1
|
Lodato PB, Rogers EJ, Lovett PS. A variation of the translation attenuation model can explain the inducible regulation of the pBC16 tetracycline resistance gene in Bacillus subtilis. J Bacteriol 2006; 188:4749-58. [PMID: 16788184 PMCID: PMC1482984 DOI: 10.1128/jb.01937-05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the tet resistance gene from plasmid pBC16 is induced by the antibiotic tetracycline, and induction is independent of the native promoter for the gene. The nucleotide sequence at the 5' end of the tet mRNA (the leader region) is predicted to assume a complex secondary structure that sequesters the ribosome binding site for the tet gene. A spontaneous, constitutively expressed tet gene variant contains a mutation predicted to provide the tet gene with a nonsequestered ribosome binding site. Lastly, comparable levels of tet mRNA can be demonstrated in tetracycline-induced and uninduced cells. These results are consistent with the idea that the pBC16 tet gene is regulated by translation attenuation, a model originally proposed to explain the inducible regulation of the cat and erm genes in gram-positive bacteria. As with inducible cat and erm genes, the pBC16 tet gene is preceded by a translated leader open reading frame consisting of a consensus ribosome binding site and an ATG initiation codon, followed by 19 sense codons and a stop codon. Mutations that block translation of cat and erm leaders prevent gene expression. In contrast, we show that mutations that block translation of the tet leader result in constitutive expression. We provide evidence that translation of the tet leader peptide coding region blocks tet expression by preventing the formation of a secondary-structure complex that would, in the absence of leader translation, expose the tet ribosome binding site. Tetracycline is proposed to induce tet by blocking or slowing leader translation. The results indicate that tet regulation is a variation of the translation attenuation model.
Collapse
Affiliation(s)
- Patricia B Lodato
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
2
|
Zhong P, Cao Z, Hammond R, Chen Y, Beyer J, Shortridge VD, Phan LY, Pratt S, Capobianco J, Reich KA, Flamm RK, Or YS, Katz L. Induction of ribosome methylation in MLS-resistant Streptococcus pneumoniae by macrolides and ketolides. Microb Drug Resist 2000; 5:183-8. [PMID: 10566867 DOI: 10.1089/mdr.1999.5.183] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One major mechanism for resistance to macrolide antibiotics in Streptococcus pneumoniae is MLS (macrolide, lincosamide, and streptogramin B) resistance, manifested when the 23S rRNA is methylated by the product of an erm gene. This modification results in the decreased binding of all known macrolide, lincosamide, and streptogramin B antibiotics to the ribosome. More than 30 ermAM-containing clinical isolates of S. pneumoniae were examined in our lab and showed high-level resistance (MIC > or =128 microg/ml) to erythromycin, azithromycin, tylosin, clindamycin, and ketolide (macrolides that lack the cladinose sugar) TE-802. We found that the new generation of ketolides A965 and A088 displayed variable activity against the same group of resistant S. pneumoniae strains. To understand the basis of variability of the minimal inhibitory concentration (MIC) values of A965 and A088, we examined the effects of a series of macrolides and ketolides on the level of 23S rRNA methylation in five ermAM-containing resistant S. pneumoniae isolates. We show here that the basal levels of ribosomal methylation vary from strain to strain. The level of rRNA methylation can be strongly induced by erythromycin, azithromycin, and TE-802, resulting in high-level of resistance to these compounds. Ketolide A965 and A088, however, are weak inducers at sub-MIC drug concentrations, therefore showing variable activities in strains with differential methylation levels.
Collapse
Affiliation(s)
- P Zhong
- AP52-1N, Antibacterial Department, Abbott Laboratories, Abbott Park, IL 60064, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Bechhofer DH, Wang W. Decay of ermC mRNA in a polynucleotide phosphorylase mutant of Bacillus subtilis. J Bacteriol 1998; 180:5968-77. [PMID: 9811656 PMCID: PMC107672 DOI: 10.1128/jb.180.22.5968-5977.1998] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ermC mRNA decay was examined in a mutant of Bacillus subtilis that has a deleted pnpA gene (coding for polynucleotide phosphorylase). 5'-proximal RNA fragments less than 400 nucleotides in length were abundant in the pnpA strain but barely detectable in the wild type. On the other hand, the patterns of 3'-proximal RNA fragments were similar in the wild-type and pnpA strains. Northern blot analysis with different probes showed that the 5' end of the decay intermediates was the native ermC 5' end. For one prominent ermC RNA fragment, in particular, it was shown that formation of its 3' end was directly related to the presence of a stalled ribosome. 5'-proximal decay intermediates were also detected for transcripts encoded by the yybF gene. These results suggest that PNPase activity, which may be less sensitive to structures or sequences that block exonucleolytic decay, is required for efficient decay of specific mRNA fragments. However, it was shown that even PNPase activity could be blocked in vivo at a particular RNA structure.
Collapse
Affiliation(s)
- D H Bechhofer
- Department of Biochemistry, Mount Sinai School of Medicine of the City University of New York, New York, New York 10029, USA.
| | | |
Collapse
|
4
|
Somkuti GA, Solaiman DK, Steinberg DH. Molecular characterization of the erythromycin resistance plasmid pPV142 from Staphylococcus simulans. FEMS Microbiol Lett 1998; 165:281-8. [PMID: 9742700 DOI: 10.1111/j.1574-6968.1998.tb13158.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The 2.5-kb erythromycin resistance (EmR) plasmid pPV142 of Staphylococcus simulans 13044 was isolated and characterized. Sequence analysis identified ORF1 and ORF2 encoding a 158-residue replication protein (Rep142) and a 244-residue erythromycin resistance protein (Erm, rRNA adenine N-6-methyltransferase), respectively. Structural analysis and Southern hybridization showed that the rep and ermM genes in pPV142 shared homology with the EmR plasmid pPV141 (2.4 kb) of S. chromogenes 3688 and other EmR plasmids known to exist in staphylococci and bacilli. Based on the presence of a 61-bp repeat upstream of the ermM gene, pPV142 is apparently a unique member of the pSN2 family of EmR plasmid able to express erythromycin resistance constitutively.
Collapse
Affiliation(s)
- G A Somkuti
- U.S. Department of Agriculture, ARS, Eastern Regional Research Center, Wyndmoor, PA 19038, USA.
| | | | | |
Collapse
|
5
|
Satchidanandam V, Shivashankar Y. Availability of a second upstream AUG can completely overcome inhibition of protein synthesis initiation engendered by mRNA secondary structure encompassing the start codon. Gene X 1997; 196:231-7. [PMID: 9322762 DOI: 10.1016/s0378-1119(97)00232-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Secondary structure analysis of the mRNA from a nonproductive construct carrying the nonstructural gene 3 (NS3) of Japanese Encephalitis Virus revealed the presence of a potential 28 nucleotide long stem and loop beginning with the guanine of the initiation codon AUG that had a calculated stabilization energy of -13 kcal/mol (delta Gfzero). Provision of an additional AUG along with three codons upstream resulted in complete relief of inhibition. N-terminal amino acid sequence of the recombinant protein was consistent with initiation of protein synthesis having occurred from the upstream AUG. Similar levels of NS3 specific RNA in E. coli cells carrying the expressing and nonexpressing constructs and restoration of recombinant protein expression following deletion of segments beginning with the stem and loop confirmed the role of this structure in blocking expression at the level of translation initiation. Our approach exploits the ability of a ribosome in motion to open up downstream secondary structural elements of considerable stability and represents a novel and widely applicable strategy to overcome a block in translation initiation caused by mRNA secondary structure around the translation start site.
Collapse
Affiliation(s)
- V Satchidanandam
- Centre for Genetic Engineering, Indian Institute of Science, Bangalore, India.
| | | |
Collapse
|
6
|
Somkuti GA, Solaiman DK, Steinberg DH. Molecular properties of the erythromycin resistance plasmid pPV141 from Staphylococcus chromogenes. Plasmid 1997; 37:119-27. [PMID: 9169203 DOI: 10.1006/plas.1997.1278] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The 2.3-kb erythromycin resistance (EmR) plasmid pPV141 of Staphylococcus chromogenes 3688 was isolated and characterized. Nucleotide sequence analysis identified ORF1 and ORF2 separated by a 445-bp spacing, encoding a 158-residue replication protein (Rep141) and a 244-residue erythromycin resistance protein (Erm, rRNA adenine N-6-methyltransferase), respectively. Structural analysis and Southern hybridization showed that the rep and ermM genes in pPV141 shared homology with other known EmR plasmids. Based on sequence analysis, pPV141 was classified as a unique member of the pSN2 family of EmR plasmids.
Collapse
Affiliation(s)
- G A Somkuti
- U.S. Department of Agriculture, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA
| | | | | |
Collapse
|
7
|
Darzins A. The Pseudomonas aeruginosa pilK gene encodes a chemotactic methyltransferase (CheR) homologue that is translationally regulated. Mol Microbiol 1995; 15:703-17. [PMID: 7783642 DOI: 10.1111/j.1365-2958.1995.tb02379.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new locus, designated pilK, located immediately adjacent to the previously described Pseudomonas aeruginosa pilG-J gene cluster, has been identified. Sequence analysis of a 1.3 kb region revealed the presence of a single open reading frame of 291 amino acid residues (M(r) 33,338) that contained significant homology to the chemotactic methyltransferase proteins of Escherichia coli, Bacillus subtilis and the gliding bacterium Myxococcus xanthus. The 60 bp pilJ-pilK intergenic region was devoid of promoter consensus sequences, suggesting that pilJ and pilK are contained within the same transcriptional unit. The intergenic region did contain, however, a large, highly GC-rich, inverted repeat that prevented PilK production in expression studies. To investigate the regulatory role of these sequences, pilK-lacZ gene fusions, as well as derivatives containing sequence alterations in the potential stem-loop region, were constructed and analysed in E. coli and P. aeruginosa. Modification of the inverted repeat region in pilK-lacZ protein fusion constructs resulted in as much as a 24-fold increase in beta-galactosidase activity, whereas similar modifications in pilK-lacZ transcriptional fusions had only a marginal effect on beta-galactosidase levels. These results indicated that PilK production may be largely regulated at the level of translation. In stark contrast to pilG-J mutants, which are dramatically impaired in pilus production and/or function, a PAO1 pilK deletion mutant was indistinguishable from the wild type. In addition, complementation studies suggested that the PilK and E. coli CheR proteins are not functionally interchangeable.
Collapse
Affiliation(s)
- A Darzins
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| |
Collapse
|
8
|
Abstract
The erythromycin resistance gene ermD, which encodes an rRNA methylase protein, has an unusually long leader region (354 nucleotides). Previously, a single promoter-proximal leader peptide coding sequence was recognized from the nucleotide sequence, and erythromycin-induced ribosome stalling in this sequence was proposed to be required for the induction of methylase translation. We characterized spontaneously occurring and in vitro-constructed leader region mutations in an effort to understand the function of various segments of the long ermD leader region. A second leader peptide coding sequence was identified, and the location of insertion and point mutations that expressed ermD methylase constitutively suggested that translation of the second leader peptide is controlled by ribosome stalling in the first leader peptide. From Northern RNA blot analysis of ermD transcription, it appears that regulation of ermD expression is not by transcriptional attenuation.
Collapse
Affiliation(s)
- K K Hue
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029
| | | |
Collapse
|
9
|
Stokes HW, Hall RM. Sequence analysis of the inducible chloramphenicol resistance determinant in the Tn1696 integron suggests regulation by translational attenuation. Plasmid 1991; 26:10-9. [PMID: 1658833 DOI: 10.1016/0147-619x(91)90032-r] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The sequence of the Tn1696 determinant for inducible nonenzymatic chloramphenicol resistance has been determined. The cml region, the fourth insert of the Tn1696 integron, is 1547 bases and includes a 59-base element at the 3' end, as is typical of integron inserts. One gene, designated cmlA and predicting a polypeptide of 44.2 kDa, is encoded in the insert. However, the cmlA region shows one feature not previously found in an integron insert. A promoter is located within the cmlA insert, and translational attenuation signals related to those of the inducible cat and ermC genes found in gram-positive organisms are also present. The regulatory region includes a leader peptide of nine amino acids, a ribosome stall sequence related to those preceding cat genes, and two alternative pairs of stem-loop structures which either sequester or disclose the ribosome binding site and start codon preceding the cmlA gene.
Collapse
Affiliation(s)
- H W Stokes
- School of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | | |
Collapse
|
10
|
Oppenheim A, Altuvia S, Kornitzer D, Teff D, Koby S. Translation control of gene expression. J Basic Clin Physiol Pharmacol 1991; 2:223-31. [PMID: 1797096 DOI: 10.1515/jbcpp.1991.2.3.223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The bacteriophage lambda cIII gene product is an early regulator of the lysogenic pathway. The availability of a set of cIII expression mutants allowed us to establish the structure-function relationship of the cIII mRNA. We demonstrated, using defined in vitro systems, that the cIII mRNA is present in two conformations at equilibrium. Mutations that have been shown to lead to cIII overexpression were found to freeze the RNA in one conformation (structure B), and permit efficient binding to the 30S ribosomal subunit. Mutations that have been shown to prevent cIII translation cause the mRNA to assume the alternative conformation (structure A). In this structure, the translation initiation region is occluded, thereby preventing 30S ribosomal subunit binding. Translation of the cIII gene is regulated by RNaseIII. We have localized the RNaseIII responsive element (RRE) to the cIII coding region. We suggest that the regulation of the equilibrium between the two mRNA conformations provides a mechanism for the control of cIII gene expression. The way in which RNaseIII participates in this regulation is as yet unknown.
Collapse
Affiliation(s)
- A Oppenheim
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
11
|
Byeon WH, Weisblum B. Replication genes of plasmid pE194-cop and repF: transcripts and encoded proteins. J Bacteriol 1990; 172:5892-900. [PMID: 2120193 PMCID: PMC526909 DOI: 10.1128/jb.172.10.5892-5900.1990] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In vivo transcription of the replication region of plasmid pE194 yeidls two classes of mRNAs that encode Cop and RepF proteins, respectively. These transcripts are oriented 5' to 3' exclusively in the clockwise direction on the standard map. The cop region contains an open reading frame capable of encoding a 55-amino-acid protein that was demonstrated electrophoretically as a 6-kilodalton product synthesized in Bacillus subtilis minicells and chemically by N-terminal sequencing of a 116-kilodalton fusion protein with Escherichia coli beta-galactosidase. Four transcripts derived from the repF region were found, of which the longest, approximately 720 nucleotides, had the length, orientation, and transcription start site necessary to code for the full-length RepF protein (216 amino acid residues), deduced from the DNA sequence. The 5' ends of the shorter repF transcripts fall within the repF open reading frame. We propose that (i) cop specifies a protein rather than an RNA countertranscript, (ii) the Cop protein functions as a negative-acting element in pE194 replication by regulating synthesis of both RepF and of itself, and (iii) increased plasmid copy number can be explained in terms of cop region mutations that either reduce the intrinsic activity of Cop protein or the rate of its synthesis.
Collapse
Affiliation(s)
- W H Byeon
- Pharmacology Department, University of Wisconsin Medical School, Madison 53706
| | | |
Collapse
|
12
|
Breidt F, Dubnau D. Identification of cis-acting sequences required for translational autoregulation of the ermC methylase. J Bacteriol 1990; 172:3661-8. [PMID: 2113909 PMCID: PMC213340 DOI: 10.1128/jb.172.7.3661-3668.1990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
ermC methylase gene expression has been shown to be limited by translational autorepression, presumably due to methylase binding to ermC mRNA. It was found that this repression occurs in trans, yielding a 50% reduction in translation of an ermC-lacZ fusion mRNA. We investigated the ermC mRNA sequences required for translational repression in vivo. A series of deletions identified sequences in the 5' regulatory region that were required for translational repression. These included sequences of the 5' stem-loop structure that were not required for induction, as well as some that were required. The implications of these results for regulation are discussed.
Collapse
Affiliation(s)
- F Breidt
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| | | |
Collapse
|
13
|
Abstract
Premature termination of translation in eubacteria, like Escherichia coli, often leads to reinitiation at nearby start codons. Restarts also occur in response to termination at the end of natural coding regions, where they serve to enforce translational coupling between adjacent cistrons. Here, we present a model in which the terminated but not released ribosome reaches neighboring initiation codons by lateral diffusion along the mRNA. The model is based on the finding that introduction of an additional start codon between the termination and the reinitiation site consistently obstructs ribosomes to reach the authentic restart site. Instead, the ribosome now begins protein synthesis at this newly introduced AUG codon. This ribosomal scanning-like movement is bidirectional, has a radius of action of more than 40 nucleotides in the model system used, and activates the first encountered restart site. The ribosomal reach in the upstream direction is less than in the downstream one, probably due to dislodging by elongating ribosomes. The proposed model has parallels with the scanning mechanism postulated for eukaryotic translational initiation and reinitiation.
Collapse
Affiliation(s)
- M R Adhin
- Department of Biochemistry, Leiden University, The Netherlands
| | | |
Collapse
|
14
|
Hama C, Takizawa T, Moriwaki H, Mizobuchi K. Role of leader peptide synthesis in repZ gene expression of the ColIb-P9 plasmid. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)86998-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
15
|
Schulz VP, Reznikoff WS. In vitro secondary structure analysis of mRNA from lacZ translation initiation mutants. J Mol Biol 1990; 211:427-45. [PMID: 2106583 DOI: 10.1016/0022-2836(90)90363-q] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
mRNA secondary structure can be an important determinant of the efficiency of translation initiation. To study the effect of secondary structure on translation initiation, in vitro secondary structure analysis was performed on 32 lacZ RNA transcripts that differ in their in vivo translation initiation efficiencies because of mutations. We have shown that well-translated RNA has a relatively unstructured translation initiation region in vitro. In contrast, the translation initiation region of many of the poorly translated RNA transcripts is involved in a stem-loop structure. Mutations that decrease the in vitro stability of the stem-loop increase the frequency of translation initiation. The sequences responsible for forming this stem-loop structure were localized to a small region of RNA. The results confirm some of the previous predictions of the RNA secondary structure of the mutant RNAs based on computer modeling, but they disagree with some of the predicted long-range interactions.
Collapse
Affiliation(s)
- V P Schulz
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| | | |
Collapse
|
16
|
de Smit MH, van Duin J. Control of prokaryotic translational initiation by mRNA secondary structure. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 38:1-35. [PMID: 2183291 DOI: 10.1016/s0079-6603(08)60707-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- M H de Smit
- Department of Biochemistry, Leiden University, The Netherlands
| | | |
Collapse
|
17
|
Altuvia S, Kornitzer D, Teff D, Oppenheim AB. Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. J Mol Biol 1989; 210:265-80. [PMID: 2532257 DOI: 10.1016/0022-2836(89)90329-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bacteriophage lambda cIII gene product has a regulatory function in the lysis-lysogeny decision following infection. The availability of a set of cIII expression mutants allowed us to establish the structure-function relationship of the cIII mRNA. We demonstrate, using defined in vitro systems, that the cIII mRNA is present in two conformations at equilibrium. Mutations that have been shown to lead to cIII overexpression were found to freeze the RNA in one conformation (structure B), and permit efficient binding to the 30 S ribosomal subunit. Mutations that have been shown to prevent cIII translation cause the mRNA to assume the alternative conformation (structure A). In this structure, the translation initiation region is occluded, thereby preventing 30 S ribosomal subunit binding. By varying the temperature or Mg2+ concentration it was possible to alter the relative proportion of the alternative structures in wild-type mRNA. We suggest that the regulation of the equilibrium between the two mRNA conformations provides a mechanism for the control of cIII gene expression.
Collapse
Affiliation(s)
- S Altuvia
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel 91010
| | | | | | | |
Collapse
|
18
|
|
19
|
Kornitzer D, Teff D, Altuvia S, Oppenheim AB. Genetic analysis of bacteriophage lambda cIII gene: mRNA structural requirements for translation initiation. J Bacteriol 1989; 171:2563-72. [PMID: 2523380 PMCID: PMC209935 DOI: 10.1128/jb.171.5.2563-2572.1989] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The bacteriophage lambda cIII gene product regulates the lysogenic pathway. The cIII gene is located in the leftward operon, which is transcribed from the pL promoter. We have previously shown (S. Altuvia and A. B. Oppenheim, J. Bacteriol. 167:415-419, 1986) that mutations that show elevated expression lie within the cIII coding sequence. We isolated mutants that show decreased CIII activity. All the mutations were found to cause a drastic reduction in the rate of initiation of cIII translation. Several mutations were found to be scattered within the first 40 nucleotides of the cIII coding region. Additional mutations affected the AUG initiation codon, the Shine-Dalgarno sequence, and the upstream RNaseIII processing site. Computer folding of the cIII mRNA suggested the presence of two alternative RNA structures. All the mutations within the coding region that reduce expression reduce the stability of one specific mRNA structure (structure B). Mutations that increase expression lie in the loops of this structure and may in fact stabilize it by interfering with the formation of the alternative structure (structure A). Thus, it appears that a specific mRNA secondary structure at the beginning of the cIII coding region is essential for efficient translation, suggesting that changes in mRNA structure regulate cIII expression.
Collapse
Affiliation(s)
- D Kornitzer
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
20
|
Mayford M, Weisblum B. ermC leader peptide. Amino acid sequence critical for induction by translational attenuation. J Mol Biol 1989; 206:69-79. [PMID: 2467989 DOI: 10.1016/0022-2836(89)90524-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ermC mRNA leader segment, which encodes a 19 amino acid leader peptide, MGIFSIFVISTVHYQPNKK, plays a key role in regulating expression of the ErmC methylase. The contribution of specific leader peptide amino acid residues to induction of ermC was studied using a model system in which the ErmC methylase was translationally fused to Escherichia coli beta-galactosidase as indicator gene. Codons of the ermC leader peptide were altered systematically by replacement of leader DNA segments with double-stranded DNA constructed from chemically synthesized oligonucleotides. Missense mutations that resulted in reduced efficiency of induction involved codons for amino acid residues 5 to 9 (-SIFVI-). Nonsense mutations causing termination of the leader peptide at codons 10 (-S-) or 12 (-V-) remained inducible. These findings suggest that the codons for residues 5 to 9 of the leader peptide comprise the critical region in which ribosomes stall in the presence of erythromycin.
Collapse
Affiliation(s)
- M Mayford
- Department of Molecular Biology, University of Wisconsin, Madison 53706
| | | |
Collapse
|
21
|
Serwold-Davis TM, Groman NB. Identification of a methylase gene for erythromycin resistance within the sequence of a spontaneously deleting fragment of Corynebacterium diphtheriae plasmid pNG2. FEMS Microbiol Lett 1988. [DOI: 10.1111/j.1574-6968.1988.tb03142.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Duvall EJ, Ambulos NP, Lovett PS. Drug-free induction of a chloramphenicol acetyltransferase gene in Bacillus subtilis by stalling ribosomes in a regulatory leader. J Bacteriol 1987; 169:4235-41. [PMID: 3114238 PMCID: PMC213735 DOI: 10.1128/jb.169.9.4235-4241.1987] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The plasmid gene cat-86 is induced by chloramphenicol in Bacillus subtilis, resulting in the synthesis of the gene product chloramphenicol acetyltransferase. Induction is due to a posttranscriptional regulatory mechanism in which the inducer, chloramphenicol, activates translation of cat-86 mRNA. We have suggested that chloramphenicol allows ribosomes to destabilize a stem-loop structure in cat-86 mRNA that sequesters the ribosome-binding site for the coding sequence. In the present report we show that cat-86 expression can be activated by stalling ribosomes in the act of translating a regulatory leader peptide. Stalling was brought about by starving host cells for specific leader amino acids. Ribosomal stalling, which led to cat-86 expression, occurred upon starvation for the amino acid specified by the leader codon located immediately 5' to the RNA stem-loop structure and was independent of whether that codon specified lysine or tyrosine. These observations support a model for chloramphenicol induction of cat-86 in which the antibiotic stalls ribosome transit in the regulatory leader. Stalling of ribosomes in the leader can therefore lead to destabilization of the RNA stem-loop structure.
Collapse
|
23
|
Altuvia S, Locker-Giladi H, Koby S, Ben-Nun O, Oppenheim AB. RNase III stimulates the translation of the cIII gene of bacteriophage lambda. Proc Natl Acad Sci U S A 1987; 84:6511-5. [PMID: 2957696 PMCID: PMC299107 DOI: 10.1073/pnas.84.18.6511] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The bacteriophage lambda cIII gene product regulates the lysogenic pathway by stabilizing the lambda cII regulatory protein. Our results show that the expression of the lambda cIII gene is subject to specific requirements. Tests of a set of cIII-lacZ gene and operon fusions reveal that a sequence upstream of the cIII ribosome binding site is needed for cIII translation. The sequence contains an inefficient RNase III processing site. Furthermore, expression of cIII is drastically reduced in cells lacking RNase III. We have isolated a phage carrying a mutation (r1), which lies in the upstream sequence, that leads to a reduction in cIII translation and inactivates the RNase III processing site. The r1 mutant is nevertheless still dependent on RNase III for cIII translation; r1 reduces cIII translation by a factor of 3 in wild-type cells and by a factor of approximately equal to 30 in an RNase III mutant host. We propose that RNase III stimulates cIII translation by binding to the upstream sequence and thereby exposing the cIII ribosome binding site. This stimulation does not involve RNA cleavage. Consistent with this hypothesis is our finding that, in vitro, unprocessed cIII mRNA is translated, whereas RNase III-cleaved cIII mRNA is not.
Collapse
|
24
|
Berkhout B, Schmidt BF, van Strien A, van Boom J, van Westrenen J, van Duin J. Lysis gene of bacteriophage MS2 is activated by translation termination at the overlapping coat gene. J Mol Biol 1987; 195:517-24. [PMID: 3656424 DOI: 10.1016/0022-2836(87)90180-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The 3' boundary of the coat gene of the RNA bacteriophage MS2 lies 46 nucleotides downstream from the beginning of the lysis (L) cistron. The translation of both reading frames is coupled; the synthesis of the lysis protein does not occur unless translation of the overlapping coat gene takes place. In the preceding paper we showed that de novo initiation at the L gene is prevented by a hairpin structure that sequesters the ribosomal binding site. Here we examine how translation of the coat gene activates the L gene start site. The experiments show that the movement of ribosomes through the hairpin is in itself not sufficient to expose the lysis gene. Rather, the endpoint of translation is important. Termination at the natural end of the coat gene triggers the lysis response, but further downstream terminations do not. Activation of the L gene is suppressed when the stability of the lysis initiator hairpin is increased by mutations that create additional base-pairs. We assume that the ribosome, terminating at the coat reading frame, covers part of the lysis hairpin, thereby destabilizing the secondary structure. This may be sufficient to promote the binding of a vacant ribosome to the L gene start. Alternatively, the terminated but not yet released ribosome may reach the L gene start by random lateral movements along the mRNA and reinitiate there. The present findings are also discussed in relation to an earlier proposal for L gene activation.
Collapse
Affiliation(s)
- B Berkhout
- Department of Biochemistry, University of Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Schmidt BF, Berkhout B, Overbeek GP, van Strien A, van Duin J. Determination of the RNA secondary structure that regulates lysis gene expression in bacteriophage MS2. J Mol Biol 1987; 195:505-16. [PMID: 3656423 DOI: 10.1016/0022-2836(87)90179-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The lysis gene of the RNA bacteriophage MS2 is not expressed unless translation of the overlapping coat gene takes place. To understand the molecular basis for this translational coupling the RNA secondary structure around the lysis gene start was analyzed with structure-specific enzymes and chemicals. The existence of a hairpin between nucleotides 1636 and 1707 is in agreement with the structural mapping data and also with the conservation of base-pairing in the related M12 phage. In this hairpin, the G residues in the Shine and Dalgarno region and start codon are inaccessible to RNase T1, which is consistent with the fact that ribosomal access to the lysis gene is blocked when there is no coat gene translation. Deletions or point mutations that are predicted to destabilize the hairpin give rise to lysis protein synthesis that is independent of coat gene translation. Base substitutions that are not expected to weaken the helix do not lead to independent lysis gene expression. Finally, nucleotide changes that strengthen the hairpin lead neither to uncoupled nor to coupled synthesis of the lysis protein. Structural analysis of mutant MS2 RNA shows that small changes in the stability of the secondary structure lead to substantial differences in translation initiation. The function of the hairpin structure in coupling lysis gene to coat gene translation requires that its stability is kept within narrow limits.
Collapse
Affiliation(s)
- B F Schmidt
- Department of Biochemistry, University of Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Narayanan CS, Dubnau D. Demonstration of erythromycin-dependent stalling of ribosomes on the ermC leader transcript. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)75704-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
28
|
Monod M, Denoya C, Dubnau D. Sequence and properties of pIM13, a macrolide-lincosamide-streptogramin B resistance plasmid from Bacillus subtilis. J Bacteriol 1986; 167:138-47. [PMID: 3087948 PMCID: PMC212852 DOI: 10.1128/jb.167.1.138-147.1986] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We initiated a study of pIM13, a multicopy, macrolide-lincosamide-streptogramin B (MLS) plasmid first isolated from a strain of Bacillus subtilis and described by Mahler and Halvorson (J. Gen. Microbiol. 120:259-263, 1980). The copy number of this plasmid was about 200 in B. subtilis and 30 in Staphylococcus aureus. The MLS resistance determinant of pIM13 was shown to be highly homologous to ermC, an inducible element on the S. aureus plasmid pE194. The product of the pIM13 determinant was similar in size to that of ermC and immunologically cross-reactive with it. The MLS resistance of pIM13 was expressed constitutively. The complete base sequence of pIM13 is presented. The plasmid consisted of 2,246 base pairs and contained two open reading frames that specified products identified in minicell extracts. One was a protein of 16,000 molecular weight, possibly required for replication. The second was the 29,000-molecular-weight MLS resistance methylase. The regulatory region responsible for ermC inducibility was missing from pIM13, explaining its constitutivity. The remainder of the pIM13 MLS determinant was nearly identical to ermC. The ends of the region of homology between pIM13 and pE194 were associated with hyphenated dyad symmetries. A segment partially homologous to one of these termini on pIM13 and also associated with a dyad was found in pUB110 near the end of a region of homology between that plasmid and pBC16. The entire sequence of pIM13 was highly homologous to that of pE5, an inducible MLS resistance plasmid from S. aureus that differs from pIM13 in copy control.
Collapse
|
29
|
Lampson BC, Parisi JT. Naturally occurring Staphylococcus epidermidis plasmid expressing constitutive macrolide-lincosamide-streptogramin B resistance contains a deleted attenuator. J Bacteriol 1986; 166:479-83. [PMID: 3084450 PMCID: PMC214629 DOI: 10.1128/jb.166.2.479-483.1986] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A naturally occurring constitutive macrolide-lincosamide-streptogramin B (MLS) resistance plasmid, pNE131, from Staphylococcus epidermidis was chosen to study the molecular basis of constitutive expression. Restriction and functional maps of pNE131 are presented along with the nucleotide sequence of ermM, the gene which mediates constitutive MLS resistance. Sharing 98% sequence homology within the 870-base-pair Sau3A-TaqI fragment, ermM appears to be almost identical to ermC, the inducible MLS resistance determinant from S. aureus (pE194). The two genes share nearly identical sequences, except in the 5' promoter region of ermM. Constitutive expression of ermM is due to the deletion of 107 base pairs relative to ermC; the deletion removes critical sequences for attenuation, resulting in constitutive methylase expression.
Collapse
|