1
|
Jeong JW, Snay J, Ataai MM. A mathematical model for examining growth and sporulation processes of Bacillus subtilis. Biotechnol Bioeng 2010; 35:160-84. [PMID: 18592506 DOI: 10.1002/bit.260350208] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A mathematical model for the growth process of the bacterium Bacillus subtilis is described. The model is a highly structured one. The driving motivation for development of the model and explicit accounting of major interactions of metabolic networks in the model is related to our eventual goal that the model will be used in the analysis of complex biological patterns. Bacillus subtilis was chosen in our study due to the interesting sporulation process that these cells undergo in response to adverse environmental conditions including nutrient limitation. Sporulation process in B. subtilis represents a primordial prototype of cellular differentiation in higher cellular systems. Thus a model for the B. subtilis growth process should prove extremely useful for understanding questions of developmental biology. The model is capable of simulating the transition between the exponential and stationary phase of growth in a batch culture. Since during the transition period the growth process and the metabolism become decoupled and many transient processes are taking place, such predictions are a severe test for the validity of any model. A strategy to examine the leading hypothesis on B. subtills sporulation implementing GTP as a component which signals sporulation initiation is described.
Collapse
Affiliation(s)
- J W Jeong
- Chemical and Petroleum Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
2
|
Roth V, Aigle B, Bunet R, Wenner T, Fourrier C, Decaris B, Leblond P. Differential and cross-transcriptional control of duplicated genes encoding alternative sigma factors in Streptomyces ambofaciens. J Bacteriol 2004; 186:5355-65. [PMID: 15292136 PMCID: PMC490935 DOI: 10.1128/jb.186.16.5355-5365.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The duplicated hasR and hasL genes of Streptomyces ambofaciens encode alternative sigma factors (named sigma(B(R)) and sigma(B(L))) belonging to the sigma(B) general stress response family in Bacillus subtilis. The duplication appears to be the result of a recent event that occurred specifically in S. ambofaciens. The two genes are 98% identical, and their deduced protein products exhibit 97% identity at the amino acid level. In contrast with the coding sequences, their genetic environments and their transcriptional control are strongly divergent. While hasL is monocistronic, hasR is arranged in a polycistronic unit with two upstream open reading frames, arsR and prsR, that encode putative anti-anti-sigma and anti-sigma factors, respectively. Transcription of each has gene is initiated from two promoters. In each case, one promoter was shown to be developmentally controlled and to be similar to those recognized by the B. subtilis general stress response sigma factor sigma(B). Expression from this type of promoter for each of the has genes dramatically increases during the course of growth in liquid or on solid media and following oxidative and osmotic stresses. Reverse transcription-PCR measurements indicate that hasR is 100 times more strongly expressed than hasL from the sigma(B)-like promoter. Transcription from the second promoter of each gene (located upstream of arsR in the case of the hasR locus) appears to be constitutive and weak. Quantitative transcriptional analysis in single and double has mutant strains revealed that sigma(B(R)) and sigma(B(L)) direct their own transcription as well as that of their duplicates. Only a slight sensitivity in response to oxidative conditions could be assigned to either single or double mutants, revealing the probable redundancy of the sigma factors implied in stress response in Streptomyces.
Collapse
MESH Headings
- Adaptation, Physiological
- Bacillus subtilis/genetics
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- Gene Deletion
- Gene Duplication
- Gene Expression Regulation, Bacterial
- Gene Order
- Genes, Bacterial
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation
- Operon
- Osmotic Pressure
- Oxidative Stress
- Promoter Regions, Genetic
- RNA, Bacterial/analysis
- RNA, Messenger/analysis
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Sigma Factor/genetics
- Sigma Factor/metabolism
- Streptomyces/genetics
- Streptomyces/growth & development
- Streptomyces/physiology
- Trans-Activators/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Virginie Roth
- Laboratoire de Génétique et Microbiologie, UMR UHP-INRA 1128, IFR 110, Faculté des Sciences et Techniques, Université Henri Poincaré, Nancy 1, 54506 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
3
|
Carniol K, Kim TJ, Price CW, Losick R. Insulation of the sigmaF regulatory system in Bacillus subtilis. J Bacteriol 2004; 186:4390-4. [PMID: 15205443 PMCID: PMC421598 DOI: 10.1128/jb.186.13.4390-4394.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factors sigmaF and sigmaB are related RNA polymerase sigma factors that govern dissimilar networks of adaptation to stress conditions in Bacillus subtilis. The two factors are controlled by closely related regulatory pathways, involving protein kinases and phosphatases. We report that insulation of the sigmaF pathway from the sigmaB pathway involves the integrated action of both the cognate kinase and the cognate phosphatase.
Collapse
Affiliation(s)
- Karen Carniol
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 01238, USA
| | | | | | | |
Collapse
|
4
|
Viollier PH, Kelemen GH, Dale GE, Nguyen KT, Buttner MJ, Thompson CJ. Specialized osmotic stress response systems involve multiple SigB-like sigma factors in Streptomyces coelicolor. Mol Microbiol 2003; 47:699-714. [PMID: 12535070 DOI: 10.1046/j.1365-2958.2003.03302.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Whereas in Bacillus subtilis, a general stress response stimulon under the control of a single sigma factor (SigB) is induced by different physiological and environmental stresses (heat, salt or ethanol shock), in Streptomyces coelicolor, these environmental stresses induce independent sets of proteins, and its genome encodes nine SigB paralogues. To investigate possible functions of multiple sigB-like genes in S. coelicolor, Pctc, a promoter routinely used to assay SigB activity in vivo, was analysed as a heterologous reporter. The fact that Pctc was activated by osmotic shock, but not by heat or ethanol, confirmed that stress response system(s) could operate independently in S. coelicolor. Pctc was also induced transiently during growth of liquid cultures, presumably by nutritional signals. We purified an RNA polymerase holoenzyme from crude extracts that catalysed specific transcription of Pctc in vitro. Its sigma subunit was identified as a product of the sigH gene, which is co-transcribed downstream of a putative antisigma factor gene (prsH). Although the sigH function was not needed for normal colony morphology, prsH was conditionally required for both aerial hyphae formation and regulation of antibiotic biosynthesis. Levels of two different sigH-encoded proteins were growth phase dependent but not significantly changed by osmotic stress, implying the important roles of post-translational regulatory elements such as PrsH. In addition, synthesis of three other SigH-like proteins was induced by osmotic stress, but not by ethanol or heat. Two of them were genetically assigned to sigH homologous loci sigI and sigJ and shown to be independently regulated. This family of SigH-like proteins displayed different osmotic response kinetics. Thus, in contrast to many other bacteria, S. coelicolor uses an osmotic sensory system that can co-ordinate the activity of multiple paralogues to control the relative activity of promoters within the same stress stimulon. Such specialized stress response systems may reflect adaptive functions needed for colonial differentiation.
Collapse
Affiliation(s)
- Patrick H Viollier
- Division of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
One of the strongest and most noticeable responses of a Bacillus subtilis cell to a range of stress and starvation conditions is the dramatic induction of a large number of general stress proteins. The alternative sigma factor sigma B is responsible for the induction of the genes encoding these general stress proteins that occurs following heat, ethanol, salt or acid stress, or during energy depletion. sigma B was detected more than 20 years ago by Richard Losick and William Haldenwang as the first alternative sigma factor of bacteria, but interest in sigma B declined after it was realized that sigma B is not involved in sporulation. It later turned out that sigma B, whose activity itself is tightly controlled, is absolutely required for the induction of this regulon, not only in B. subtilis, but also in other Gram-positive bacteria. These findings may have been responsible for the recent revival of interest in sigma B. This chapter summarizes the current information on this sigma B response including the latest results on the signal transduction pathways, the structure of the regulon and its physiological role. More than 150 general stress proteins/genes belong to this sigma B regulon, which is believed to provide the non-growing cell with a non-specific, multiple and preventive stress resistance. sigma B-dependent stress proteins are involved in non-specific protection against oxidative stress and also protect cells against heat, acid, alkaline or osmotic stress. A cell in the transition from a growing to a non-growing state induced by energy depletion will be equipped with a comprehensive stress resistance machine to protect it against future stress. The protection against oxidative stress may be an essential part of this response. In addition, preloading of cells with sigma B-dependent stress proteins, induced by mild heat or salt stress, will protect cells against a severe, potentially lethal, future stress. Both the specific protection against an acute emerging stress, as well as the non-specific, prospective protection against future stress, are adaptive functions crucial for surviving stress and starvation in nature. We suggest that the sigma B response is one essential component of a survival strategy that ensures survival in a quiescent, vegetative state as an alternative to sporulation. The role of sigma B in related Gram-positive bacteria (including cyanobacteria) with special emphasis on pathogenic bacteria is discussed.
Collapse
Affiliation(s)
- M Hecker
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie, Friedrich-Ludwig-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | | |
Collapse
|
6
|
Cho YH, Lee EJ, Ahn BE, Roe JH. SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of Streptomyces coelicolor. Mol Microbiol 2001; 42:205-14. [PMID: 11679079 DOI: 10.1046/j.1365-2958.2001.02622.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A gene (sigB) encoding an alternative sigma factor sigmaB in Streptomyces coelicolor A3(2) was isolated and characterized. It encodes a polypeptide of 281 amino acids (31 546 Da) and is highly homologous to Bacillus subtilis sigmaB. The sigB coding region is preceded by four open reading frames (ORFs): dpsA, orfA, rsbB and rsbA in sequential order. RNA analyses revealed that rsbB, rsbA and sigB constitute an operon (sigB operon). Transcripts were produced constitutively from a promoter (sigBp2) upstream of the rsbB coding region, contributing to the basal level expression of sigmaB protein. An inducible promoter (sigBp1) resembling the catB promoter (catBp) was located between the rsbA and sigB coding regions. Transcripts from sigBp1 dramatically increased as cells differentiated on solid media, at the stationary phase in liquid media or by osmotic stresses similar to the behaviour of catBp transcripts. Both catBp and sigBp1 promoters were recognized specifically by sigmaB-containing RNA polymerase in vitro. Disruption of the sigB gene abolished not only the differentiation-associated expression but also the osmotic induction of the catB gene, indicating that catBp is under the control of sigmaB. The sigB mutant exhibited a similar phenotype to the catB mutant, being sensitive to hyperosmolarity, blocked in forming aerial mycelium and with skewed antibiotic production. Therefore, we conclude that sigmaB ensures the proper differentiation and osmoprotection of S. coelicolor cells, primarily via regulation of the expression of catalase B.
Collapse
Affiliation(s)
- Y H Cho
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
7
|
Fouet A, Namy O, Lambert G. Characterization of the operon encoding the alternative sigma(B) factor from Bacillus anthracis and its role in virulence. J Bacteriol 2000; 182:5036-45. [PMID: 10960085 PMCID: PMC94649 DOI: 10.1128/jb.182.18.5036-5045.2000] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2000] [Accepted: 06/19/2000] [Indexed: 11/20/2022] Open
Abstract
The operon encoding the general stress transcription factor sigma(B) and two proteins of its regulatory network, RsbV and RsbW, was cloned from the gram-positive bacterium Bacillus anthracis by PCR amplification of chromosomal DNA with degenerate primers, by inverse PCR, and by direct cloning. The gene cluster was very similar to the Bacillus subtilis sigB operon both in the primary sequences of the gene products and in the order of its three genes. However, the deduced products of sequences upstream and downstream from this operon showed no similarity to other proteins encoded by the B. subtilis sigB operon. Therefore, the B. anthracis sigB operon contains three genes rather than eight as in B. subtilis. The B. anthracis operon is preceded by a sigma(B)-like promoter sequence, the expression of which depends on an intact sigma(B) transcription factor in B. subtilis. It is followed by another open reading frame that is also preceded by a promoter sequence similarly dependent on B. subtilis sigma(B). We found that in B. anthracis, both these promoters were induced during the stationary phase and induction required an intact sigB gene. The sigB operon was induced by heat shock. Mutants from which sigB was deleted were constructed in a toxinogenic and a plasmidless strain. These mutants differed from the parental strains in terms of morphology. The toxinogenic sigB mutant strain was also less virulent than the parental strain in the mouse model. B. anthracis sigma(B) may therefore be a minor virulence factor.
Collapse
Affiliation(s)
- A Fouet
- Toxines et Pathogénie Bactériennes (URA 1858, CNRS), Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
8
|
Moch C, Schrögel O, Allmansberger R. Transcription of the nfrA-ywcH operon from Bacillus subtilis is specifically induced in response to heat. J Bacteriol 2000; 182:4384-93. [PMID: 10913069 PMCID: PMC94607 DOI: 10.1128/jb.182.16.4384-4393.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NfrA protein, an oxidoreductase from the soil bacterium Bacillus subtilis, is synthesized during the stationary phase and in response to heat. Analysis of promoter mutants revealed that the nfrA gene belongs to the class III heat shock genes in B. subtilis. An approximate 10-fold induction at both the transcriptional and the translational levels was found after thermal upshock. This induction resulted from enhanced synthesis of mRNA. Genetic and Northern blot analyses revealed that nfrA and the gene downstream of nfrA are transcribed as a bicistronic transcriptional unit. The unstable full-length transcript is processed into two short transcripts encoding nfrA and ywcH. The nfrA-ywcH operon is not induced by salt stress or by ethanol. According to previously published data, the transcription of class III genes in general is activated in response to the addition of these stressors. However, this conclusion is based on experiments which lacked a valid control. Therefore, it seems possible that the transcription of all class III genes is specifically induced by heat shock.
Collapse
Affiliation(s)
- C Moch
- Lehrstuhl für Mikrobiologie, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | | | | |
Collapse
|
9
|
Cho YH, Lee EJ, Roe JH. A developmentally regulated catalase required for proper differentiation and osmoprotection of Streptomyces coelicolor. Mol Microbiol 2000; 35:150-60. [PMID: 10632885 DOI: 10.1046/j.1365-2958.2000.01685.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptomyces coelicolor produces at least three catalases, the expression of which varies under different conditions. We characterized a gene (catB) for developmentally controlled catalase of 779 amino acids (83408 Da), homologous to KatE of Escherichia coli and Bacillus subtilis. Expression of the catB gene increased at the stationary phase in liquid culture and after the onset of differentiation on solid culture. It was also increased by osmotic treatments. Transcription was initiated from a promoter (catBp), whose sequence (ATGCCTCG-N13-GGGTAC) resembled promoters recognized by sigmaB of B. subtilis. CatB protein underwent proteolytic cleavage of its N-terminal 95 amino acids and was secreted to the medium when cells sporulated. Disruption of the catB gene caused impairment in the formation of aerial mycelium and reduction in the synthesis of undecylprodigiosin. On the contrary, hyperproduction of actinorhodin was observed in accordance with the increase in actII-ORF4 transcription. In addition, catB mutant became hypersensitive to osmotic stresses. These results suggest that regulated synthesis of CatB protein is necessary to ensure proper differentiation as well as to protect S. coelicolor cells against osmotic stresses.
Collapse
Affiliation(s)
- Y H Cho
- Department of Microbiology, College of Natural Sciences and Research Center for Molecular Microbiology, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
10
|
Zhu J, Wartell RM. The effect of base sequence on the stability of RNA and DNA single base bulges. Biochemistry 1999; 38:15986-93. [PMID: 10625466 DOI: 10.1021/bi9916372] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Forty-eight RNA duplexes were constructed that contained all common single base bulges at six different locations. The stabilities of the RNAs were determined by temperature gradient gel electrophoresis (TGGE). The relative stability of a single base bulge was dependent on both base identity and the nearest neighbor context. The single base bulges were placed into two categories. A bulged base with no identical neighboring base was defined as a Group I base bulge. Group II-bulged bases had at least one neighboring base identical to it. Group II bulges were generally more stable than Group I bulges in the same nearest neighbor environments. This indicates that position degeneracy of an unpaired base enhances stability. Differences in the mobility transition temperatures between the RNA fragments with bulges and the completely base-paired reference RNAs were related to free energy differences. Simple models for estimating the free energy contribution of single base bulges were evaluated from the free energy difference data. The contribution of a Group I bulge 5'-(XNZ)-3'.5'-(Z'-X')-3' where N is the unpaired base and X.X' and Z.Z' the neighboring base pairs, could be well-represented (+/-0.34 kcal/mol) by the equation, DeltaG((X)(N)()(Z))(.)((Z)(')(-)(X)(')()) = 3.11 + 0. 40DeltaG(s)()((XZ))(.)((Z)(')(X)(')()). DeltaG(s)()((XZ))(. )((Z)(')(X)(')()) is the stacking energy of the closing base pair doublet. By adding a constant term, delta = -0.3 kcal/mol, to the right side of the above equation, free energies of Group II bulges could also be predicted with the same accuracy. The term delta represents the stabilizing effect due to position degeneracy. A similar equation/model was applied to previous data from 32 DNA fragments with single base bulges. It predicted the free energy differences with a similar standard deviation.
Collapse
Affiliation(s)
- J Zhu
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | |
Collapse
|
11
|
Petersohn A, Bernhardt J, Gerth U, Höper D, Koburger T, Völker U, Hecker M. Identification of sigma(B)-dependent genes in Bacillus subtilis using a promoter consensus-directed search and oligonucleotide hybridization. J Bacteriol 1999; 181:5718-24. [PMID: 10482513 PMCID: PMC94092 DOI: 10.1128/jb.181.18.5718-5724.1999] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A consensus-directed search for sigma(B) promoters was used to locate potential candidates for new sigma(B)-dependent genes in Bacillus subtilis. Screening of those candidates by oligonucleotide hybridizations with total RNA from exponentially growing or ethanol-stressed cells of the wild type as well as a sigB mutant revealed 22 genes that required sigma(B) for induction by ethanol. Although almost 50% of the proteins encoded by the newly discovered sigma(B)-dependent stress genes seem to be membrane localized, biochemical functions have so far not been defined for any of the gene products. Allocation of the genes to the sigma(B)-dependent stress regulon may indicate a potential function in the establishment of a multiple stress resistance. AldY and YhdF show similarities to NAD(P)-dependent dehydrogenases and YdbP to thioredoxins, supporting our suggestion that sigma(B)-dependent proteins may be involved in the maintenance of the intracellular redox balance after stress.
Collapse
Affiliation(s)
- A Petersohn
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, 17487 Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Liao CT, Wen YD, Wang WH, Chang BY. Identification and characterization of a stress-responsive promoter in the macromolecular synthesis operon of Bacillus subtilis. Mol Microbiol 1999; 33:377-88. [PMID: 10411753 DOI: 10.1046/j.1365-2958.1999.01480.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacillus subtilis DB1005 is a temperature-sensitive (Ts) sigA mutant. Induction of sigmaA has been observed exclusively in this mutant harbouring extra copies of the plasmid-borne Ts sigA gene transcriptionally controlled by the P1P2 promoters of the B. subtilis macromolecular synthesis (MMS; rpoD or sigA) operon. Investigation of the mechanisms leading to the induction has allowed us to identify a sigmaB-type promoter, P7, in the MMS operon for the first time. Therefore, at least seven promoters in total are responsible for the regulation of the B. subtilis MMS operon, including the four known sigmaA- and sigmaH-type promoters, as well as two incompletely defined promoters. The P7 promoter was activated in B. subtilis after the imposition of heat, ethanol and salt stresses, indicating that the MMS operon of B. subtilis is subjected to the control of general stress. The significant heat induction of P7 in B. subtilis DB1005 harbouring a plasmid-borne Ts sigA gene can be explained by a model of competition between sigmaA and sigmaB for core binding; very probably, the sigmaB factor binds more efficiently to core RNA polymerase under heat shock. This mechanism may provide a means for the expression of the B. subtilis MMS operon when sigmaA becomes defective in core binding.
Collapse
Affiliation(s)
- C T Liao
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | | | | | | |
Collapse
|
13
|
Abstract
The basic properties of prokaryotic promoters and the promotor region are described with special emphasis on promoters that are found in Escherichia coli and Bacillus subtilis. Promoters recognized by major and minor forms of RNA polymerase holoenzymes are compared for their specificities and differences. Both natural and hybrid promoters that have been constructed for purposes of efficient and regulated transcription are discussed in terms of their utility. Since promoter regions contain sequences that are recognized not only by RNA polymerase but by positive and negative regulatory factors that regulate expression from promoters, the functions and properties of these promoter regions are also described. The current utility and the future prospects of the prokaryotic promoters in expressing heterologous genes for biotechnology purposes are discussed.
Collapse
Affiliation(s)
- M A Goldstein
- Section of Plant Biology, University of California, Davis 95616, USA
| | | |
Collapse
|
14
|
Moch C, Schrögel O, Allmansberger R. The sigmaD-dependent transcription of the ywcG gene from Bacillus subtilis is dependent on an excess of glucose and glutamate. Mol Microbiol 1998; 27:889-98. [PMID: 9535080 DOI: 10.1046/j.1365-2958.1998.00734.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated the function and transcriptional regulation of ywcG. The protein is essential for Bacillus subtilis. Biochemical characterization of the protein revealed that it is an FMN-containing NADPH oxidase. ywcG is transcribed throughout the whole life cycle of B. subtilis. The start point of transcription is preceded by potential promoter sequences for sigmaA, sigmaB and sigmaD. A boost in transcription occurs at the beginning of stationary phase in complex media containing glutamate and glucose. The induction of transcription at the beginning of stationary phase needs the activity of a different alternative sigma-factor sigmaD. ywcG is, therefore, the first gene with a putative role in energy metabolism from B. subtilis that is transcribed in a sigmaD-dependent fashion, but its regulation is unique and the reverse of that described for all other sigmaD-dependent genes.
Collapse
Affiliation(s)
- C Moch
- Lehrstuhl für Mikrobiologie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
15
|
Zhu J, Wartell RM. The relative stabilities of base pair stacking interactions and single mismatches in long RNA measured by temperature gradient gel electrophoresis. Biochemistry 1997; 36:15326-35. [PMID: 9398261 DOI: 10.1021/bi9716783] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The thermal stability of RNA duplexes differing by a single base pair (bp) substitution or mismatch were investigated by temperature gradient gel electrophoresis (TGGE). All base pair substitutions and mismatches were examined at six sites, and limited changes were investigated at three other sites. DNA templates for in vitro transcription were generated by the polymerase chain reaction (PCR). Transcribed forward and reverse single stranded RNAs were annealed to form 345 bp dupex RNA. Solution melting curves of selected RNAs were in good agreement with the predicted three step transitions. Parallel TGGE was used to determine the relative stabilities of the RNAs, and perpendicular TGGE was employed to obtain mobility transitions and midpoint transition temperatures (Tmu) of the RNAs' first melting domain. The gel solvent included formamide and urea. The Tmu values of the first melting domain were influenced by the identity of the base pair substitution or mismatch as well as by the site's neighboring base pairs. The difference in the transition temperatures (deltaTmu) between pairs of RNA ranged from 0 to 5 degrees C. deltaTmu values were used to determine free energy differences (deltaDeltaG). For RNA pairs distinguished by a base pair substitution, the deltaDeltaG values were closely correlated with free energy differences calculated from stacking free energies determined from melting studies in 1 M Na+ [Serra, M. J., and Turner, D. H. (1995) Methods Enzymol. 259, 242-261.] An algorithm was developed using the free energies of terminal mismatches [Serra, M. J., and Turner, D. H. (1995) Methods Enzymol. 259, 242-261] that provided very good agreement with experimental free energies for the single internal mismatches.
Collapse
Affiliation(s)
- J Zhu
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | |
Collapse
|
16
|
Li MZ, Squires CH, Monticello DJ, Childs JD. Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8. J Bacteriol 1996; 178:6409-18. [PMID: 8932295 PMCID: PMC178525 DOI: 10.1128/jb.178.22.6409-6418.1996] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The dsz gene cluster of Rhodococcus erythropolis IGTS8 comprises three genes, dszA, dszB, and dszC, whose products are involved in the conversion of dibenzothiophene (DBT) to 2-hydroxybiphenyl and sulfite. This organism can use DBT as the sole sulfur source but not as a carbon source. Dsz activity is repressed by methionine, cysteine, Casamino Acids, and sulfate but not by DBT or dimethyl sulfoxide. We cloned 385 bp of the DNA immediately 5' to dszA in front of the reporter gene lacZ of Escherichia coli. We showed that this region contains a Rhodococcus promoter and at least three dsz regulatory regions. After hydrazine mutagenesis of this DNA, colonies that were able to express beta-galactosidase in the presence of Casamino Acids were isolated. Sequencing of these mutants revealed two possible regulatory regions. One is at -263 to -244, and the other is at -93 to -38, where -1 is the base preceding the A of the initiation codon ATG of dszA. An S1 nuclease protection assay showed that the start of the dsz promoter is the G at -46 and that transcription is repressed by sulfate and cysteine but not by dimethyl sulfoxide. The promoter encompasses a region of potential diad symmetry that may contain an operator. Immediately upstream of the promoter is a protein-binding domain between -146 and -121. Deletion of this region did not affect repression, but promoter activity appeared to be reduced by threefold. Thus, it could be an activator binding site or an enhancer region.
Collapse
Affiliation(s)
- M Z Li
- Energy BioSystems Corporation, The Woodlands, Texas 77381, USA
| | | | | | | |
Collapse
|
17
|
Akbar S, Price CW. Isolation and characterization of csbB, a gene controlled by Bacillus subtilis general stress transcription factor sigma B. Gene 1996; 177:123-8. [PMID: 8921856 DOI: 10.1016/0378-1119(96)00287-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the bacterium Bacillus subtilis (Bs), the alternative transcription factor sigma B is activated by environmental stresses to control the expression of a large set of unlinked genes. However, the range of physiological functions mediated by these sigma B-controlled genes is presently unknown. We report here that the newly identified gene csbB is under the dual control of a sigma B-dependent and a sigma B-independent promoter. The predicted product of csbB is a 329 residue protein containing two potential membrane-spanning segments in its C-terminal region, leading us to speculate that one class of sigma B-controlled genes acts to modify the cell envelope as part of the general stress response.
Collapse
Affiliation(s)
- S Akbar
- Department of Food Science and Technology, University of California, Davis 95616, USA
| | | |
Collapse
|
18
|
Krüger E, Msadek T, Hecker M. Alternate promoters direct stress-induced transcription of the Bacillus subtilis clpC operon. Mol Microbiol 1996; 20:713-23. [PMID: 8793870 DOI: 10.1111/j.1365-2958.1996.tb02511.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
clpC of Bacillus subtilis is part of an operon containing six genes. Northern blot analysis suggested that all genes are co-transcribed and encode stress-inducible proteins. Two promoters (PA and PB) were mapped upstream of the first gene. PA resembles promoters recognized by the vegetative RNA polymerase E sigma A. The other promoter (PB) was shown to be dependent on sigma B, the general stress sigma factor in B. subtilis, suggesting that clpC, a potential chaperone, is expressed in a sigma B-dependent manner. This is the first evidence that sigma B in B. subtilis is involved in controlling the expression of a gene whose counterpart, clpB, is subject to regulation by sigma 32 in Escherichia coli, indicating a new function of sigma B-dependent general stress proteins. PB deviated from the consensus sequence of sigma B promoters and was only slightly induced by starvation conditions. Nevertheless, strong induction by heat, ethanol, and salt stress occurred at the sigma B-dependent promoter, whereas the vegetative promoter was only weakly induced under these conditions. However, in a sigB mutant, the sigma A-like promoter became inducible by heat and ethanol stress, completely compensating for sigB deficiency. Only the downstream sigma A-like promoter was induced by certain stress conditions such as hydrogen peroxide or puromycin. These results suggest that novel stress-induction mechanisms are acting at a vegetative promoter. Involvement of additional elements in this mode of induction are discussed.
Collapse
Affiliation(s)
- E Krüger
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | |
Collapse
|
19
|
Varón D, Brody MS, Price CW. Bacillus subtilis operon under the dual control of the general stress transcription factor sigma B and the sporulation transcription factor sigma H. Mol Microbiol 1996; 20:339-50. [PMID: 8733232 DOI: 10.1111/j.1365-2958.1996.tb02621.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The sigma B transcription factor of Bacillus subtilis is activated in response to a variety of environmental stresses, including those imposed by entry into the stationary-growth phase, and by heat, salt or ethanol challenge to logarithmically growing cells. Although sigma B is thought to control a general stress regulon, the range of cellular functions it directs remains largely unknown. Our approach to understand the physiological role of sigma B is to characterize genes that require this factor for all or part of their expression, i.e. the csb genes. In this study, we report that the transposon insertion csb40::Tn917lac identifies an operon with three open reading frames, the second of which resembles plant proteins induced by desiccation stress. Primer-extension and operon-fusion experiments showed that the csb40 operon has a sigma B-dependent promoter which is strongly induced by the addition of salt to logarithmically growing cells. The csb40 operon also has a second, sigma H-dependent promoter that is unaffected by salt addition. These results provide support for the hypothesis that sigma B controls a general stress regulon, and indicate that the sigma B and sigma H regulons partly overlap. We suggest that in addition to its acknowledged role in the sporulation process, sigma H is also involved in controlling a subclass of genes that are broadly involved in a general stress response.
Collapse
Affiliation(s)
- D Varón
- Department of Food Science and Technology, University of California, Davis 95616, USA
| | | | | |
Collapse
|
20
|
Tatti KM, Moran CP. sigma E changed to sigma B specificity by amino acid substitutions in its -10 binding region. J Bacteriol 1995; 177:6506-9. [PMID: 7592427 PMCID: PMC177502 DOI: 10.1128/jb.177.22.6506-6509.1995] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The association of a sigma factor (sigma) with RNA polymerase in bacteria determines its specificity of promoter utilization. To identify amino acid residues in sigma E from Bacillus subtilis that determine the specificity of its interaction with the nucleotides at the -10 region of its cognate promoters, we tested whether base pair substitutions in the -10 region of a sigma B-dependent promoter could signal its utilization by sigma E-RNA polymerase. We found that a combination of base pair substitutions at positions -15 and -14 of the sigma B-dependent ctc promoter resulted in its utilization by sigma E-RNA polymerase in vivo. We also found that the combination of two amino acid substitutions at positions 119 and 120 in sigma E changed its specificity for promoter utilization, resulting in a sigma factor that directed transcription from the sigma B-dependent ctc promoter, but not from sigma E-dependent promoters. These results suggest that amino acid residues at positions 119 and 120 determine, at least in part, the specificity of interactions between sigma E and the nucleotides in the -10 region of its cognate promoters.
Collapse
Affiliation(s)
- K M Tatti
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
21
|
Engelmann S, Lindner C, Hecker M. Cloning, nucleotide sequence, and regulation of katE encoding a sigma B-dependent catalase in Bacillus subtilis. J Bacteriol 1995; 177:5598-605. [PMID: 7559348 PMCID: PMC177370 DOI: 10.1128/jb.177.19.5598-5605.1995] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A sigma B-dependent stress gene of Bacillus subtilis was localized downstream of the licS gene. The predicted amino acid sequence exhibited a significant similarity to the sequence of the katE-encoded catalase HPII of Escherichia coli, and we designated it the open reading frame katE. In a B. subtilis katE mutant, catalase 2 could not be detected. The amount of katE-specific mRNA was increased after heat, salt, or ethanol stress or after glucose starvation in a sigma B-dependent manner. As in E. coli, the transcription of the katE gene in B. subtilis was unaffected by the addition of H2O2 to exponentially growing cells. In contrast, the katA gene encoding catalase 1 of B. subtilis showed an induction pattern different from that of katE; katA expression was strongly increased by oxidative stress. The similarity between E. coli sigma S-dependent genes and B. subtilis sigma B-dependent genes suggests that both may confer multiple stress resistance to stationary-phase cells.
Collapse
Affiliation(s)
- S Engelmann
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | |
Collapse
|
22
|
Shuler MF, Tatti KM, Wade KH, Moran CP. A single amino acid substitution in sigma E affects its ability to bind core RNA polymerase. J Bacteriol 1995; 177:3687-94. [PMID: 7601832 PMCID: PMC177084 DOI: 10.1128/jb.177.13.3687-3694.1995] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have examined the role of the most highly conserved region of bacterial RNA polymerase sigma factors by analyzing the effect of amino acid substitutions and small deletions in sigma E from Bacillus subtilis. sigma E is required for the production of endospores in B. subtilis but not for vegetative growth. Strains expressing each of several mutant forms of sigE were found to be deficient in their ability to form endospores. Single amino acid substitutions at positions 68 and 94 resulted in sigma factors that bind with less affinity to the core subunits of RNA polymerase. The substitution at position 68 did not affect the stability of the protein in B. subtilis; therefore, this substitution probably did not have large effects on the overall structure of the sigma factor. The substitution at position 68 probably defines a position in sigma E that closely contacts a subunit of RNA polymerase, while the substitution at position 94 may define a position that is important for protein stability or for binding to core RNA polymerase.
Collapse
Affiliation(s)
- M F Shuler
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
23
|
Abstract
The specificity of DNA-dependent RNA polymerase for target promotes is largely due to the replaceable sigma subunit that it carries. Multiple sigma proteins, each conferring a unique promoter preference on RNA polymerase, are likely to be present in all bacteria; however, their abundance and diversity have been best characterized in Bacillus subtilis, the bacterium in which multiple sigma factors were first discovered. The 10 sigma factors thus far identified in B. subtilis directly contribute to the bacterium's ability to control gene expression. These proteins are not merely necessary for the expression of those operons whose promoters they recognize; in many instances, their appearance within the cell is sufficient to activate these operons. This review describes the discovery of each of the known B. subtilis sigma factors, their characteristics, the regulons they direct, and the complex restrictions placed on their synthesis and activities. These controls include the anticipated transcriptional regulation that modulates the expression of the sigma factor structural genes but, in the case of several of the B. subtilis sigma factors, go beyond this, adding novel posttranslational restraints on sigma factor activity. Two of the sigma factors (sigma E and sigma K) are, for example, synthesized as inactive precursor proteins. Their activities are kept in check by "pro-protein" sequences which are cleaved from the precursor molecules in response to intercellular cues. Other sigma factors (sigma B, sigma F, and sigma G) are inhibited by "anti-sigma factor" proteins that sequester them into complexes which block their ability to form RNA polymerase holoenzymes. The anti-sigma factors are, in turn, opposed by additional proteins which participate in the sigma factors' release. The devices used to control sigma factor activity in B, subtilis may prove to be as widespread as multiple sigma factors themselves, providing ways of coupling sigma factor activation to environmental or physiological signals that cannot be readily joined to other regulatory mechanisms.
Collapse
Affiliation(s)
- W G Haldenwang
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| |
Collapse
|
24
|
Varón D, Boylan SA, Okamoto K, Price CW. Bacillus subtilis gtaB encodes UDP-glucose pyrophosphorylase and is controlled by stationary-phase transcription factor sigma B. J Bacteriol 1993; 175:3964-71. [PMID: 8320212 PMCID: PMC204824 DOI: 10.1128/jb.175.13.3964-3971.1993] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transcription factor sigma B of Bacillus subtilis controls a large stationary-phase regulon, but in no case has the physiological function of any gene in this regulon been identified. Here we show that transcription of gtaB is partly dependent on sigma B in vivo and that gtaB encodes UDP-glucose pyrophosphorylase. The gtaB reading frame was initially identified by a sigma B-dependent Tn917lacZ fusion, csb42. We cloned the region surrounding the csb42 insertion, identified the reading frame containing the transposon, and found that this frame encoded a predicted 292-residue product that shared 45% identical residues with the UDP-glucose pyrophosphorylase of Acetobacter xylinum. The identified reading frame appeared to lie in a monocistronic transcriptional unit. Primer extension and promoter activity experiments identified tandem promoters, one sigma B dependent and the other sigma B independent, immediately upstream from the proposed coding region. A sequence resembling a factor-independent terminator closely followed the coding region. By polymerase chain reaction amplification of a B. subtilis genomic library carried in yeast artificial chromosomes, we located the UDP-glucose pyrophosphorylase coding region near gtaB, mutations in which confer phage resistance due to decreased glycosylation of cell wall teichoic acids. Restriction mapping showed that the coding region overlapped the known location of gtaB. Sequence analysis of a strain carrying the gtaB290 allele found an alteration that would change the proposed initiation codon from AUG to AUA, and an insertion-deletion mutation in this frame conferred phage resistance indistinguishable from that elicited by the gtaB290 mutation. We conclude that gtaB encodes UDP-glucose pyrophosphorylase and is partly controlled by sigma B. Because this enzyme is important for thermotolerance and osmotolerance in stationary-phase Escherichia coli cells, our results suggest that some genes controlled by sigma B may play a role in stationary-phase survival of B. subtilis.
Collapse
Affiliation(s)
- D Varón
- Department of Food Science and Technology, University of California, Davis 95616
| | | | | | | |
Collapse
|
25
|
Boylan SA, Rutherford A, Thomas SM, Price CW. Activation of Bacillus subtilis transcription factor sigma B by a regulatory pathway responsive to stationary-phase signals. J Bacteriol 1992; 174:3695-706. [PMID: 1592822 PMCID: PMC206059 DOI: 10.1128/jb.174.11.3695-3706.1992] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alternative transcription factor sigma B of Bacillus subtilis controls a stationary-phase regulon induced under growth conditions that do not favor sporulation. Little is known about the metabolic signals and protein factors regulating the activity of sigma B. The operon containing the sigma B structural gene has the gene order orfV-orfW-sigB-rsbX, and operon expression is autoregulated positively by sigma B and negatively by the rsbX product (rsbX = regulator of sigma B). To establish the roles of the orfV and orfW products, orfV and orfW null and missense mutations were constructed and tested for their effects on expression of the sigma B-dependent genes ctc and csbA. These mutations were tested in two contexts: in the first, the sigB operon was under control of its wild-type, sigma B-dependent promoter, and in the second, the sigB operon promoter was replaced by the inducible Pspac promoter. The principal findings are that (i) the orfV (now called rsbV) product is a positive regulator of sigma B-dependent gene expression; (ii) the orfW (now called rsbW) product is a negative regultor of such expression; (iii) sigma B is inactive during logarithmic growth unless the rsbW product is absent; (iv) the rsbX, rsbV, and rsbW products have a hierarchical order of action; and (v) both the rsbV and rsbW products appear to regulate sigma B activity posttranslationally. There are likely to be at least two routes by which information can enter the system to regulate sigma B: via the rsbX product, and via the rsbV and rsbW products.
Collapse
Affiliation(s)
- S A Boylan
- Department of Food Science and Technology, University of California, Davis 95616
| | | | | | | |
Collapse
|
26
|
Doyle D, McDowall KJ, Butler MJ, Hunter IS. Characterization of an oxytetracycline-resistance gene, otrA, of Streptomyces rimosus. Mol Microbiol 1991; 5:2923-33. [PMID: 1809836 DOI: 10.1111/j.1365-2958.1991.tb01852.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The sequence of a 2657 bp DNA fragment containing the coding and regulatory regions of the oxytetracycline (OTC)-resistance gene, otrA, from the OTC producer Streptomyces rimosus was determined. The predicted amino acid sequence of OtrA had extensive identity with tetracycline-resistance genes from other bacteria which mediate resistance via non-covalent ribosomal modification. The N-terminal domain had extremely high identity with the GTP-binding sites of elongation factors, such as EF-G and EF-Tu, suggesting that binding and hydrolysis of GTP is important to the function of the protein. Significant identity with EF-G was present throughout the polypeptide. Transcriptional activity upstream of the otrA coding region was investigated. An Escherichia coli-type promoter, otrAp1, was identified. Transcriptional readthrough of otrA from the upstream gene (otcZ) was also detected in S. rimosus cultures. A divergent promoter activity was identified with subclones of the OtrA fragment in promoter probe vectors analysed in Streptomyces lividans. However, this activity was not identified in a subclone containing more than half of the otrA coding sequence in S. lividans or at all in S. rimosus, indicating that OtrA negatively regulates the expression of the divergent transcript. The data are consistent with regulation of antibiotic production by OtrA to prevent 'suicide'.
Collapse
Affiliation(s)
- D Doyle
- Institute of Genetics, University of Glasgow, UK
| | | | | | | |
Collapse
|
27
|
Boylan SA, Thomas MD, Price CW. Genetic method to identify regulons controlled by nonessential elements: isolation of a gene dependent on alternate transcription factor sigma B of Bacillus subtilis. J Bacteriol 1991; 173:7856-66. [PMID: 1744042 PMCID: PMC212577 DOI: 10.1128/jb.173.24.7856-7866.1991] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We describe a general, in vivo method for identifying Bacillus subtilis genes controlled by specific, nonessential regulatory factors. We establish the use of this approach by identifying, isolating, and characterizing a gene dependent on sigma B, an alternate transcription factor which is found early in stationary phase but which is not essential for sporulation. The method relies on two features: (i) a plate transformation technique to introduce a null mutation into the regulatory gene of interest and (ii) random transcriptional fusions to a reporter gene to monitor gene expression in the presence and absence of a functional regulatory product. We applied this genetic approach to isolate genes comprising the sigma B regulon. We screened a random Tn917lacZ library for fusions that required an intact sigma B structural gene (sigB) for greatest expression, converting the library strains from wild-type sigB+ to sigB delta::cat directly on plates selective for chloramphenicol resistance. We isolated one such fusion, csbA::Tn917lacZ (csb for controlled by sigma B), which mapped between hisA and degSU on the B. subtilis chromosome. We cloned the region surrounding the insertion, identified the csbA reading frame containing the transposon, and found that this frame encoded a predicted 76-residue product which was extremely hydrophobic and highly basic. Primer extension and promoter activity experiments identified a sigma B-dependent promoter 83 bp upstream of the csbA coding sequence. A weaker, tandem, sigma A-like promoter was likewise identified 28 bp upstream of csbA. The csbA fusion was maximally expressed during early stationary phase in cells grown in Luria broth containing 5% glucose and 0.2% glutamine. This timing of expression and medium dependence were very similar to those for ctc, the only other recognized gene dependent on sigma B.
Collapse
Affiliation(s)
- S A Boylan
- Department of Food Science and Technology, University of California, Davis 95616
| | | | | |
Collapse
|
28
|
Brown KL, Whiteley HR. Isolation of the second Bacillus thuringiensis RNA polymerase that transcribes from a crystal protein gene promoter. J Bacteriol 1990; 172:6682-8. [PMID: 1701426 PMCID: PMC210780 DOI: 10.1128/jb.172.12.6682-6688.1990] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A crystal protein gene of Bacillus thuringiensis subsp. kurstaki HD-1-Dipel is transcribed in vivo from two overlapping promoters that are activated at different times during sporulation. We reported earlier (K. L. Brown and H. R. Whiteley, Proc. Natl. Acad. Sci. USA 85:4166-4170, 1988) that an RNA polymerase containing a sigma subunit with an apparent Mr of 35,000 can transcribe in vitro from the promoter utilized from early to midsporulation. We now report the isolation of an RNA polymerase containing a sigma subunit with an Mr of ca. 28,000; this polymerase activates transcription in vitro from the promoter used from mid- to late sporulation. This form of RNA polymerase also directs transcription in vitro from promoters preceding two other crystal protein genes and a gene coding for a spore coat protein. On the basis of a comparison of the four promoters, we propose the following consensus sequence for the -10 region recognized by RNA polymerase containing the Mr-28,000 sigma subunit: 5'-TNATANNaTGag-3'. No consensus sequence could be derived for the -35 region. When the N-terminal amino acid sequence of the sigma 28 polypeptide was aligned with the amino acid sequences of known sigma subunits, significant homology was found with the N terminus of the mature form of the sigma K subunit of RNA polymerase isolated from sporulating cells of Bacillus subtilis.
Collapse
Affiliation(s)
- K L Brown
- Department of Microbiology, University of Washington, Seattle 98195
| | | |
Collapse
|
29
|
Kalman S, Duncan ML, Thomas SM, Price CW. Similar organization of the sigB and spoIIA operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase. J Bacteriol 1990; 172:5575-85. [PMID: 2170324 PMCID: PMC526868 DOI: 10.1128/jb.172.10.5575-5585.1990] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacillus subtilis sigma-B is an alternate sigma factor implicated in controlling stationary-phase gene expression. We characterized the genetic organization and regulation of the region containing the sigma-B structural gene (sigB) to learn which metabolic signals and protein factors govern sigma-B function. sigB lay in an operon with four open reading frames (orfs) in the order orfV-orfW-sigB-orfX, and lacZ gene fusions showed that all four frames were translated in vivo. Experiments with primer extension, S1 nuclease mapping, and lacZ transcriptional fusions found that sigB operon transcription initiated early in stationary phase from a site 32 nucleotides upstream of orfV and terminated 34 nucleotides downstream of orfX. Fusion expression was abolished in a strain carrying an in-frame deletion in sigB, suggesting that sigma-B positively regulated its own synthesis, and deletions in the sigB promoter region showed that sequences identical to the sigma-B-dependent ctc promoter were essential for promoter activity. Fusion expression was greatly enhanced in a strain carrying an insertion mutation in orfX, suggesting that the 22-kilodalton (kDa) orfX product was a negative effector of sigma-B expression or activity. Notably, the genetic organization of the sigB operon was strikingly similar to that of the B. subtilis spoIIA operon, which has the gene order spoIIAA-spoIIAB-spoIIAC, with spoIIAC encoding the sporulation-essential sigma-F. The predicted sequence of the 12-kDa orfV product was 32% identical to that of the 13-kDa SpoIIAA protein, and the 18-kDa orfW product was 27% identical to the 16-kDa SpoIIAB protein. On the basis of this clear evolutionary conservation, we speculate these protein pairs regulate their respective sigma factors by a similar molecular mechanism and that the spoIIA and sigB operons might control divergent branches of stationary-phase gene expression.
Collapse
Affiliation(s)
- S Kalman
- Department of Food Science and Technology, University of California, Davis 95616
| | | | | | | |
Collapse
|
30
|
Wartell RM, Hosseini SH, Moran CP. Detecting base pair substitutions in DNA fragments by temperature-gradient gel electrophoresis. Nucleic Acids Res 1990; 18:2699-705. [PMID: 2339057 PMCID: PMC330754 DOI: 10.1093/nar/18.9.2699] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A vertical gel electrophoresis apparatus is described which can distinguish DNA fragments differing by single base pair substitutions. The system employs a homogenous polyacrylamide gel containing urea-formamide and a temperature gradient which runs either perpendicular or parallel to the direction of electrophoresis. The temperature-gradient system simplifies several features of the denaturant-gradient system (1) and is relatively inexpensive to construct. Eight homologous 373 bp DNAs differing by one, two, or nine base pair substitutions were examined. DNA electrophoretic mobility changed abruptly with the temperature induced unwinding of DNA domains. GC to AT substitutions at different locations within the first melting domain, as well as an AT to TA transversion were separated with temperature gradients parallel to the electrophoretic direction. The relative stabilities of the DNAs observed in the gels were compared to predictions of DNA melting theory. General agreement was observed however complete correspondence was not obtained.
Collapse
Affiliation(s)
- R M Wartell
- School of Physics, Georgia Institute of Technology, Atlanta 30332
| | | | | |
Collapse
|
31
|
Crissman JW, Causey SC, Thorne L, Pollock TJ. Accumulation of the insecticidal crystal protein of Bacillus thuringiensis subsp. kurstaki in post-exponential-phase Bacillus subtilis. Appl Environ Microbiol 1989; 55:2302-7. [PMID: 2508556 PMCID: PMC203072 DOI: 10.1128/aem.55.9.2302-2307.1989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A gene from Bacillus thuringiensis subsp. kurstaki that codes for a Lepidoptera-specific insecticidal toxin (delta-endotoxin) was engineered for expression in Bacillus subtilis. A low-copy-number plasmid vector that replicates in Escherichia coli and B. subtilis was constructed to transform B. subtilis with gene fusions first isolated and characterized in E. coli. Naturally occurring promoter sequences from B. subtilis (43, veg, ctc, and spoVG) were inserted upstream from the plasmid-borne structural gene. In the most prolific case, when the sporulation-specific spoVG promoter was fused to the heterologous toxin gene, the toxin product accumulated during postexponential growth to greater than 25% of the total cell protein. However, the resulting specific activity of the insecticidal toxin product was not commensurate with the abundance of the protein.
Collapse
|
32
|
Geistlich M, Irniger S, Hütter R. Localization and functional analysis of the regulated promoter from the Streptomyces glaucescens mel operon. Mol Microbiol 1989; 3:1061-9. [PMID: 2607968 DOI: 10.1111/j.1365-2958.1989.tb00256.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The transcription initiation site of the mel operon from Streptomyces glaucescens, determined by S1 mapping and primer elongation experiments, lies 32 to 34 bp upstream of the translation initiation codon of the first open reading frame. A total of 172 to 219 bp upstream of the transcription start point are necessary for a fully active and regulated mel promoter. Deletion analysis, gel retardation assays and DNAse I footprint experiments facilitated division of the promoter into three functional domains, which include the RNA polymerase recognition site up to nucleotides -33 to -42, the binding region of a protein of assumed regulatory function between nucleotides -65 and -93, and an upstream activator site, located between positions -158 and -219.
Collapse
Affiliation(s)
- M Geistlich
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | | | |
Collapse
|
33
|
Nicholson WL, Sun DX, Setlow B, Setlow P. Promoter specificity of sigma G-containing RNA polymerase from sporulating cells of Bacillus subtilis: identification of a group of forespore-specific promoters. J Bacteriol 1989; 171:2708-18. [PMID: 2468649 PMCID: PMC209955 DOI: 10.1128/jb.171.5.2708-2718.1989] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
During sporulation in Bacillus subtilis, expression of the genes sspA, sspB, sspC, sspD, and sspE, which encode a family of small, acid-soluble spore proteins, as well as of the spoVA and gdh operons is transcriptionally activated at stage III of sporulation only in the forespore compartment. Transcription of these genes is mediated by RNA polymerase containing sigma G (E sigma G), the product of the sigG gene, which is itself expressed at stage III in the developing forespore. We have determined the 5' ends of transcripts generated both in vivo and in vitro by the action of E sigma G on various genes of B. subtilis and other bacilli. The 5' ends of the in vivo and in vitro mRNAs were found to coincide and were therefore considered to define the transcription initiation sites for the genes examined. We identified highly homologous DNA sequences centered at 35 and 10 base pairs preceding the transcriptional start sites of the genes examined. Consequently, we propose that these sequences define a class of promoters recognized only by E sigma G which allow transcription of genes expressed uniquely at stage III in the developing forespore.
Collapse
Affiliation(s)
- W L Nicholson
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032
| | | | | | | |
Collapse
|
34
|
Hallam SE, Malpartida F, Hopwood DA. Nucleotide sequence, transcription and deduced function of a gene involved in polyketide antibiotic synthesis in Streptomyces coelicolor. Gene X 1988; 74:305-20. [PMID: 2469622 DOI: 10.1016/0378-1119(88)90165-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The BamHI fragment containing the actIII gene, from the actinorhodin (Act) biosynthetic gene cluster of Streptomyces coelicolor A3(2), was sequenced. The derived amino acid sequence for the actIII gene shows homology to known oxidoreductases and the actIII product is believed to be responsible for catalysing a beta-keto reductive step during assembly of the Act polyketide chain. High resolution transcript mapping identified the transcription start point at 33 nucleotides upstream of the putative translation start codon. The transcript ends in a large invertedly repeated sequence. In vivo promoter-probe studies suggest that efficient transcription of the actIII gene requires the product of the actII gene.
Collapse
|
35
|
Buttner MJ, Smith AM, Bibb MJ. At least three different RNA polymerase holoenzymes direct transcription of the agarase gene (dagA) of Streptomyces coelicolor A3(2). Cell 1988; 52:599-607. [PMID: 3342448 DOI: 10.1016/0092-8674(88)90472-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Using a combination of gel filtration and anion exchange FPLC, three different RNA polymerase holoenzymes from Streptomyces coelicolor A3(2) have been separated. Each holoenzyme transcribes from only one of the four promoters of the S. coelicolor A3(2) dagA gene. Holoenzyme reconstitution experiments identified the sigma factors responsible for recognition of two of the promoters. The previously identified E sigma 49 transcribes from the dagA p3 promoter, whereas a novel species, E sigma 28, recognizes the dagA p2 promoter. Circumstantial evidence suggests that the third holoenzyme, which transcribes from the dagA p4 promoter, is the previously identified E sigma 35. This level of transcriptional complexity supports the idea that RNA polymerase heterogeneity may play a central role in the regulation and coordination of gene expression in this biochemically and morphologically complex bacterium.
Collapse
|
36
|
Igo M, Lampe M, Ray C, Schafer W, Moran CP, Losick R. Genetic studies of a secondary RNA polymerase sigma factor in Bacillus subtilis. J Bacteriol 1987; 169:3464-9. [PMID: 3112122 PMCID: PMC212418 DOI: 10.1128/jb.169.8.3464-3469.1987] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
sigma B (sigma 37) is a secondary species of RNA polymerase sigma factor found in the gram-positive bacterium Bacillus subtilis. To study the function of sigma B genetically, we sought mutations that block the expression of a gene (ctc) known to be transcribed by sigma B-containing RNA polymerase in vitro. One such mutation, called crl, was found to map in or near the structural gene (sigB) for sigma B. To determine directly whether mutations in sigB would prevent transcription of ctc, we replaced sigB in the B. subtilis chromosome with insertion and deletion mutations that disrupted the sigma B coding sequence. Like crl, these in vitro-constructed mutations blocked expression of ctc, but had little or no effect on viability, sporulation, expression of the sporulation gene spoVG, or production of sporulation-associated alkaline protease. Using fusions of ctc to the reporter genes xylE and lacZ, we also identified mutations that enhanced ctc expression. One such mutation, called socB, was found to be located in an open reading frame immediately downstream of sigB.
Collapse
|
37
|
Horinouchi S, Furuya K, Nishiyama M, Suzuki H, Beppu T. Nucleotide sequence of the streptothricin acetyltransferase gene from Streptomyces lavendulae and its expression in heterologous hosts. J Bacteriol 1987; 169:1929-37. [PMID: 3106324 PMCID: PMC212049 DOI: 10.1128/jb.169.5.1929-1937.1987] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The nucleotide sequence of the streptothricin acetyltransferase (STAT) gene from streptothricin-producing Streptomyces lavendulae predicts a 189-amino-acid protein of molecular weight 20,000, which is consistent with that determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme. The amino acid composition and the NH2-terminal sequence determined by using the purified protein are in good agreement with those predicted from the nucleotide sequence, except for the absence of the NH2-terminal methionine in the mature protein. High-resolution S1 nuclease protection mapping suggests that transcription initiates at or near the adenine residue which is the first position of the translational initiation triplet (AUG) of STAT. Another open reading frame located just upstream of the STAT gene was detected and contains a region bearing a strong resemblance to DNA-binding domains which are conserved in known DNA-binding proteins. By addition of promoter signals and a synthetic ribosome-binding (Shine-Dalgarno) sequence at an appropriate position upstream of the STAT translational start codon, the STAT gene confers streptothricin resistance on Escherichia coli and Bacillus subtilis. The STAT coding sequence with both the promoter of a B. subtilis cellulase gene and a synthetic Shine-Dalgarno sequence was functionally expressed in Streptomyces lividans, which suggests that the addition of an artificial leader upstream of the translational initiation codon (AUG) does not significantly influence the translation of STAT.
Collapse
|
38
|
Fisher RF, Brierley HL, Mulligan JT, Long SR. Transcription of Rhizobium meliloti nodulation genes. Identification of a nodD transcription initiation site in vitro and in vivo. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)48322-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
39
|
Rather PN, Hay RE, Ray GL, Haldenwang WG, Moran CP. Nucleotide sequences that define promoters that are used by Bacillus subtilis sigma-29 RNA polymerase. J Mol Biol 1986; 192:557-65. [PMID: 3104598 DOI: 10.1016/0022-2836(86)90276-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There are at least five different forms of RNA polymerase holoenzyme in Bacillus subtilis. These enzymes differ in their sigma subunit and their specificity for promoter utilization. One form of RNA polymerase (E sigma 29) that contains a 29,000 Mr sigma appears in B. subtilis about two hours after the initiation of endospore formation. The determination of the nucleotide sequences that govern utilization of promoters by E sigma 29 has been limited by the small number of cloned promoters that are recognized by E sigma 29. We have determined the nucleotide sequence of a recently isolated promoter (G4) that is used exclusively by E sigma 29 both in vitro and in vivo. The start-point of transcription was identified by S1 nuclease mapping and dinucleotide priming experiments and the probable promoter element was sequenced. We compared the sequence with that of six promoters that are used to varying degrees in vitro by E sigma 29 and found these sequences to be highly conserved at the -10 and near the -35 regions of these promoters. Single base substitutions were generated at positions -12, -15 and -36 of the G4 promoter and assayed for their influence on utilization by E sigma 29 in in-vitro competition experiments. The effects of these mutations in G4 on its use by E sigma 29 support a model in which E sigma 29 utilizes its cognate promoters by interacting with unique nucleotide sequences at the -10 region and near the -35 region of these promoters.
Collapse
|
40
|
MacKay RM, Lo A, Willick G, Zuker M, Baird S, Dove M, Moranelli F, Seligy V. Structure of a Bacillus subtilis endo-beta-1,4-glucanase gene. Nucleic Acids Res 1986; 14:9159-70. [PMID: 3024130 PMCID: PMC311936 DOI: 10.1093/nar/14.22.9159] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleotide sequence of the portion of a Bacillus subtilis (strain PAP115) 3 kb Pst I fragment which contains an endo-beta-1, 4-glucanase gene has been determined. This gene encodes a protein of 499 amino acid residues (Mr = 55,234) with a typical B. subtilis signal peptide. Escherichia coli which has been transformed with this gene produces an extracellular endoglucanase with an amino-terminus corresponding to the thirtieth encoded amino acid residue. The gene is preceded by a cryptic reading frame with a rho-independent terminator structure, and itself has such a structure in the immediate 3'-flanking region. We have also identified, in the 5'-flanking region, nucleotide sequences which resemble promoter elements recognized by Bacillus RNA polymerase E sigma 43. Comparison of the encoded amino acid sequence to other known beta-glucanases reveals a small region of similarity to the encoded protein of the Clostridium thermocellum celB gene. These similar regions may contain substrate-binding and/or catalytic sites.
Collapse
|
41
|
Igo MM, Losick R. Regulation of a promoter that is utilized by minor forms of RNA polymerase holoenzyme in Bacillus subtilis. J Mol Biol 1986; 191:615-24. [PMID: 3100810 DOI: 10.1016/0022-2836(86)90449-3] [Citation(s) in RCA: 169] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ctc gene of Bacillus subtilis is transcribed in vitro by the minor RNA polymerase holoenzyme forms, E sigma 37 and E sigma 32. To study the expression and regulation of ctc in vivo, we constructed operon and translational fusions of the ctc promoter region to the lacZ gene of Escherichia coli. Our results indicate that ctc is regulated at the transcriptional level, and that this RNA synthesis is maximally induced at the end of the exponential phase of growth under nutritional conditions which inhibit the activity of the tricarboxylic acid cycle. Analysis of in vitro-constructed deletion mutations extending into the ctc promoter region demonstrated that the region required for this regulation is no greater than 53 base-pairs in length. We also compared the expression of ctc to that of another B. subtilis gene, which is transcribed by E sigma 37 and E sigma 32 in vitro, the sporulation gene spoVG. Although the ctc and spoVG promoter regions are recognized by the same forms of RNA polymerase in vitro, our results show that they differ strikingly in the nutritional and genetic requirements for their expression in vivo.
Collapse
|
42
|
Binnie C, Lampe M, Losick R. Gene encoding the sigma 37 species of RNA polymerase sigma factor from Bacillus subtilis. Proc Natl Acad Sci U S A 1986; 83:5943-7. [PMID: 3016731 PMCID: PMC386413 DOI: 10.1073/pnas.83.16.5943] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
sigma 37 is a minor species of RNA polymerase sigma factor found in the Gram-positive bacterium Bacillus subtilis. sigma 37 governs the transcription in vitro of genes that are turned on at an early stage in spore formation, as well as other genes that are switched on at the end of the exponential phase of growth but that are not under sporulation control. To study the role of sigma 37 in B. subtilis gene expression, we have cloned the gene for this minor species of sigma factor in Escherichia coli by using as a hybridization probe a synthetic oligonucleotide that was designed on the basis of the NH2-terminal amino acid sequence of sigma 37 protein. We determined the nucleotide sequence of the entire sigma 37 gene, which was found to encode a 262-amino acid residue polypeptide of 29.9 kDa. The predicted amino acid sequence of sigma 37 showed significant homology to that of other sigma proteins in a region that has been proposed to be the site of binding of these factors to core RNA polymerase. Genetic mapping experiments placed the gene for sigma 37, herein designated sigB, at 40 degrees on the genetic map of Piggot and Hoch [Piggot, P. & Hoch, J. A. (1985) Microbiol. Rev. 49, 158-179]. An insertion mutation was constructed in sigB and found not to impair growth or sporulation.
Collapse
|
43
|
Paice MG, Bourbonnais R, Desrochers M, Jurasek L, Yaguchi M. A xylanase gene from Bacillus subtilis: nucleotide sequence and comparison with B. pumilus gene. Arch Microbiol 1986. [DOI: 10.1007/bf00410947] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Abstract
Transcription of the ctc gene in Bacillus subtilis is activated only after exponentially growing cells enter stationary phase. The promoter of the ctc gene is utilized in vitro by two minor forms of RNA polymerase, E sigma 37 and E sigma 32, but not by the most abundant form of RNA polymerase, E sigma 55. We have used the ctc promoter to direct transcription of the xylE gene on plasmid pLC4 and observed that xylE was expressed only in stationary-phase B. subtilis. We also have constructed a series of homologous plasmids that differ only by specific base substitutions in the ctc promoter. We observed that the base substitutions that affected utilization of the ctc promoter in vivo (xylE expression) were the same as those that we had previously shown to affect utilization of the promoter in vitro by E sigma 37 and E sigma 32. We conclude that it is likely that the ctc promoter is utilized in vivo by E sigma 37 or E sigma 32.
Collapse
|
45
|
Tatti KM, Moran CP. Utilization of one promoter by two forms of RNA polymerase from Bacillus subtilis. Nature 1985; 314:190-2. [PMID: 3919317 DOI: 10.1038/314190a0] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacillus subtilis possesses several forms of RNA polymerase, each differing in its sigma subunit and its specificity of promoter recognition. The sequential appearance of sigma subunits, which change the promoter recognition specificity of RNA polymerase, may have a key role in controlling the temporal pattern of gene expression required for endospore development in B. subtilis. Several genes that are expressed over relatively long periods of time during the developmental cycle are transcribed by more than one form of RNA polymerase, which initiate transcription from either tandem or overlapping promoter. The promoter region for the ctc gene is interesting because transcription is initiated at or near the same position by both sigma 37 RNA polymerase (E sigma 37), a minor form in growing cells, and sigma 29 RNA polymerase (E sigma 29), a form which appears approximately 2 h after the initiation of sproulation. Here we report that several base substitutions in the ctc promoter differentially affect the utilization of the promoter by E sigma 37 or E sigma 29.
Collapse
|
46
|
Abstract
Two forms of RNA polymerase holoenzyme have been identified in the filamentous differentiating bacterium Streptomyces coelicolor. They contain different species of sigma factor and are distinguishable by their ability to recognize different promoter classes. These and other holoenzyme forms may in part determine the selective expression of different gene sets in this morphologically-complex bacterium.
Collapse
|
47
|
Tatti KM, Kenney TJ, Hay RE, Moran CP. Promoter specificity of a sporulation-induced form of RNA polymerase from Bacillus subtilis. Gene 1985; 36:151-7. [PMID: 3934043 DOI: 10.1016/0378-1119(85)90079-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The program of gene expression that underlies endospore formation by Bacillus subtilis may be controlled in part by a sporulation-induced form of RNA polymerase, E sigma 29. The nucleotide sequences of four promoters, which are known to be recognized by E sigma 29, are highly conserved at two regions, 10 bp and 35 bp upstream from the start point of transcription. We have used oligonucleotide-directed mutagenesis to construct several base substitutions in the ctc promoter from B. subtilis to test the role of the highly conserved sequences in utilization of the promoter by E sigma 29. In vitro transcription analysis demonstrated that the conserved nucleotides at positions -15, -14 and -12 affect the utilization of the promoter by E sigma 29. These and previous results support a model in which E sigma 29 recognizes its cognate promoters by interacting with nucleotides near the -10 and -35 regions. We also examined the effects of these base substitutions on utilization of the promoter by two other forms of RNA polymerase from B. subtilis, E sigma 37 and E sigma 32.
Collapse
|