Science, Nagoya University, Japan
| | | | | |
Collapse
|
41
|
Erickson HP. Co-operativity in protein-protein association. The structure and stability of the actin filament. J Mol Biol 1989; 206:465-74. [PMID: 2716058 DOI: 10.1016/0022-2836(89)90494-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Co-operative association, in which a protein subunit is held simultaneously by two bonds, is enormously more favorable than association forming either bond alone. A theoretical framework for calculating the effect of co-operativity is developed here, which should have a broad application to protein-protein and protein-DNA associations. The theory is applied in detail to actin. Fragmentation of an actin filament is extremely unfavorable: the association constant for annealing-fragmentation is estimated here to be at least 10(13) M-1. In contrast to these very strong bonds within the filament, subunits are loosely attached at the end, with an association constant of 2 x 10(5) M-1. The eight orders of magnitude difference between annealing-fragmentation and end association can be attributed to the co-operative formation of one additional protein-protein bond in the annealing reaction. This observation, and a quantitative analysis of the co-operativity, lead to an important conclusion: the longitudinal bond, which connects subunits in the long-pitch helix, must be substantially stronger than the diagonal bond, which connect subunits between these helices. This conclusion contradicts some recent models based on Fourier construction, in which the longitudinal bond is weak or absent. Prominent longitudinal bonds also require a rigidity of the actin filament that must be reconciled with previous reports of torsional flexibility. A hinge within the actin subunit is suggested, separating it into two flexibly attached domains. In one possible model the two domains are oriented radially: the inner domains are connected by longitudinal and diagonal bonds to form a relatively rigid helical backbone, and the outer domains are attached to this backbone by flexible hinges, permitting them to move through angles of 10 degrees to 20 degrees or more. Flexibility of the outer, myosin-binding domain should be functionally important, permitting attachment of myosin cross-bridges over a range of angles.
Collapse
Affiliation(s)
- H P Erickson
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
42
|
Jovin TM, Vaz WL. Rotational and translational diffusion in membranes measured by fluorescence and phosphorescence methods. Methods Enzymol 1989; 172:471-513. [PMID: 2747540 DOI: 10.1016/s0076-6879(89)72030-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
43
|
Mossakowska M, Belágyi J, Strzelecka-Gołaszewska H. An EPR study of the rotational dynamics of actins from striated and smooth muscle and their complexes with heavy meromyosin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 175:557-64. [PMID: 2842155 DOI: 10.1111/j.1432-1033.1988.tb14228.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The rotational motions of the actin from rabbit skeletal muscle and from chicken gizzard smooth muscle were measured by conventional and saturation transfer electron paramagnetic resonance (EPR) spectroscopy using maleimide spin-label rigidly bound at Cys-374. The conventional EPR spectra indicate a slight difference in the polarity of the environment of the label and in the rotational mobility of the monomeric gizzard actin compared to its skeletal muscle counterpart. These differences disappear upon polymerization. The EPR spectra of the two actins in their F form and in their complexes with heavy meromyosin (HMM) did not reveal any difference in the rotational dynamic properties that might be correlated with the known differences in the activation of myosin ATPase activity by smooth and skeletal muscle actin. Our results agree with earlier EPR studies on skeletal muscle actin in showing that polymerization stops the nanosecond rotational motion of actin monomers and that F-actin undergoes rotational motion having an effective correlation time of the order of 0.1 ms. However, our measurements show that complete elimination of the nanosecond motions requires prolonged incubation of F-actin, suggesting that the slow formation of interfilamental cross-links in concentrated F-actin solutions contributes to this process. We have also used the EPR spectroscopy to study the interaction between HMM and actin in the F and G form. Our results show that in the absence of salt one HMM molecule can cooperatively interact with eight monomers to produce a polymer which closely resembles F-actin in its rotational mobility but differs from the complex of F-actin with HMM. The results indicate that salt is necessary for further slowing down, in a cooperative manner, the sub-millisecond internal motion in actin polymer and for a non-cooperative change in the intramonomer conformation around Cys-374 on the binding of HMM.
Collapse
Affiliation(s)
- M Mossakowska
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, Warszawa, Poland
| | | | | |
Collapse
|
44
|
Kinosita K, Ikegami A. Dynamic structure of membranes and subcellular components revealed by optical anisotropy decay methods. Subcell Biochem 1988; 13:55-88. [PMID: 2577863 DOI: 10.1007/978-1-4613-9359-7_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Blatt E, Sawyer WH. The study of cytoskeletal protein interactions by fluorescence probe techniques. Subcell Biochem 1988; 13:323-61. [PMID: 2577859 DOI: 10.1007/978-1-4613-9359-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Abstract
Previous studies demonstrated that actin filaments have variable twist in which the intersubunit angles vary by approximately +/- 10 degrees within a filament. In this work we show that this variability was unchanged when different methods were used to prepare filaments for electron microscopy. We also show that actin-binding proteins can modulate the variability in twist. Three preparations of actin filaments were photographed in the electron microscope: negatively stained filaments, replicas of rapidly frozen, etched filaments, and frozen hydrated filaments. In addition, micrographs of actin + tropomyosin + troponin (thin filaments), of actin + myosin S1 (decorated filaments), and of filaments frayed from the acrosomal process of Limulus sperm (Limulus filaments) were obtained. We used two independent methods to measure variable twist based on Fourier transforms of single filaments. The first involved measuring layer line intensity versus filament length and the second involved measuring layer line position. We measured a variability in the intersubunit angle of actin filaments of approximately 12 degrees independent of the method of preparation or of measurement. Thin filaments have 15 degrees of variability, but the increase over pure actin is not statistically significant. Decorated filaments and Limulus filaments, however, have significantly less variability (approximately 2 and 1 degree, respectively), indicating a torsional stiffening relative to actin. The results from actin alone using different preparative methods are evidence that variable twist is a property of actin in solution. The results from actin filaments in the presence of actin-binding proteins suggest that the angular variability can be modulated, depending on the biological function.
Collapse
|
47
|
Xu SG, Kress M, Huxley HE. X-ray diffraction studies of the structural state of crossbridges in skinned frog sartorius muscle at low ionic strength. J Muscle Res Cell Motil 1987; 8:39-54. [PMID: 3496357 DOI: 10.1007/bf01767263] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Low-angle X-ray diffraction diagrams were obtained from chemically skinned frog sartorius muscles under low ionic strength relaxing conditions. Experiments on single muscle fibres from rabbit muscle and on muscle proteins in solution have suggested the presence of a 'low ionic strength attached state' of the myosin crossbridges to actin, in which the overall ATP splitting and force-generating cycle is still blocked. This opened up the possibility that structural information about one of the intermediate states in the crossbridge cycle might be obtained under these conditions. Using synchrotron radiation as a high intensity X-ray source we were able to record the appropriate diffraction diagrams with short exposure times and were able to compare the same muscles at normal and at low ionic strength. Changes in the intensities of the equatorial reflections an increase in the 143 A meridional intensity can be interpreted in a similar way. However, these attached bridges do not give rise to changes in the actin-based layer line reflections, nor is their presence associated with a weakening of the myosin layer line pattern. These results provide further evidence for the existence of bound states of crossbridges, in which their orientation relative to actin is not sharply defined.
Collapse
|
48
|
Waring AJ, Cooke R. The molecular dynamics of actin measured by a spin probe attached to lysine. Arch Biochem Biophys 1987; 252:197-205. [PMID: 3028257 DOI: 10.1016/0003-9861(87)90024-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rabbit skeletal muscle G-actin was labeled with a spin probe, 3-(5-fluoro-2,4-dinitroanilino)proxyl. Tryptic digestion of the labeled actin followed by ultrafiltration and ion-exchange column chromatography indicated that the label was attached to residue Lys-61. This residue is found within a 9-kDa N-terminal segment that is easily degraded by proteolytic enzymes. The rate of reduction of the nitroxide bond by ascorbate was measured to determine the accessibility of the probe to small molecules in the solvent. These experiments showed that label bound to G-actin was relatively inaccessible to ascorbate, suggesting that it is buried within the protein structure. Polymerization further decreased the accessibility of the probe. Replacing bound Ca2+ with Mn2+ decreased the observed intensity of the electron paramagnetic resonance signal, indicating the spin label is about 2 nm distant from the metal binding site on the actin molecule. Labels attached to G-actin displayed an absorption spectrum characteristic of rotational motion with a correlation time (tau c) of 7 X 10(-9) s, which is faster than that for the whole molecule. Labels attached to F-actin had a value of tau c, measured using saturation transfer electron paramagnetic resonance, of 2 X 10(-5) s, which shows that the probe has a greater degree of mobility than the filament. The binding of heavy meromyosin or troponin-tropomyosin to labeled actin resulted in a further increase in the rotational correlation times, with the greatest decrease in mobility (tau c = 1 X 10(-4) s) observed when both were bound. Together the above results suggest that the 9-kDa segment of actin is mobile relative to the rest of the molecule and that this mobility can be influenced by the binding of heavymeromyosin or troponin-tropomyosin.
Collapse
|
49
|
Abstract
Knowledge of the mechanism of contraction has been obtained from studies of the interaction of actin and myosin in solution, from an elucidation of the structure of muscle fibers, and from measurements of the mechanics and energetics of fiber contraction. Many of the states and the transition rates between them have been established for the hydrolysis of ATP by actin and myosin subfragments in solution. A major goal is to now understand how the kinetics of this interaction are altered when it occurs in the organized array of the myofibril. Early work on the structure of muscle suggested that changes in the orientation of myosin cross-bridges were responsible for the generation of force. More recently, fluorescent and paramagnetic probes attached to the cross-bridges have suggested that at least some domains of the cross-bridges do not change orientation during force generation. A number of properties of active cross-bridges have been defined by measurements of steady state contractions of fibers and by the transients which follow step changes in fiber length or tension. Taken together these studies have provided firm evidence that force is generated by a cyclic interaction in which a myosin cross-bridge attaches to actin, exerts force through a "powerstroke" of 12 nm, and is then released by the binding of ATP. The mechanism of this interaction at the molecular level remains unknown.
Collapse
|
50
|
|