1
|
Phi-van L, Holtz M, Kjaer JB, van Phi VD, Zimmermann K. A functional variant in the 5'-flanking region of the chicken serotonin transporter gene is associated with increased body weight and locomotor activity. J Neurochem 2014; 131:12-20. [PMID: 24947945 DOI: 10.1111/jnc.12799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/03/2014] [Accepted: 06/17/2014] [Indexed: 11/30/2022]
Abstract
In this study, we identified a polymorphism in the 5'-flanking region of the chicken serotonin transporter (5-HTT) gene. Sequencing analysis revealed that in comparison with the wild-type variant (W), a deleted variant (D) is generated by deletion of four nucleotides (5'-AATT-3') and a single nucleotide change (A→T). Using a polyacrylamide gel electrophoresis system, we found that the 360-bp DNA fragment containing the W variant with the wild-type sequence 5'-AATTAATT-3' shows intrinsic DNA curvature while the 356-bp fragment containing the D variant lacking the four base pairs AATT is not curved. Quantitative real-time RT-PCR and ELISA demonstrated that the expression of 5-HTT in D/D chickens was higher than that in W/W and W/D chickens. In addition, transient transfection experiments with chloramphenicol acetyltransferase reporter gene constructs revealed increased 5-HTT promoter activity mediated by the D variant and a silencer activity of the W variant. Interestingly, females and males with D/D genotype showed significant greater increase in body weight from 6 weeks and 16 weeks of age, respectively, and higher body mass index. Moreover, we found that D/D chickens of both genders were physically more active than W/W and W/D chickens.
Collapse
Affiliation(s)
- Loc Phi-van
- Friedrich-Loeffler-Institut (FLI), Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| | | | | | | | | |
Collapse
|
2
|
Matyášek R, Fulneček J, Kovařík A. Evaluation of DNA bending models in their capacity to predict electrophoretic migration anomalies of satellite DNA sequences. Electrophoresis 2013; 34:2511-21. [PMID: 23784748 DOI: 10.1002/elps.201300227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 01/05/2023]
Abstract
DNA containing a sequence that generates a local curvature exhibits a pronounced retardation in electrophoretic mobility. Various theoretical models have been proposed to explain relationship between DNA structural features and migration anomaly. Here, we studied the capacity of 15 static wedge-bending models to predict electrophoretic behavior of 69 satellite monomers derived from four divergent families. All monomers exhibited retarded mobility in PAGE corresponding to retardation factors ranging 1.02-1.54. The curvature varied both within and across the groups and correlated with the number, position, and lengths of A-tracts. Two dinucleotide models provided strong correlation between gel mobility and curvature prediction; two trinucleotide models were satisfactory while remaining dinucleotide models provided intermediate results with reliable prediction for subsets of sequences only. In some cases, similarly shaped molecules exhibited relatively large differences in mobility and vice versa. Generally less accurate predictions were obtained in groups containing less homogeneous sequences possessing distinct structural features. In conclusion, relatively universal theoretical models were identified suitable for the analysis of natural sequences known to harbor relatively moderate curvature. These models could be potentially applied to genome wide studies. However, in silico predictions should be viewed in context of experimental measurement of intrinsic DNA curvature.
Collapse
Affiliation(s)
- Roman Matyášek
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i, Brno, Czech Republic.
| | | | | |
Collapse
|
3
|
Stewart M, Dunlap T, Dourlain E, Grant B, McFail-Isom L. Cations form sequence selective motifs within DNA grooves via a combination of cation-pi and ion-dipole/hydrogen bond interactions. PLoS One 2013; 8:e71420. [PMID: 23940752 PMCID: PMC3735504 DOI: 10.1371/journal.pone.0071420] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/02/2013] [Indexed: 11/19/2022] Open
Abstract
The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl+) and the polarized first hydration shell waters of divalent cations (Mg2+, Ca2+) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves.
Collapse
Affiliation(s)
- Mikaela Stewart
- Department of Chemistry, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Tori Dunlap
- Department of Chemistry, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Elizabeth Dourlain
- Department of Chemistry, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Bryce Grant
- Department of Chemistry, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Lori McFail-Isom
- Department of Chemistry, University of Central Arkansas, Conway, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
4
|
Stellwagen E, Peters JP, Maher LJ, Stellwagen NC. DNA A-tracts are not curved in solutions containing high concentrations of monovalent cations. Biochemistry 2013; 52:4138-48. [PMID: 23675817 PMCID: PMC3727640 DOI: 10.1021/bi400118m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The intrinsic curvature of seven 98 bp DNA molecules containing up to four centrally located A6-tracts has been measured by gel and capillary electrophoresis as a function of the number and arrangement of the A-tracts. At low cation concentrations, the electrophoretic mobility observed in polyacrylamide gels and in free solution decreases progressively with the increasing number of phased A-tracts, as expected for DNA molecules with increasingly curved backbone structures. Anomalously slow electrophoretic mobilities are also observed for DNA molecules containing two pairs of phased A-tracts that are out of phase with each other, suggesting that out-of-phase distortions of the helix backbone do not cancel each other out. The mobility decreases observed for the A-tract samples are due to curvature, not cation binding in the A-tract minor groove, because identical free solution mobilities are observed for a molecule with four out-of-phase A-tracts and one with no A-tracts. Surprisingly, the curvature of DNA A-tracts is gradually lost when the monovalent cation concentration is increased to ∼200 mM, regardless of whether the cation is a hydrophilic ion like Na+, NH4+, or Tris+ or a hydrophobic ion like tetrabutylammonium. The decrease in A-tract curvature with increasing ionic strength, along with the known decrease in A-tract curvature with increasing temperature, suggests that DNA A-tracts are not significantly curved under physiological conditions.
Collapse
Affiliation(s)
- Earle Stellwagen
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242 United States
| | - Justin P. Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905 United States
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905 United States
| | - Nancy C. Stellwagen
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242 United States
| |
Collapse
|
5
|
Grant BN, Dourlain EM, Araneda JN, Throneberry ML, McFail-Isom LA. DNA phosphate crowding correlates with protein cationic side chain density and helical curvature in protein/DNA crystal structures. Nucleic Acids Res 2013; 41:7547-55. [PMID: 23748560 PMCID: PMC3753625 DOI: 10.1093/nar/gkt492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sequence-specific binding of proteins to their DNA targets involves a complex spectrum of processes that often induce DNA conformational variation in the bound complex. The forces imposed by protein binding that cause the helical deformations are intimately interrelated and difficult to parse or rank in importance. To investigate the role of electrostatics in helical deformation, we quantified the relationship between protein cationic residue density (Cpc) and DNA phosphate crowding (Cpp). The correlation between Cpc and Cpp was then calculated for a subset of 58 high resolution protein-DNA crystal structures. Those structures containing strong Cpc/Cpp correlation (>±0.25) were likely to contain DNA helical curvature. Further, the correlation factor sign predicted the direction of helical curvature with positive (16 structures) and negative (seven structures) correlation containing concave (DNA curved toward protein) and convex (DNA curved away from protein) curvature, respectively. Protein-DNA complexes without significant Cpc/Cpp (36 structures) correlation (-0.25<0<0.25) tended to contain DNA without significant curvature. Interestingly, concave and convex complexes also include more arginine and lysine phosphate contacts, respectively, whereas linear complexes included essentially equivalent numbers of Lys/Arg phosphate contacts. Together, these findings suggest an important role for electrostatic interactions in protein-DNA complexes involving helical curvature.
Collapse
Affiliation(s)
- Bryce N Grant
- Department of Chemistry, University of Central Arkansas, Conway, AR 72035, USA
| | | | | | | | | |
Collapse
|
6
|
Shimooka Y, Nishikawa JI, Ohyama T. Most methylation-susceptible DNA sequences in human embryonic stem cells undergo a change in conformation or flexibility upon methylation. Biochemistry 2013; 52:1344-53. [PMID: 23356538 DOI: 10.1021/bi301319y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA methylation in eukaryotes occurs on the cytosine bases in CG, CHG, and CHH (where H indicates non-G nucleotides) contexts and provides an important epigenetic mark in various biological processes. However, the structural and physical properties of methylated DNA are poorly understood. Using nondenaturing polyacrylamide gel electrophoresis, we performed a systematic study of the influence of DNA methylation on the conformation and physical properties of DNA for all CG, CHG, and CHH contexts. In the CG context, methylated multimers of the CG/CG-containing unit fragment migrated in gels slightly faster than their unmethylated counterparts. In the CHG context, both homo- and hemimethylation caused retarded migration of multimers of the CAG/CTG-containing fragment. In the CHH context, methylation caused or enhanced retarded migration of the multimers of CAA/TTG-, CAT/ATG-, CAC/GTG-, CTA/TAG-, or CTT/AAG-containing fragments. These results suggest that methylation increases DNA rigidity in the CG context and introduces distortions into several CHG and CHH sequences. More interestingly, we found that nearly all of the methylation repertoires in the CHG context and 98% of those in the CHH context in human embryonic stem cells were species that undergo conformational changes upon methylation. Similarly, most of the methylation repertoires in the Arabidopsis CHG and CHH contexts were sequences with methylation-induced distortion. We hypothesize that the methylation-induced properties or conformational changes in DNA may facilitate nucleosome formation, which provides the essential mechanism for alterations of chromatin density.
Collapse
Affiliation(s)
- Yasutoshi Shimooka
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | |
Collapse
|
7
|
Tavares J, Bravo JP, Gimenes F, Neto QAL, Fiorini A, Fernandez MA. Differential structure of the intronic promoter of the Bombyx mori A3 actin gene correlated with silkworm sensitivity/resistance to nucleopolyhedrovirus. GENETICS AND MOLECULAR RESEARCH 2011; 10:471-81. [PMID: 21476193 DOI: 10.4238/vol10-1gmr978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Previous reports demonstrated that actin is necessary for nucleocapsid transport and viral gene expression during nucleopolyhedrovirus infection of Bombyx mori. The first intron of B. mori A3 actin contains a cryptic promoter that drives expression of a rare isoform. We detected differences in the size and nucleotide composition of the first intron of the A3 actin gene from B. mori strain C24A, which is more resistant to nucleopolyhedrovirus than the M11A strain (22 and 95% lethality, respectively). We sought to determine if resistance to BmMNPV infection and the A3 actin promoter structure are correlated. Intrinsically bent DNA sites in these sequences, which determine curved structures, were analyzed by electrophoretic mobility assays and the helical parameters ENDS ratio, roll and twist. We found both fragments to have non-centralized bent DNA sites with distinct ENDS ratio values, nucleotide positions and two-dimensional structures. Additionally, a conformational-sensitive gel electrophoresis assay identified an allelic variation found in strain M11A that is absent in strain C24A. These data suggest that A3 actin intronic sequence variations impair virus propagation and are markers of BmMNPV-resistant populations.
Collapse
Affiliation(s)
- J Tavares
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | | | | | | | | | | |
Collapse
|
8
|
Wu M, Zampini M, Bussiek M, Hoischen C, Diekmann S, Hayes F. Segrosome assembly at the pliable parH centromere. Nucleic Acids Res 2011; 39:5082-97. [PMID: 21378121 PMCID: PMC3130281 DOI: 10.1093/nar/gkr115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The segrosome of multiresistance plasmid TP228 comprises ParF, which is a member of the ParA ATPase superfamily, and the ParG ribbon–helix–helix factor that assemble jointly on the parH centromere. Here we demonstrate that the distinctive parH site (∼100-bp) consists of an array of degenerate tetramer boxes interspersed by AT-rich spacers. Although numerous consecutive AT-steps are suggestive of inherent curvature, parH lacks an intrinsic bend. Sequential deletion of parH tetramers progressively reduced centromere function. Nevertheless, the variant subsites could be rearranged in different geometries that accommodated centromere activity effectively revealing that the site is highly elastic in vivo. ParG cooperatively coated parH: proper centromere binding necessitated the protein's N-terminal flexible tails which modulate the centromere binding affinity of ParG. Interaction of the ParG ribbon–helix–helix domain with major groove bases in the tetramer boxes likely provides direct readout of the centromere. In contrast, the AT-rich spacers may be implicated in indirect readout that mediates cooperativity between ParG dimers assembled on adjacent boxes. ParF alone does not bind parH but instead loads into the segrosome interactively with ParG, thereby subtly altering centromere conformation. Assembly of ParF into the complex requires the N-terminal flexible tails in ParG that are contacted by ParF.
Collapse
Affiliation(s)
- Meiyi Wu
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | |
Collapse
|
9
|
Prosseda G, Mazzola A, Di Martino ML, Tielker D, Micheli G, Colonna B. A temperature-induced narrow DNA curvature range sustains the maximum activity of a bacterial promoter in vitro. Biochemistry 2010; 49:2778-85. [PMID: 20170130 DOI: 10.1021/bi902003g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Among the molecular strategies bacteria have set up to quickly match their transcriptional program to new environments, changes in sequence-mediated DNA curvature play a crucial role. Bacterial promoters, especially those of mesophilic bacteria, are in general preceded by a curved region. The marked thermosensitivity of curved DNA stretches allows bacteria to rapidly sense outer temperature variations and affects transcription by favoring the binding of activators or repressors. Curved DNA is also able to influence the transcriptional activity of a bacterial promoter directly, without the involvement of trans-acting regulators. This study attempts to quantitatively analyze the role of DNA curvature in thermoregulated gene expression using a real-time in vitro transcription model system based on a specific fluorescence molecular beacon. By analyzing the temperature-dependent expression of a reporter gene in a construct carrying a progressively decreasing bent sequence upstream from the promoter, we show that with a decrease in temperature a narrow curvature range accounts for a significant enhancement of promoter activity. This strengthens the view that DNA curvature-mediated regulation of gene expression is likely a strategy offering fine-tuning control possibilities and that, considering the widespread presence of curved sequences upstream from bacterial promoters, it may represent one of the most primitive forms of gene regulation.
Collapse
Affiliation(s)
- Gianni Prosseda
- Istituto Pasteur Fondazione Cenci Bolognetti, Dip. Biologia Cellulare e dello Sviluppo, Sapienza Univ. Roma, via dei Sardi 70, 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
AbstractShort runs of adenines are a ubiquitous DNA element in regulatory regions of many organisms. When runs of 4–6 adenine base pairs (‘A-tracts’) are repeated with the helical periodicity, they give rise to global curvature of the DNA double helix, which can be macroscopically characterized by anomalously slow migration on polyacrylamide gels. The molecular structure of these DNA tracts is unusual and distinct from that of canonical B-DNA. We review here our current knowledge about the molecular details of A-tract structure and its interaction with sequences flanking them of either side and with the environment. Various molecular models were proposed to describe A-tract structure and how it causes global deflection of the DNA helical axis. We review old and recent findings that enable us to amalgamate the various findings to one model that conforms to the experimental data. Sequences containing phased repeats of A-tracts have from the very beginning been synonymous with global intrinsic DNA bending. In this review, we show that very often it is the unique structure of A-tracts that is at the basis of their widespread occurrence in regulatory regions of many organisms. Thus, the biological importance of A-tracts may often be residing in their distinct structure rather than in the global curvature that they induce on sequences containing them.
Collapse
|
11
|
Abstract
Electrophoresis in polyacrylamide gels provides a simple yet powerful means of analyzing the relative disposition of helical arms in branched nucleic acids. The electrophoretic mobility of DNA or RNA with a central discontinuity is determined by the angle subtended between the arms radiating from the branchpoint. In a multi-helical branchpoint, comparative gel electrophoresis can provide a relative measure of all the inter-helical angles and thus the shape and symmetry of the molecule. Using the long-short arm approach, the electrophoretic mobility of all the species with two helical arms that are longer than all others is compared. This can be done as a function of conditions, allowing the analysis of ion-dependent folding of branched DNA and RNA species. Notable successes for the technique include the four-way (Holliday) junction in DNA and helical junctions in functionally significant RNA species such as ribozymes. Many of these structures have subsequently been proved correct by crystallography or other methods, up to 10 years later in the case of the Holliday junction. Just as important, the technique has not failed to date. Comparative gel electrophoresis can provide a window on both fast and slow conformational equilibria such as conformer exchange in four-way DNA junctions. But perhaps the biggest test of the approach has been to deduce the structures of complexes of four-way DNA junctions with proteins. Two recent crystallographic structures show that the global structures were correctly deduced by electrophoresis, proving the worth of the method even in these rather complex systems. Comparative gel electrophoresis is a robust method for the analysis of branched nucleic acids and their complexes.
Collapse
|
12
|
Abstract
A large amount of experimental evidence is available for the effects of magnesium ions on the structure and the stability of the DNA double helix. Less is known, however, on how these ions affect the dynamics of the molecule and the stability of each individual base pair. The present work addresses these questions by a study of the DNA duplex [dCGCAGATCTGCG]2, and its interactions with magnesium ions using nuclear magnetic resonance (NMR) spectroscopy and proton exchange. Two-dimensional NMR experiments indicate that binding of magnesium to this DNA duplex does not affect its structure. However, even in the absence of structural changes, magnesium ions specifically affect the exchange properties of imino protons in the four GC/CG base pairs that are located in the interior of the double helix. These specific changes do not result from alterations in the rates of spontaneous opening of these base pairs. Instead, the changes most likely reflect an enhancement in the energetic propensity for spontaneous opening of the GC/CG base pairs that is induced by the binding of magnesium ions.
Collapse
Affiliation(s)
- Alicia E. Every
- Department of Chemistry and Molecular Biophysics Program Wesleyan University Middletown, CT 06459
| | - Irina M. Russu
- Department of Chemistry and Molecular Biophysics Program Wesleyan University Middletown, CT 06459
| |
Collapse
|
13
|
Gimenes F, Gouveia FDS, Fiorini A, Fernandez MA. Intrinsic bent DNA sites in the chromosomal replication origin of Xylella fastidiosa 9a5c. Braz J Med Biol Res 2008; 41:295-304. [PMID: 18392452 DOI: 10.1590/s0100-879x2008000400007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 03/05/2008] [Indexed: 11/21/2022] Open
Abstract
The features of the nucleotide sequences in both replication and promoter regions have been investigated in many organisms. Intrinsically bent DNA sites associated with transcription have been described in several prokaryotic organisms. The aim of the present study was to investigate intrinsic bent DNA sites in the segment that holds the chromosomal replication origin, oriC, of Xylella fastidiosa 9a5c. Electrophoretic behavior analyses, as well as in silico analyses of both the 2-D projection and helical parameters, were performed. The chromosomal segment analyzed contains the initial sequence of the rpmH gene, an intergenic region, the dnaA gene, the oriC sequence, and the 5' partial sequence of the dnaN gene. The analysis revealed fragments with reduced electrophoretic mobility, which indicates the presence of curved DNA segments. The analysis of the helical parameter ENDS ratio revealed three bent DNA sites (b1, b2, and b3) located in the rpmH-dnaA intergenic region, the dnaA gene, and the oriC 5' end, respectively. The chromosomal segment of X. fastidiosa analyzed here is rich in phased AT tracts and in CAnT motifs. The 2-D projection indicated a segment whose structure was determined by the cumulative effect of all bent DNA sites. Further, the in silico analysis of the three different bacterial oriC sequences indicated similar negative roll and twist >34.00 degrees values. The DnaA box sequences, and other motifs in them, may be associated with the intrinsic DNA curvature.
Collapse
Affiliation(s)
- F Gimenes
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | | | | | | |
Collapse
|
14
|
Derome A, Hoischen C, Bussiek M, Grady R, Adamczyk M, Kędzierska B, Diekmann S, Barillà D, Hayes F. Centromere anatomy in the multidrug-resistant pathogen Enterococcus faecium. Proc Natl Acad Sci U S A 2008; 105:2151-6. [PMID: 18245388 PMCID: PMC2538891 DOI: 10.1073/pnas.0704681105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Indexed: 11/18/2022] Open
Abstract
Multidrug-resistant variants of the opportunistic human pathogen Enterococcus have recently emerged as leading agents of nosocomial infection. The acquisition of plasmid-borne resistance genes is a driving force in antibiotic-resistance evolution in enterococci. The segregation locus of a high-level gentamicin-resistance plasmid, pGENT, in Enterococcus faecium was identified and dissected. This locus includes overlapping genes encoding PrgP, a member of the ParA superfamily of segregation proteins, and PrgO, a site-specific DNA binding homodimer that recognizes the cenE centromere upstream of prgPO. The centromere has a distinctive organization comprising three subsites, CESII separates CESI and CESIII, each of which harbors seven TATA boxes spaced by half-helical turns. PrgO independently binds both CESI and CESIII, but with different affinities. The topography of the complex was probed by atomic force microscopy, revealing discrete PrgO foci positioned asymmetrically at the CESI and CESIII subsites. Bending analysis demonstrated that cenE is intrinsically curved. The organization of the cenE site and of certain other plasmid centromeres mirrors that of yeast centromeres, which may reflect a common architectural requirement during assembly of the mitotic apparatus in yeast and bacteria. Moreover, segregation modules homologous to that of pGENT are widely disseminated on vancomycin and other resistance plasmids in enterococci. An improved understanding of segrosome assembly may highlight new interventions geared toward combating antibiotic resistance in these insidious pathogens.
Collapse
Affiliation(s)
- Andrew Derome
- *Faculty of Life Sciences and
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Christian Hoischen
- Leibniz Institute for Age Research, Fritz–Lipmann Institute, D-07745 Jena, Germany
| | - Malte Bussiek
- Biophysical Engineering Group, University of Twente, 7500 AE, Enschede, The Netherlands; and
| | | | - Malgorzata Adamczyk
- *Faculty of Life Sciences and
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Barbara Kędzierska
- *Faculty of Life Sciences and
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Stephan Diekmann
- Leibniz Institute for Age Research, Fritz–Lipmann Institute, D-07745 Jena, Germany
| | - Daniela Barillà
- **Department of Biology, University of York, York Y0105 YW, United Kingdom
| | - Finbarr Hayes
- *Faculty of Life Sciences and
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
15
|
Hoischen C, Bussiek M, Langowski J, Diekmann S. Escherichia coli low-copy-number plasmid R1 centromere parC forms a U-shaped complex with its binding protein ParR. Nucleic Acids Res 2007; 36:607-15. [PMID: 18056157 PMCID: PMC2241845 DOI: 10.1093/nar/gkm672] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Escherichia coli low-copy-number plasmid R1 contains a segregation machinery composed of parC, ParR and parM. The R1 centromere-like site parC contains two separate sets of repeats. By atomic force microscopy (AFM) we show here that ParR molecules bind to each of the 5-fold repeated iterons separately with the intervening sequence unbound by ParR. The two ParR protein complexes on parC do not complex with each other. ParR binds with a stoichiometry of about one ParR dimer per each single iteron. The measured DNA fragment lengths agreed with B-form DNA and each of the two parC 5-fold interon DNA stretches adopts a linear path in its complex with ParR. However, the overall parC/ParR complex with both iteron repeats bound by ParR forms an overall U-shaped structure: the DNA folds back on itself nearly completely, including an angle of ∼150°. Analysing linear DNA fragments, we never observed dimerized ParR complexes on one parC DNA molecule (intramolecular) nor a dimerization between ParR complexes bound to two different parC DNA molecules (intermolecular). This bacterial segrosome is compared to other bacterial segregation complexes. We speculate that partition complexes might have a similar overall structural organization and, at least in part, common functional properties.
Collapse
Affiliation(s)
- C Hoischen
- Molecular Biology, FLI, Leibniz-Institute for Age Research, Beutenbergstrasse 11, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
16
|
Blouin S, Lafontaine DA. A loop loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control. RNA (NEW YORK, N.Y.) 2007; 13:1256-67. [PMID: 17585050 PMCID: PMC1924893 DOI: 10.1261/rna.560307] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The lysine riboswitch is associated to the lysC gene in Bacillus subtilis, and the binding of lysine modulates the RNA structure to allow the formation of an intrinsic terminator presumably involved in transcription attenuation. The complex secondary structure of the lysine riboswitch aptamer is organized around a five-way junction that undergoes structural changes upon ligand binding. Using single-round transcription assays, we show that a loop-loop interaction is important for lysine-induced termination of transcription. Moreover, upon close inspection of the secondary structure, we find that an unconventional kink-turn motif is present in one of the stems participating in the loop-loop interaction. We show that the K-turn adopts a pronounced kink and that it binds the K-turn-binding protein L7Ae of Archaeoglobus fulgidus in the low nanomolar range. The functional importance of this K-turn motif is revealed from single-round transcription assays, which show its importance for efficient transcription termination. This motif is essential for the loop-loop interaction, and consequently, for lysine binding. Taken together, our results depict for the first time the importance of a K-turn-dependent loop-loop interaction for the transcription regulation of a lysine riboswitch.
Collapse
Affiliation(s)
- Simon Blouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | |
Collapse
|
17
|
Fiorini A, de Gouveia FS, de Soares MAM, Stocker AJ, Ciferri RR, Fernandez MA. DNA bending in the replication zone of the C3 DNA puff amplicon of Rhynchosciara americana (Diptera: Sciaridae). Mol Biol Rep 2007; 33:71-82. [PMID: 16636920 DOI: 10.1007/s11033-006-0009-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2006] [Indexed: 10/24/2022]
Abstract
Intrinsic bent DNA sites were identified in the 4289 bp segment encompassing the replication zone which directs DNA amplification and transcription of the C3-22 gene of Rhynchosciara americana. Restriction fragments showed reduced electrophoretic mobility in polyacrylamide gels. The 2D modeling of the 3D DNA path and the ENDS ratio values obtained from the dinucleotide wedge model of Trifonov revealed the presence of four major bent sites, positioned at nucleotides -6753, -5433, -5133 and -4757. Sequence analysis showed that these bends are composed of 2-6 bp dA.dT tracts in phase with the DNA helical repeat. The circular permutation analysis permitted the verification that the fragments containing the bending sites promote curvature in other sequence contexts. Computer analyses of the 4289 bp sequence revealed low helical stability (DeltaG values), negative roll angles indicating a narrow minor groove and a putative matrix attachment region. The data presented in this paper add to information about the structural features involved in this amplified segment.
Collapse
Affiliation(s)
- Adriana Fiorini
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900, Maringá, Paraná, Brasil
| | | | | | | | | | | |
Collapse
|
18
|
Griffiths KK, Russu IM. Specific Interactions of Divalent Metal Ions with a DNA Duplex Containing the d(CA)n/(GT)nTandem Repeat. J Biomol Struct Dyn 2006; 23:667-76. [PMID: 16615812 DOI: 10.1080/07391102.2006.10507091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Divalent metal ions are essential for maintaining functional states of the DNA molecule. Their participation in DNA structure is modulated by the base sequence and varies depending on the nature of the ion. The present investigation addresses the interaction of Ca2+ ions with a tandem repeat of two CA dinucleotides, (CA)2/(TG)2. The binding of Ca2+ to the repeat is monitored by nuclear magnetic resonance (NMR) spectroscopy using chemical shift mapping. Parallel experiments monitor binding of Mg2+ ions to the repeat as well as binding of each ion to a DNA duplex in which the (CA)2/(TG)2 repeat is eliminated. The results reveal that the direction and the magnitude of chemical shift changes induced by Ca2+ ions in the NMR spectra of the repeat are different from those induced by Mg2+ ions. The differences between the two cations are significantly diminished by the elimination of the (CA)2/(TG)2 repeat. These findings suggest a specific interaction of Ca2+ ions with the (CA)2/(TG)2 motif. The specificity of the interaction resides in the two A-T base pairs of the repeat, and it involves the major groove of the first A-T base pair and both grooves of the second A-T base pair.
Collapse
Affiliation(s)
- Keren K Griffiths
- Department of Chemistry and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459, USA
| | | |
Collapse
|
19
|
Abstract
Extensive DNA sequence analysis of three eukaryotes, S. cerevisiae, C. elegans, and D. melanogaster, reveals two different AA/TT periodical patterns associated with the nucleosome positioning. The first pattern is the counter-phase oscillation of AA and TT dinucleotides, which has been frequently considered as the nucleosome DNA pattern. This represents the sequence rule I for chromatin structure. The second pattern is the in-phase oscillation of the AA and TT dinucleotides with the same nucleosome DNA period, 10.4 bases. This pattern apparently corresponds to curved DNA, that also participates in the nucleosome formation, and represents the sequence rule II for chromatin. The positional correlations of AA and TT dinucleotides also indicate that the nucleosomes are separated by specific linker sizes (preferably 8, 18, ... bases), dictated by the steric exclusion rules. Thus, the sequence positions of the neighboring nucleosomes are correlated, and this represents the sequence rule III.
Collapse
Affiliation(s)
- Amir B Cohanim
- Department of Biotechnology and Food Engineering, Technion, Haifa 32000, Israel
| | | | | |
Collapse
|
20
|
Moulaei T, Maehigashi T, Lountos GT, Komeda S, Watkins D, Stone MP, Marky LA, Li JS, Gold B, Williams LD. Structure of B-DNA with cations tethered in the major groove. Biochemistry 2005; 44:7458-68. [PMID: 15895989 DOI: 10.1021/bi050128z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we describe the 1.6-A X-ray structure of the DDD (Dickerson-Drew dodecamer), which has been covalently modified by the tethering of four cationic charges. This modified version of the DDD, called here the DDD(4+), is composed of [d(CGCGAAXXCGCG)](2), where X is effectively a thymine residue linked at the 5 position to an n-propyl-amine. The structure was determined from crystals soaked with thallium(I), which has been broadly used as a mimic of K(+) in X-ray diffraction experiments aimed at determining positions of cations adjacent to nucleic acids. Three of the tethered cations are directed radially out from the DNA. The radially directed tethered cations do not appear to induce structural changes or to displace counterions. One of the tethered cations is directed in the 3' direction, toward a phosphate group near one end of the duplex. This tethered cation appears to interact electrostatically with the DNA. This interaction is accompanied by changes in helical parameters rise, roll, and twist and by a displacement of the backbone relative to a control oligonucleotide. In addition, these interactions appear to be associated with displacement of counterions from the major groove of the DNA.
Collapse
Affiliation(s)
- Tinoush Moulaei
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Woods KK, Maehigashi T, Howerton SB, Sines CC, Tannenbaum S, Williams LD. High-resolution structure of an extended A-tract: [d(CGCAAATTTGCG)]2. J Am Chem Soc 2005; 126:15330-1. [PMID: 15563130 DOI: 10.1021/ja045207x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of [d(CGCAAATTTGCG)]2 has been determined to 1.5 A resolution, representing the first high-resolution structure of this DNA fragment. The ion interactions are novel. A spermine molecule replaces a Mg2+ observed in analogous structures. Unlike lower-resolution structures, the minor groove is narrow and the major groove lacks extra Watson-Crick hydrogen bonds. In addition, a monolayer of solvent sites, including a "spine of hydration", is visible in the minor groove. The crystal of [d(CGCAAATTTGCG)]2 was grown from a solution containing spermine, magnesium, and lithium. The conformation recapitulates that of "monovalent-minus" DNA.
Collapse
Affiliation(s)
- Kristen Kruger Woods
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | | | | | | | | | | |
Collapse
|
22
|
Dixit SB, Pitici F, Beveridge DL. Structure and axis curvature in two dA6 x dT6 DNA oligonucleotides: comparison of molecular dynamics simulations with results from crystallography and NMR spectroscopy. Biopolymers 2005; 75:468-79. [PMID: 15526331 DOI: 10.1002/bip.20157] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Molecular dynamics (MD) simulations have been performed on the A6 containing DNA dodecamers d(GGCAAAAAACGG) solved by NMR and d(CGCAAAAAAGCG) solved by crystallography. The experimental structures differ in the direction of axis bending and in other small but important aspects relevant to the DNA curvature problem. Five nanosecond MD simulations of each sequence have been performed, beginning with both the NMR and crystal forms as well as canonical B-form DNA. The results show that all simulations converge to a common form in close proximity to the observed NMR structure, indicating that the structure obtained in the crystal is likely a strained form due to packing effects. A-tracts in the MD model are essentially straight. The origin of axis curvature is found at pyrimidine-purine steps in the flanking sequences.
Collapse
Affiliation(s)
- Surjit B Dixit
- Chemistry Department and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459, USA.
| | | | | |
Collapse
|
23
|
Hoischen C, Bolshoy A, Gerdes K, Diekmann S. Centromere parC of plasmid R1 is curved. Nucleic Acids Res 2004; 32:5907-15. [PMID: 15528638 PMCID: PMC528805 DOI: 10.1093/nar/gkh920] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The centromere sequence parC of Escherichia coli low-copy-number plasmid R1 consists of two sets of 11 bp iterated sequences. Here we analysed the intrinsic sequence-directed curvature of parC by its migration anomaly in polyacrylamide gels. The 159 bp long parC is strongly curved with anomaly values (k-factors) close to 2. The properties of the parC curvature agree with those of other curved DNA sequences. parC contains two regions of 5-fold repeated iterons separated by 39 bp. We modified 4 bp within this intermediate sequence so that we could analyse the two 5-fold repeated regions independently. The analysis shows that the two repeat regions are not independently curved parts of parC but that the overall curvature is a property of the whole fragment. Since the centromere sequence of an E.coli plasmid as well as eukaryotic centromere sequences show DNA curvature, we speculate that curvature might be a general property of centromeres.
Collapse
Affiliation(s)
- Christian Hoischen
- Institute for Molecular Biotechnology e.V., Beutenbergstr. 11, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
24
|
Tchernaenko V, Halvorson HR, Lutter LC. Topological measurement of an A-tract bend angle: effect of magnesium. J Mol Biol 2004; 341:55-63. [PMID: 15312762 DOI: 10.1016/j.jmb.2004.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 05/28/2004] [Accepted: 06/10/2004] [Indexed: 10/26/2022]
Abstract
Sequences of four to six adenine residues, termed A-tracts, have been shown to produce curvature in the DNA double helix. A-tracts have been used extensively as reference standards to quantify bending induced by other sequences as well as by DNA binding proteins when they bind to their sites. However, the ability of an A-tract to serve as such a standard is hampered by the wide variation of values reported for the amount of bend conferred by an A-tract. One experimental condition that differs in these studies is the presence of divalent cation. To evaluate this effect, a new application of a topological method, termed rotational variant analysis, is used here to measure for the first time the effect of the presence of magnesium ion on the bend angle conferred by an A-tract. This method, which has the unique ability to measure a bend angle in the presence or absence of magnesium ion, demonstrates that magnesium ion markedly increases the bend angle. For example, when measured in a commonly used gel electrophoretic buffer, the bend angle conferred by a tract of six adenine residues increases from about 7 degrees in the absence of magnesium ion to 19 degrees in the presence of 3.9 mM magnesium ion. This quantitative demonstration of substantial magnesium ion dependence has several important implications. First, it explains discrepancies among bend values reported in various previous studies, particularly those employing gel electrophoretic versus other solution methods. In addition, these findings necessitate substantial revisions of the conclusions in a large number of studies that have used A-tract DNA as the bend angle reference standard in comparison measurements. Finally, any such future studies employing this comparison methodology will need to use the same sequence analyzed in the original measurements as well as replicate the original measurement conditions (e.g. ionic composition and temperature).
Collapse
Affiliation(s)
- Vladimir Tchernaenko
- Molecular Biology Research Program, Henry Ford Hospital, One Ford Place 5D, Detroit, MI 48202-3450, USA
| | | | | |
Collapse
|
25
|
Abstract
The recent hypothesis of a compressed backbone state as the origin of the intrinsic curvature in DNA suggested that it could result from a geometric mismatch between the partial specific backbone length and optimal base stacking. It predicted that the long-known phenomenon of static curvature in A-tract repeats may be affected by single-stranded breaks (nicks) that should relax it in a position-dependent manner. To check the aforementioned prediction, a special series of nicked DNA fragments was prepared from two mother sequences, one including phased A-tract repeats and the other being random, and the curvature was probed experimentally by gel mobility assays. In agreement with earlier reports, single-stranded breaks produce virtually no effect upon the gel mobility of the random sequence DNA. In contrast, for nicked A-tract fragments, the curvature exhibits regular periodical behavior depending upon the position of the strand break with respect to the overall bend. The modulations are rather strong, with the maximal increase in gel mobility exceeding 30% of the initial difference with respect to the reference straight DNA. This effect has not been encountered before, and it is opposite the usual nonspecific retardation caused by single-stranded breaks. The amplitude of the observed modulation is increased for phosphorylated nicks and in the presence of Mg(2+) ions.
Collapse
Affiliation(s)
- Dimitri E Kamashev
- CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, Paris 75005, France
| | | |
Collapse
|
26
|
Pavlicek JW, Oussatcheva EA, Sinden RR, Potaman VN, Sankey OF, Lyubchenko YL. Supercoiling-Induced DNA Bending. Biochemistry 2004; 43:10664-8. [PMID: 15311927 DOI: 10.1021/bi0362572] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Local DNA bending is a critical factor for numerous DNA functions including recognition of DNA by sequence-specific regulatory binding proteins. Negative DNA supercoiling increases both local and global DNA dynamics, and this dynamic flexibility can facilitate the formation of DNA-protein complexes. We have recently shown that apexes of supercoiled DNA molecules are sites that can promote the formation of an alternative DNA structure, a cruciform, suggesting that these positions in supercoiled DNA are under additional stress and perhaps have a distorted DNA geometry. To test this hypothesis, we used atomic force microscopy to directly measure the curvature of apical positions in supercoiled DNA. The measurements were performed for an inherently curved sequence formed by phased A tracts and a region of mixed sequence DNA. For this, we used plasmids in which an inverted repeat and A tract were placed at precise locations relative to each other. Under specific conditions, the inverted repeat formed a cruciform that was used as a marker for the unambiguous identification of the A tract location. When the A tract and cruciform were placed diametrically opposite, this yielded predominantly nonbranched plectonemic molecules with an extruded cruciform and A tract localized in the terminal loops. For both the curved A tract and mixed sequence nonbent DNA, their localization to an apex increased the angle of bending compared to that expected for DNA unconstrained in solution. This is consistent with increased helical distortion at an apical bend.
Collapse
Affiliation(s)
- Jeffrey W Pavlicek
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | | | | | |
Collapse
|
27
|
Prosseda G, Falconi M, Giangrossi M, Gualerzi CO, Micheli G, Colonna B. The virF promoter in Shigella: more than just a curved DNA stretch. Mol Microbiol 2004; 51:523-37. [PMID: 14756791 DOI: 10.1046/j.1365-2958.2003.03848.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the human enteropathogen Shigella transcription of virF, the primary regulator of the invasion functions, is strictly temperature-dependent and is antagonistically mediated by H-NS and FIS, which bind to specific sites on the virF promoter. Here we report on the relevance of DNA geometry to the thermoregulation of virF and demonstrate that the virF promoter hosts a major DNA bend halfway between two H-NS sites. The bent region has been mutagenized in vitro to mimic temperature-induced changes of DNA curvature. Functional analysis of curvature mutants and of promoter constructs in which the two H-NS sites are phased-out by a half-helix turn reveals that modifying the spatial relationships between these sites severely affects the interaction of H-NS with the virF promoter, as well as its in vivo and in vitro temperature-dependent activity. The role of promoter curvature as thermosensor is also compatible with the present observation that, with increasing temperature, the virF bending centre moves downstream at a rate having its maximum around the transition temperature, abruptly unmasking a binding site for the transcriptional activator FIS.
Collapse
Affiliation(s)
- Gianni Prosseda
- Dip. Biologia Cellulare e dello Sviluppo, University La Sapienza, 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Goody TA, Melcher SE, Norman DG, Lilley DMJ. The kink-turn motif in RNA is dimorphic, and metal ion-dependent. RNA (NEW YORK, N.Y.) 2004; 10:254-64. [PMID: 14730024 PMCID: PMC1370537 DOI: 10.1261/rna.5176604] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 10/03/2003] [Indexed: 05/19/2023]
Abstract
The kink-turn (K-turn) is a new motif in RNA structure that was identified by examination of the crystal structures of the ribosome. We examined the structural and dynamic properties of this element in free solution. The K-turn RNA exists in a dynamic equilibrium between a tightly kinked conformation and a more open structure similar to a simple bulge bend. The highly kinked form is stabilized by the noncooperative binding of metal ions, but a significant population of the less-kinked form is present even in the presence of relatively high concentrations of divalent metal ions. The conformation of the tightly kinked population is in excellent agreement with that of the K-turn structures observed in the ribosome by crystallography. The end-to-end FRET efficiency of this species agrees closely with that of the ribosomal K-turn, and the direction of the bend measured by comparative gel electrophoresis also corresponds very well. These results show that the tightly kinked conformation of the K-turn requires stabilization by other factors, possibly by protein binding, for example. The K-turn is therefore unlikely to be of itself a primary organizing feature in RNA.
Collapse
Affiliation(s)
- Terry A Goody
- Cancer Research UK Nucleic Acid Structure Research Group, Department of Biochemistry, The University of Dundee, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
29
|
Tawar U, Jain AK, Chandra R, Singh Y, Dwarakanath BS, Chaudhury NK, Good L, Tandon V. Minor Groove Binding DNA Ligands with Expanded A/T Sequence Length Recognition, Selective Binding to Bent DNA Regions and Enhanced Fluorescent Properties. Biochemistry 2003; 42:13339-46. [PMID: 14609344 DOI: 10.1021/bi034425k] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA minor groove ligands provide a paradigm for double-stranded DNA recognition, where common structural motifs provide a crescent shape that matches the helix turn. Since minor groove ligands are useful in medicine, new ligands with improved binding properties based on the structural information about DNA-ligand complexes could be useful in developing new drugs. Here, two new synthetic analogues of AT specific Hoechst 33258 5-(4-methylpiperazin-1-yl)-2-[2'-(3,4-dimethoxyphenyl)-5'-benzimidazolyl] benzimidazole (DMA) and 5-(4-methylpiperazin-1-yl)-2-[2'[2''-(4-hydroxy-3-methoxyphenyl)-5' '-benzimidazolyl]-5'-benzimidazolyl] benzimidazole (TBZ) were evaluated for their DNA binding properties. Both analogues are bisubstituted on the phenyl ring. DMA contains two ortho positioned methoxy groups, and TBZ contains a phenolic group at C-4 and a methoxy group at C-3. Fluorescence yield upon DNA binding increased 100-fold for TBZ and 16-fold for DMA. Like the parent compound, the new ligands showed low affinity to GC-rich (K approximately 4 x 10(7) M(-1)) relative to AT-rich sequences (K approximately 5 x 10(8) M(-1)), and fluorescence lifetime and anisotropy studies suggest two distinct DNA-ligand complexes. Binding studies indicate expanded sequence recognition for TBZ (8-10 AT base pairs) and tighter binding (DeltaT(m) of 23 degrees C for d (GA(5)T(5)C). Finally, EMSA and equilibrium binding titration studies indicate that TBZ preferentially binds highly hydrated duplex domains with altered A-tract conformations d (GA(4)T(4)C)(2) (K= 3.55 x 10(9) M(-1)) and alters its structure over d (GT(4)A(4)C)(2) (K = 3.3 x 10(8) M(-1)) sequences. Altered DNA structure and higher fluorescence output for the bound fluorophore are consistent with adaptive binding and a constrained final complex. Therefore, the new ligands provide increased sequence and structure selective recognition and enhanced fluorescence upon minor groove binding, features that can be useful for further development as probes for chromatin structure stability.
Collapse
Affiliation(s)
- Urmila Tawar
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Transient electric birefringence has been used to analyze DNA bending in six restriction fragments containing 171, 174, 207, 263, 289, and 471 bp in three different low ionic strength buffers. The target fragments contain sequences corresponding to the apparent bend centers in pUC19 and Litmus 28, previously identified by the circular permutation assay (Strutz, K.; Stellwagen, N. C. Electrophoresis 1996, 17, 989-995). The target fragments migrate anomalously slowly in polyacrylamide gels and exhibit birefringence relaxation times that are shorter than those of restriction fragments of the same size, taken from nonbent regions of the same plasmids. Apparent bend angles ranging from 30 degrees to 41 degrees were calculated for the target fragments by tau-ratio method. The bend angles of four of the target fragments were independent of temperature from 4 degrees C to 20 degrees C, but decreased when the temperature was increased to 37 degrees C. The bend angles of the other two target fragments were independent of temperature over the entire range examined, 4 degrees -37 degrees C. Hence, the thermal stability of sequence-dependent bends in random-sequence DNA is variable. The bend angles of five of the six target fragments were independent of the presence or absence of Mg2+ ions in the solution, indicating most of the target fragments were stably bent or curved, rather than anisometrically flexible. Restriction fragments containing 219 and 224 bp, with sequences somewhat offset from the sequence of the 207 bp fragment, were also studied. Comparison of the tau-ratios of these overlapping fragments allowed both the bend angle and bend position to be independently determined. These methods should be useful for analyzing sequence-dependent bending in other random-sequence DNAs.
Collapse
Affiliation(s)
- Yongjun Lu
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
31
|
Giudice E, Lavery R. Nucleic acid base pair dynamics: the impact of sequence and structure using free-energy calculations. J Am Chem Soc 2003; 125:4998-9. [PMID: 12708848 DOI: 10.1021/ja034095r] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics free-energy calculations of base pair opening within double helical DNA and RNA are used to explain why A-tracts (oligo-adenine repeats) greatly increase the lifetimes of AT base pairs, whereas the structural and the chemical changes involved in passing from B-DNA to A-RNA have comparatively small effects.
Collapse
Affiliation(s)
- Emmanuel Giudice
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, Paris 75005, France
| | | |
Collapse
|
32
|
|
33
|
Tchernaenko V, Radlinska M, Drabik C, Bujnicki J, Halvorson HR, Lutter LC. Topological measurement of an A-tract bend angle: comparison of the bent and straightened states. J Mol Biol 2003; 326:737-49. [PMID: 12581636 DOI: 10.1016/s0022-2836(02)01468-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is well established that an A-tract imparts curvature to the DNA double helix. Constructs of such A-tracts have been used as bend standards in a large number of both structural and functional studies, and A-tracts can confer significant activation in transcription. An accurate value for the bend angle induced by an A-tract is centrally important to all such studies, but the estimates reported for the bend angle of an A-tract differ by greater than threefold. To address this problem, we have used the rotational variant method to measure the angle of DNA curvature conferred by a tract of six adenine bases (A6 tract). The original version of the method measured a protein-induced bend angle independent of external standards. It compared the effect of bent and straight forms of the sequence on the topology of a DNA plasmid in which the sequence is cloned as a series of tandem repeats. To adapt the approach to the measurement of an intrinsic bend, high temperature was used to generate the straightened reference state, with the required topological relaxation being performed by a hyperthermophile topoisomerase. Appropriate plasmids containing tandem repeats of A-tracts were constructed and topologically analyzed in this manner. The bend value measured at 4 degrees C was 26(+/-2), and decreased linearly to 17(+/-2) at 37 degrees C. The relationship to other estimates and the application of these values are discussed.
Collapse
Affiliation(s)
- Vladimir Tchernaenko
- Molecular Biology Research Program, Henry Ford Hospital, One Ford Place 5D, Detroit, MI 48202-3450, USA
| | | | | | | | | | | |
Collapse
|
34
|
Tagashira H, Morita M, Ohyama T. Multimerization of restriction fragments by magnesium-mediated stable base pairing between overhangs: a cause of electrophoretic mobility shift. Biochemistry 2002; 41:12217-23. [PMID: 12356324 DOI: 10.1021/bi026308f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrophoretic mobility shift assay (EMSA) or simply the "gel shift assay" is one of the most sensitive methods for studying the ability of a protein to bind to DNA. EMSAs are also widely used to investigate protein- or sequence-dependent DNA bending. Here we report that electrophoresis using physiological concentrations of Mg(2+) can cause a mobility shift of restriction fragments in nondenaturing polyacrylamide gels as the overhangs form stable base pairs. This phenomenon was observed at even 37 degrees C. The retardation was, however, more pronounced at low temperatures, where a three-nucleotide overhang 5'-GAC also caused a mobility shift. The stability of the pairing was generally high when the overhangs of four nucleotides display high GC content, while the mobility shift caused by 5'-AATT was greater than those caused by 5'-GATC, 5'-TCGA, and 5'-CTAG. This observation should be taken into account to avoid misinterpretation of the data when the EMSA, especially the circular permutation gel mobility shift assay, is performed using a running buffer that contains Mg(2+) ions. The stable adhesion between short overhangs may present an important basis for genome stability and many genetic processes occurring in living cells.
Collapse
Affiliation(s)
- Hideki Tagashira
- Department of Biology, Faculty of Science and Engineering, and High Technology Research Center, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | | | | |
Collapse
|
35
|
Hud NV, Feigon J. Characterization of divalent cation localization in the minor groove of the A(n)T(n) and T(n)A(n) DNA sequence elements by (1)H NMR spectroscopy and manganese(II). Biochemistry 2002; 41:9900-10. [PMID: 12146955 DOI: 10.1021/bi020159j] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The localization of Mn(2+) in A-tract DNA has been studied by (1)H NMR spectroscopy using a series of self-complementary dodecamer oligonucleotides that contain the sequence motifs A(n)(n) and T(n)A(n), where n = 2, 3, or 4. Mn(2+) localization in the minor groove is observed for all the sequences that have been studied, with the position and degree of localization being highly sequence-dependent. The site most favored for Mn(2+) localization in the minor groove is near the 5'-most ApA step for both the T(n)A(n) and the A(n)T(n) series. For the T(n)A(n) series, this results in two closely spaced symmetry-related Mn(2+) localization sites near the center of each duplex, while for the A(n)T(n) series, the two symmetry-related sites are separated by as much as one half-helical turn. The degree of Mn(2+) localization in the minor groove of the T(n)A(n) series decreases substantially as the AT sequence element is shortened from T(4)A(4) to T(2)A(2). The A(n)T(n) series also exhibits length-dependent Mn(2+) localization; however, the degree of minor groove occupancy by Mn(2+) is significantly less than that observed for the T(n)A(n) series. For both A(n)T(n) and T(n)A(n) sequences, the 3'-most AH2 resonance is the least broadened of the AH2 resonances. This is consistent with the observation that the minor groove of A-tract DNA narrows in the 5' to 3' direction, apparently becoming too narrow after two base pairs for the entry of a fully hydrated divalent cation. The results that are reported illustrate the delicate interplay that exists between DNA nucleotide sequence, minor groove width, and divalent cation localization. The proposed role of cation localization in helical axis bending by A-tracts is also discussed.
Collapse
Affiliation(s)
- Nicholas V Hud
- Department of Chemistry and Biochemistry, University of California, 405 Hilgard Avenue, Los Angeles, CA 90095-1569, USA.
| | | |
Collapse
|
36
|
Mazur AK, Kamashev DE. Comparative bending dynamics in DNA with and without regularly repeated adenine tracts. ACTA ACUST UNITED AC 2002; 66:011917. [PMID: 12241394 DOI: 10.1103/physreve.66.011917] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2002] [Indexed: 11/07/2022]
Abstract
The macroscopic curvature of double helical DNA induced by regularly repeated adenine tracts is well known but still puzzling. Its physical origin remains controversial even though it is perhaps the best-documented sequence modulation of DNA structure. The paper reports on comparative theoretical and experimental studies of bending dynamics in 35-mer DNA fragments. This length appears large enough for the curvature to be distinguished by gel electrophoresis. Two DNA fragments, with identical base pair composition but different sequences, are compared. In the first one, a single A-tract motif is four times repeated in phase with the helical screw whereas the second sequence is "random." Both calculations and experiments indicate that the A-tract DNA is distinguished by large static curvature and characteristic bending dynamics, suggesting that the computed effect corresponds to the experimental phenomenon. The results agree poorly with the view that DNA bending is caused by the specific local geometry of base pair stacking or binding of solvent counterions, but lend additional support to the hypothesis of a compressed frustrated state of the backbone as the principal physical cause of the static curvature. Possible ways of experimental verification of this hypothesis are discussed.
Collapse
Affiliation(s)
- Alexey K Mazur
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13, Rue Pierre et Marie Curie, Paris, 75005, France.
| | | |
Collapse
|
37
|
Kowalczyk A, Carmical JR, Zou Y, Van Houten B, Lloyd RS, Harris CM, Harris TM. Intrastrand DNA cross-links as tools for studying DNA replication and repair: two-, three-, and four-carbon tethers between the N(2) positions of adjacent guanines. Biochemistry 2002; 41:3109-18. [PMID: 11863450 DOI: 10.1021/bi010450j] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A general protocol for preparation of oligonucleotides containing intrastrand cross-links between the exocyclic amino groups of adjacent deoxyguanosines has been developed. A series of 2, 3, and 4 methylene cross-links was incorporated site-specifically into an 11-mer (5'-GGCAGGTGGTG-3', cross-linked positions are underlined) via a reaction between oligonucleotide containing 2-fluoro-O(6)-trimethylsilylethyl deoxyinosines and the appropriate diamine (ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane). These cross-linked-oligonucleotides were studied for their ability to bend DNA by the method of Koo and Crothers [Koo, H. S., and Crothers, D. M. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 1763-1767] in which the mobility of ligated oligomers in nondenaturing polyacrylamide gels is evaluated. It was found that all cross-links induced bending (2-carbon cross-link, 30.0 +/- 4.0 deg/turn; 3-carbon cross-link, 11.7 +/- 1.6 deg/turn; 4-carbon cross-link, 7.4 +/- 1.0 deg/turn). Despite the differing extent of helical distortion exhibited by the cross-links, all appeared to be equally blocking to replication by the Escherichia coli polymerases, pol I, pol II, and pol III. In contrast, when incision of the cross-links by the E. coli UvrABC nucleotide incision complex was studied, the extent of incision of the cross-link was found to correlate closely with the degree of bending measured in the gel mobility assay, i.e., the efficiency of incision was 2-carbon >> 3-carbon > 4-carbon.
Collapse
Affiliation(s)
- Agnieszka Kowalczyk
- Chemistry Department and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
In the last five years we have witnessed a significant increase in the number publications describing accurate and reliable all-atom molecular dynamics simulations of nucleic acids. This increase has been facilitated by the development of fast and efficient methods for treating the long-range electrostatic interactions, the availability of faster parallel computers, and the development of well-validated empirical molecular mechanical force fields. With these technologies, it has been demonstrated that simulation is not only capable of consistently reproducing experimental observations of sequence specific fine structure of DNA, but also can give detailed insight into prevalent problems in nucleic acid structure, ion association and specific hydration of nucleic acids, polyadenine tract bending, and the subtle environmental dependence of the A-DNA-B-DNA duplex equilibrium. Despite the advances, there are still issues with the methods that need to be resolved through rigorous controlled testing. In general, these relate to deficiencies of the underlying molecular mechanical potentials or applied methods (such as the imposition of true periodicity in Ewald simulations and the need for energy conservation), and significant limits in effective conformational sampling. In this perspective, we provide an overview of our experiences, provide some cautionary notes, and provide recommendations for further study in molecular dynamics simulation of nucleic acids.
Collapse
Affiliation(s)
- T E Cheatham
- Department of Medicinal Chemistry, University of Utah, 30 South, 2000 East, Skaggs Hall 201, Salt Lake City, UT 84112-5820, USA.
| | | |
Collapse
|
39
|
Lutter LC, Tchernaenko V, Radlinska M, Drabik CE, Bujnicki J, Halvorson HR. Measurement of DNA Bend Angles Using DNA Topology. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/978-94-015-9930-6_36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
|
40
|
Dubrac S, Touati D. Fur-mediated transcriptional and post-transcriptional regulation of FeSOD expression in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2002; 148:147-56. [PMID: 11782507 DOI: 10.1099/00221287-148-1-147] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fur (ferric uptake regulation protein) activates sodB expression, increasing expression levels by a factor of seven and sodB transcript stability by a factor of three. Post-transcriptional regulation of sodB was investigated by searching for endoribonucleases that might be involved in sodB mRNA degradation. The activation of sodB expression was significantly reduced if both the RNaseE and RNaseIII genes were mutated. This correlated with cleavage at a palindromic sequence located in the 5' untranslated region of the sodB transcript. An RNA-binding assay showed that Fur did not directly protect the sodB transcript. It was hypothesized that the persistence of Fur-mediated activation of sodB expression in the RNase double mutant was probably due to an effect at the transcriptional level. Therefore, it was investigated whether Fur had a direct transcriptional effect in vitro. Fur bound the sodB promoter region with low affinity, but it was not able to increase sodB transcription. H-NS-mediated repression of sodB expression, which has been shown to be Fur-dependent, was characterized. No DNA-bending region was identified in the sodB promoter region. H-NS did not interfere with the post-transcriptional effect of Fur. Fur-dependent H-NS and the Fur post-transcriptional effect were not additive. This suggests that Fur and H-NS effects are indirect and may be mediated by a common intermediate.
Collapse
Affiliation(s)
- Sarah Dubrac
- Institut Jacques Monod, CNRS-Universités Paris 6 et Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | |
Collapse
|
41
|
Howerton SB, Sines CC, VanDerveer D, Williams LD. Locating monovalent cations in the grooves of B-DNA. Biochemistry 2001; 40:10023-31. [PMID: 11513580 DOI: 10.1021/bi010391+] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we demonstrate that monovalent cations can localize around B-DNA in geometrically regular, sequence-specific sites in oligonucleotide crystals. Positions of monovalent ions were determined from high-resolution X-ray diffraction of DNA crystals grown in the presence of thallium(I) cations (Tl(+)). Tl(+) has previously been shown to be a useful K(+) mimic. Tl(+) positions determined by refinement of model to data are consistent with positions determined using isomorphous F(Tl) - F(K) difference Fouriers and anomalous difference Fouriers. None of the observed Tl(+) sites surrounding CGCGAATTCGCG are fully occupied by Tl(+) ions. The most highly occupied sites, located within the G-tract major groove, have estimated occupancies ranging from 20% to 35%. The occupancies of the minor groove sites are estimated to be around 10%. The Tl(+) positions in general are not in direct proximity to phosphate groups. The A-tract major groove appears devoid of localized cations. The majority of the observed Tl(+) ions interact with a single duplex and so are not engaged in lattice interactions or crystal packing. The locations of the cation sites are dictated by coordination geometry, electronegative potential, avoidance of electropositive amino groups, and cation-pi interactions. It appears that partially dehydrated monovalent cations, hydrated divalent cations, and polyamines compete for a common binding region on the floor of the G-tract major groove.
Collapse
Affiliation(s)
- S B Howerton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | | | | | | |
Collapse
|
42
|
Fiorini A, Basso LR, Paçó-Larson ML, Fernandez MA. Mapping of intrinsic bent DNA sites in the upstream region of DNA puff BhC4-1 amplified gene. J Cell Biochem 2001; 83:1-13. [PMID: 11500949 DOI: 10.1002/jcb.1188] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have identified bent DNA sites in the distal and proximal DNA puff BhC4-1 amplified gene promoter region of Bradysia hygida. The 2D modeling of the 3D DNA path and the ENDS ratio values calculated in this promoter region resulted in the identification of ten pronounced bent sites named BhC4B - 9 to + 1. The 1847 bp fragment (- 3697 to - 1850) in relation to the transcription start site shows multiple bending sites, BhC4B - 9 to BhC4B - 4, with periodicity approximately 300 bp. The analysis of the other identified bent region, starting at position - 957, reveals that the BhC4B + 1 bent site colocalizes with the putative BhC4-1 minimal promoter. The sequence analysis of bent site BhC4B - 4 shows a distribution of dA*dT at approximately 10 bp intervals between the middle of each tract, but intervals with more than one turn, approximately 20 bp, two helix turns, were detected in the other bent sites described here. The bent sites BhC4B - 6 and BhC4B - 4, contain two consensus sequences, with 60 bp each. The apparent molecular weight of fragments in the BhC4-1 promoter region were estimated in agarose gels and compared with the data obtained in polyacrylamide gels without and with ethidium bromide. The mobility reduction ratios (R-values) were determined, and a high R-value, 1.80, for a 1215 bp fragment in the distal promoter region and a 1.23 significant R-value for a 662 bp fragment in the proximal segment were found. To further analyze the predicted bent DNA sites in these fragments, the 2D trajectories of the 3D DNA path and other parameters, AT percentage, roll angle, ENDS ratio and DeltaG, were determined. The role of these bent sites in the BhC4-1 transcription regulation is discussed.
Collapse
Affiliation(s)
- A Fiorini
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Maringá, Paraná 87020-900, Brazil
| | | | | | | |
Collapse
|
43
|
Williams LD, Maher LJ. Electrostatic mechanisms of DNA deformation. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 29:497-521. [PMID: 10940257 DOI: 10.1146/annurev.biophys.29.1.497] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of higher cells consist of double-helical DNA, a densely charged polyelectrolyte of immense length. The intrinsic physical properties of DNA, as well as the properties of its complexes with proteins and ions, are therefore of fundamental interest in understanding the functions of DNA as an informational macromolecule. Because individual DNA molecules often exceed 1 cm in length, it is clear that DNA bending, folding, and interaction with nuclear proteins are necessary for packaging genomes in small volumes and for integrating the nucleotide sequence information that guides genetic readout. This review first focuses on recent experiments exploring how the shape of the densely charged DNA polymer and asymmetries in its surrounding counterion distribution mutually influence one another. Attention is then turned to experiments seeking to discover the degree to which asymmetric phosphate neutralization can lead to DNA bending in protein-DNA complexes. It is argued that electrostatic effects play crucial roles in the intrinsic, sequence-dependent shape of DNA and in DNA shapes induced by protein binding.
Collapse
Affiliation(s)
- L D Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta 30332-0400, USA.
| | | |
Collapse
|
44
|
|
45
|
Mazur AK. Theoretical Studies of the Possible Origin of Intrinsic Static Bends in Double Helical DNA. J Am Chem Soc 2000. [DOI: 10.1021/ja001605y] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexey K. Mazur
- Contribution from the Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, Paris, 75005 France
| |
Collapse
|
46
|
Hardwidge PR, Den RB, Ross ED, Maher LJ. Relating independent measures of DNA curvature: electrophoretic anomaly and cyclization efficiency. J Biomol Struct Dyn 2000; 18:219-30. [PMID: 11089643 DOI: 10.1080/07391102.2000.10506660] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Electrophoretic methods are often used to measure DNA curvature and protein-induced DNA bending. Though convenient and widely-applied, quantitative analyses are generally limited to assays for which empirical calibration standards have been developed. Alternatively, solution-based cyclization of short DNA duplexes allows analysis of DNA curvature and bending from first principles, but a detailed understanding of this assay is still lacking. In this work, we demonstrate that calibration with an independent electrophoretic assay of DNA curvature permits interpretation of cyclization assay results in a quantitatively meaningful way. We systematically measure intrinsic DNA curvature in short duplexes using a well-established empirical ligation ladder assay. We then compare the results to those obtained from the analysis of the distribution of circular products obtained in simple enzymatic cyclization assays of the same duplexes when polymerized. A strong correlation between DNA curvature estimates from these two assays is obtained for DNA fragments between 150-300 bp in length. We discuss how this result might be used to improve quantitative analysis of protein-mediated bending events evaluated by cyclization methods. Our results suggest that measurements of DNA curvature obtained under similar conditions, in solution and in an acrylamide gel matrix, can be compared directly. The ability to correlate results of these simple assays may prove convenient in monitoring DNA curvature and flexibility.
Collapse
Affiliation(s)
- P R Hardwidge
- Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
47
|
Chiu TK, Dickerson RE. 1 A crystal structures of B-DNA reveal sequence-specific binding and groove-specific bending of DNA by magnesium and calcium. J Mol Biol 2000; 301:915-45. [PMID: 10966796 DOI: 10.1006/jmbi.2000.4012] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 1 A resolution X-ray crystal structures of Mg(2+) and Ca(2+) salts of the B-DNA decamers CCAACGTTGG and CCAGCGCTGG reveal sequence-specific binding of Mg(2+) and Ca(2+) to the major and minor grooves of DNA, as well as non-specific binding to backbone phosphate oxygen atoms. Minor groove binding involves H-bond interactions between cross-strand DNA base atoms of adjacent base-pairs and the cations' water ligands. In the major groove the cations' water ligands can interact through H-bonds with O and N atoms from either one base or adjacent bases, and in addition the softer Ca(2+) can form polar covalent bonds bridging adjacent N7 and O6 atoms at GG bases. For reasons outlined earlier, localized monovalent cations are neither expected nor found.Ultra-high atomic resolution gives an unprecedented view of hydration in both grooves of DNA, permits an analysis of individual anisotropic displacement parameters, and reveals up to 22 divalent cations per DNA duplex. Each DNA helix is quite anisotropic, and alternate conformations, with motion in the direction of opening and closing the minor groove, are observed for the sugar-phosphate backbone. Taking into consideration the variability of experimental parameters and crystal packing environments among these four helices, and 24 other Mg(2+) and Ca(2+) bound B-DNA structures, we conclude that sequence-specific and strand-specific binding of Mg(2+) and Ca(2+) to the major groove causes DNA bending by base-roll compression towards the major groove, while sequence-specific binding of Mg(2+) and Ca(2+) in the minor groove has a negligible effect on helix curvature. The minor groove opens and closes to accommodate Mg(2+) and Ca(2+) without the necessity for significant bending of the overall helix. The program Shelxdna was written to facilitate refinement and analysis of X-ray crystal structures by Shelxl-97 and to plot and analyze one or more Curves and Freehelix output files.
Collapse
Affiliation(s)
- T K Chiu
- Molecular Biology Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, USA
| | | |
Collapse
|
48
|
Lilley DM. Analysis of global conformation of branched RNA species using electrophoresis and fluorescence. Methods Enzymol 2000; 317:368-93. [PMID: 10829291 DOI: 10.1016/s0076-6879(00)17025-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- D M Lilley
- Department of Biochemistry, University of Dundee, United Kingdom
| |
Collapse
|
49
|
Schulz A, Langowski J, Rippe K. The effect of the DNA conformation on the rate of NtrC activated transcription of Escherichia coli RNA polymerase.sigma(54) holoenzyme. J Mol Biol 2000; 300:709-25. [PMID: 10891265 DOI: 10.1006/jmbi.2000.3921] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcription activator protein NtrC (nitrogen regulatory protein C) can catalyze the transition of Escherichia coli RNA polymerase complexed with the sigma 54 factor (RNAP.sigma(54)) from the closed complex (RNAP.sigma(54) bound at the promoter) to the open complex (melting of the promoter DNA). This process involves phosphorylation of NtrC (NtrC-P), assembly of an octameric NtrC-P complex at the enhancer sequence, interaction of this complex with promoter-bound RNAP.sigma(54) via DNA looping, and hydrolysis of ATP. We have used this system to study the influence of the DNA conformation on the transcription activation rate in single-round transcription experiments with superhelical plasmids as well as linearized templates. Most of the templates had an intrinsically curved DNA sequence between the enhancer and the promoter and differed with respect to the location of the curvature and the distance between the two DNA sites. The following results were obtained: (i) a ten- to 60-fold higher activation rate was observed with the superhelical templates as compared to the linearized conformation; (ii) the presence of an intrinsically curved DNA sequence increased the activation rate of linear templates about five times; (iii) no systematic effect for the presence and/or location of the inserted curved sequence was observed for the superhelical templates. However, the transcription activation rate varied up to a factor of 10 between some of the constructs. (iv) Differences in the distance between enhancer and promoter had little effect for the superhelical templates studied. The results were compared with theoretical calculations for the dependence of the contact probability between enhancer and promoter expressed as the molar local concentration j(M). A correlation of j(M) with the transcription activation rate was observed for values of 10(-8) M<j(M)<10(-6) M and a kinetic model for NtrC-P-catalyzed open complex formation was developed.
Collapse
MESH Headings
- Bacterial Proteins/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA-Binding Proteins/metabolism
- DNA-Directed RNA Polymerases/metabolism
- Enhancer Elements, Genetic/genetics
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli Proteins
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Holoenzymes/metabolism
- Kinetics
- Models, Genetic
- Nucleic Acid Conformation
- PII Nitrogen Regulatory Proteins
- Plasmids/chemistry
- Plasmids/genetics
- Plasmids/metabolism
- Promoter Regions, Genetic/genetics
- RNA Polymerase Sigma 54
- Sigma Factor/metabolism
- Templates, Genetic
- Trans-Activators/metabolism
- Transcription Factors
- Transcription, Genetic
- Transcriptional Activation
Collapse
Affiliation(s)
- A Schulz
- Deutsches Krebsforschungszentrum, Abteilung Biophysik der Makromoleküle, Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany
| | | | | |
Collapse
|
50
|
Abstract
The question of long-range allosteric transitions of DNA secondary structure and their possible involvement in transcriptional activation is discussed in the light of new results. A variety of recent evidence strongly supports a fluctuating long-range description of DNA secondary structure. Balanced equilibria between two or more different secondary structures, and the occurrence of very large domain sizes, have been documented in several instances. Long-range allosteric effects stemming from changes in sequence or secondary structure over a small region of the DNA have been observed to extend over distances up to hundreds of base pairs in some cases. The discovery that coherent bending strain beyond a threshold level in small (N < or = 250 base pairs (bp)] circular DNAs significantly alters the DNA secondary structure has important implications, especially for transcriptional activators that either bend the DNA directly or are involved in the formation of DNA loops of sufficiently small size (N < or = 250 bp). Whether the RNA polymerase is activated primarily via protein: protein contacts, as is widely believed, or instead via a bend-induced allosteric transition of the DNA in such a small loop, is now an open question. Binding of the transcriptional activator Sp1 to linear DNA induces a remarkably long-range change in its secondary structure, and catabolite activator protein binding to a supercoiled DNA behaves similarly, though possibly for different reasons. Compelling evidence for a bend-induced long-range structural transmission effect of the transcriptional activator integration host factor on RNA polymerase activity was recently reported. These results may augur a new paradigm in which allosteric transitions of duplex DNA, as well as of the proteins, are involved in the regulation of transcription.
Collapse
Affiliation(s)
- J M Schurr
- Department of Chemistry, University of Washington, Seattle 98195-1700, USA
| | | | | | | |
Collapse
|