1
|
Smirnov E, Molínová P, Chmúrčiaková N, Vacík T, Cmarko D. Non-canonical DNA structures in the human ribosomal DNA. Histochem Cell Biol 2023; 160:499-515. [PMID: 37750997 DOI: 10.1007/s00418-023-02233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
Non-canonical structures (NCS) refer to the various forms of DNA that differ from the B-conformation described by Watson and Crick. It has been found that these structures are usual components of the genome, actively participating in its essential functions. The present review is focused on the nine kinds of NCS appearing or likely to appear in human ribosomal DNA (rDNA): supercoiling structures, R-loops, G-quadruplexes, i-motifs, DNA triplexes, cruciform structures, DNA bubbles, and A and Z DNA conformations. We discuss the conditions of their generation, including their sequence specificity, distribution within the locus, dynamics, and beneficial and detrimental role in the cell.
Collapse
Affiliation(s)
- Evgeny Smirnov
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00, Prague, Czech Republic.
| | - Pavla Molínová
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00, Prague, Czech Republic
| | - Nikola Chmúrčiaková
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00, Prague, Czech Republic
| | - Tomáš Vacík
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00, Prague, Czech Republic
| | - Dušan Cmarko
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00, Prague, Czech Republic
| |
Collapse
|
2
|
High-throughput techniques enable advances in the roles of DNA and RNA secondary structures in transcriptional and post-transcriptional gene regulation. Genome Biol 2022; 23:159. [PMID: 35851062 PMCID: PMC9290270 DOI: 10.1186/s13059-022-02727-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
The most stable structure of DNA is the canonical right-handed double helix termed B DNA. However, certain environments and sequence motifs favor alternative conformations, termed non-canonical secondary structures. The roles of DNA and RNA secondary structures in transcriptional regulation remain incompletely understood. However, advances in high-throughput assays have enabled genome wide characterization of some secondary structures. Here, we describe their regulatory functions in promoters and 3’UTRs, providing insights into key mechanisms through which they regulate gene expression. We discuss their implication in human disease, and how advances in molecular technologies and emerging high-throughput experimental methods could provide additional insights.
Collapse
|
3
|
Bates DA, Bates CE, Earl AS, Skousen C, Fetbrandt AN, Ritchie J, Bodily PM, Johnson SM. Proximal-end bias from in-vitro reconstituted nucleosomes and the result on downstream data analysis. PLoS One 2021; 16:e0258737. [PMID: 34673804 PMCID: PMC8530345 DOI: 10.1371/journal.pone.0258737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
The most basic level of eukaryotic gene regulation is the presence or absence of nucleosomes on DNA regulatory elements. In an effort to elucidate in vivo nucleosome patterns, in vitro studies are frequently used. In vitro, short DNA fragments are more favorable for nucleosome formation, increasing the likelihood of nucleosome occupancy. This may in part result from the fact that nucleosomes prefer to form on the terminal ends of linear DNA. This phenomenon has the potential to bias in vitro reconstituted nucleosomes and skew results. If the ends of DNA fragments are known, the reads falling close to the ends are typically discarded. In this study we confirm the phenomenon of end bias of in vitro nucleosomes. We describe a method in which nearly identical libraries, with different known ends, are used to recover nucleosomes which form towards the terminal ends of fragmented DNA. Finally, we illustrate that although nucleosomes prefer to form on DNA ends, it does not appear to skew results or the interpretation thereof.
Collapse
Affiliation(s)
- David A. Bates
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Charles E. Bates
- Qubit Software LLC, Spanish Fork, Utah, United States of America
| | - Andrew S. Earl
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Colin Skousen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Ashley N. Fetbrandt
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Jordon Ritchie
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Paul M. Bodily
- Computer Science Department, Idaho State University, Pocatello, Idaho, United States of America
| | - Steven M. Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
4
|
Kim SH, Jung HJ, Lee IB, Lee NK, Hong SC. Sequence-dependent cost for Z-form shapes the torsion-driven B-Z transition via close interplay of Z-DNA and DNA bubble. Nucleic Acids Res 2021; 49:3651-3660. [PMID: 33744929 PMCID: PMC8053131 DOI: 10.1093/nar/gkab153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/19/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
Despite recent genome-wide investigations of functional DNA elements, the mechanistic details about their actions remain elusive. One intriguing possibility is that DNA sequences with special patterns play biological roles, adopting non-B-DNA conformations. Here we investigated dynamics of thymine-guanine (TG) repeats, microsatellite sequences and recurrently found in promoters, as well as cytosine–guanine (CG) repeats, best-known Z-DNA forming sequence, in the aspect of Z-DNA formation. We measured the energy barriers of the B–Z transition with those repeats and discovered the sequence-dependent penalty for Z-DNA generates distinctive thermodynamic and kinetic features in the torque-induced transition. Due to the higher torsional stress required for Z-form in TG repeats, a bubble could be induced more easily, suppressing Z-DNA induction, but facilitate the B–Z interconversion kinetically at the transition midpoint. Thus, the Z-form by TG repeats has advantages as a torsion buffer and bubble selector while the Z-form by CG repeats likely behaves as torsion absorber. Our statistical physics model supports quantitatively the populations of Z-DNA and reveals the pivotal roles of bubbles in state dynamics. All taken together, a quantitative picture for the transition was deduced within the close interplay among bubbles, plectonemes and Z-DNA.
Collapse
Affiliation(s)
- Sook Ho Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841 Korea.,Department of Physics, Korea University, Seoul, 02841 Korea.,GRI-TPC International Research Center, Sejong University, Seoul, 05006 Korea
| | - Hae Jun Jung
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841 Korea.,Department of Physics, Korea University, Seoul, 02841 Korea
| | - Il-Buem Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841 Korea.,Department of Physics, Korea University, Seoul, 02841 Korea
| | - Nam-Kyung Lee
- Department of Physics and Astronomy, Sejong University, Seoul, 05006 Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841 Korea.,Department of Physics, Korea University, Seoul, 02841 Korea
| |
Collapse
|
5
|
Beknazarov N, Jin S, Poptsova M. Deep learning approach for predicting functional Z-DNA regions using omics data. Sci Rep 2020; 10:19134. [PMID: 33154517 PMCID: PMC7644757 DOI: 10.1038/s41598-020-76203-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Computational methods to predict Z-DNA regions are in high demand to understand the functional role of Z-DNA. The previous state-of-the-art method Z-Hunt is based on statistical mechanical and energy considerations about B- to Z-DNA transition using sequence information. Z-DNA CHiP-seq experiment results showed little overlap with Z-Hunt predictions implying that sequence information only is not sufficient to explain emergence of Z-DNA at different genomic locations. Adding epigenetic and other functional genomic mark-ups to DNA sequence level can help revealing the functional Z-DNA sites. Here we take advantage of the deep learning approach that can analyze and extract information from large volumes of molecular biology data. We developed a machine learning approach DeepZ that aggregates information from genome-wide maps of epigenetic markers, transcription factor and RNA polymerase binding sites, and chromosome accessibility maps. With the developed model we not only verify the experimental Z-DNA predictions, but also generate the whole-genome annotation, introducing new possible Z-DNA regions, which have not yet been found in experiments and can be of interest to the researchers from various fields.
Collapse
Affiliation(s)
- Nazar Beknazarov
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky boulvar, Moscow, Russia, 101000
| | - Seungmin Jin
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky boulvar, Moscow, Russia, 101000
| | - Maria Poptsova
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky boulvar, Moscow, Russia, 101000.
| |
Collapse
|
6
|
Srinivasan R, Nady N, Arora N, Hsieh LJ, Swigut T, Narlikar GJ, Wossidlo M, Wysocka J. Zscan4 binds nucleosomal microsatellite DNA and protects mouse two-cell embryos from DNA damage. SCIENCE ADVANCES 2020; 6:eaaz9115. [PMID: 32219172 PMCID: PMC7083622 DOI: 10.1126/sciadv.aaz9115] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/02/2020] [Indexed: 05/07/2023]
Abstract
Zinc finger protein Zscan4 is selectively expressed in mouse two-cell (2C) embryos undergoing zygotic genome activation (ZGA) and in a rare subpopulation of embryonic stem cells with 2C-like features. Here, we show that Zscan4 specifically recognizes a subset of (CA)n microsatellites, repeat sequences prone to genomic instability. Zscan4-associated microsatellite regions are characterized by low nuclease sensitivity and high histone occupancy. In vitro, Zscan4 binds nucleosomes and protects them from disassembly upon torsional strain. Furthermore, Zscan4 depletion leads to elevated DNA damage in 2C mouse embryos in a transcription-dependent manner. Together, our results identify Zscan4 as a DNA sequence-dependent microsatellite binding factor and suggest a developmentally regulated mechanism, which protects fragile genomic regions from DNA damage at a time of embryogenesis associated with high transcriptional burden and genomic stress.
Collapse
Affiliation(s)
- Rajini Srinivasan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nataliya Nady
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Neha Arora
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura J. Hsieh
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Geeta J. Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mark Wossidlo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Cell and Developmental Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Dias C, Elzein S, Sladek R, Goodyer CG. Sex-specific effects of a microsatellite polymorphism on human growth hormone receptor gene expression. Mol Cell Endocrinol 2019; 492:110442. [PMID: 31063794 DOI: 10.1016/j.mce.2019.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023]
Abstract
Growth hormone (GH) binds to its specific receptor (GHR) at the surface of target cells activating multiple signaling pathways implicated in growth and metabolism. Dysregulation of GHRs leads to pathophysiological states that most commonly affect stature. We previously showed the association of a polymorphic (n = 15-37) GT microsatellite in the human GHR gene promoter with short stature in a sex-specific manner. In the present study we evaluated the functional relevance of this polymorphism in regulating GHR expression. Using luciferase reporter assays, we found that the GT repeat had a significant cis regulatory effect in response to HIF1α and a potential repressor role following C/EBPβ stimulation. Using a digital PCR application to measure allelic imbalance (AI), we showed a high prevalence of AI (∼76%) at the GHR locus in lymphoblastoid cell lines (LCLs), with a significantly higher degree of imbalance in LCLs derived from males. Examination of expression of GHR as well as other members of the GH-IGF1 axis in the LCLs revealed significant associations of GHR, IGF1 and BCL2 expression with GT genotype in a sex-specific manner. Our results suggest that this GT microsatellite exerts both cis and trans effects in a sex-specific context, revealing a new mechanism by which GHR gene expression is regulated.
Collapse
Affiliation(s)
- Christel Dias
- Division of Experimental Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Samar Elzein
- Division of Experimental Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Robert Sladek
- Division of Experimental Medicine and Department of Human Genetics, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Cynthia Gates Goodyer
- Division of Experimental Medicine and Department of Pediatrics, McGill University, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
8
|
Lee CH, Shih YP, Ho MR, Wang AHJ. The C-terminal D/E-rich domain of MBD3 is a putative Z-DNA mimic that competes for Zα DNA-binding activity. Nucleic Acids Res 2019; 46:11806-11821. [PMID: 30304469 PMCID: PMC6294567 DOI: 10.1093/nar/gky933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/04/2018] [Indexed: 12/25/2022] Open
Abstract
The Z-DNA binding domain (Zα), derived from the human RNA editing enzyme ADAR1, can induce and stabilize the Z-DNA conformation. However, the biological function of Zα/Z-DNA remains elusive. Herein, we sought to identify proteins associated with Zα to gain insight into the functional network of Zα/Z-DNA. By pull-down, biophysical and biochemical analyses, we identified a novel Zα-interacting protein, MBD3, and revealed that Zα interacted with its C-terminal acidic region, an aspartate (D)/glutamate (E)-rich domain, with high affinity. The D/E-rich domain of MBD3 may act as a DNA mimic to compete with Z-DNA for binding to Zα. Dimerization of MBD3 via intermolecular interaction of the D/E-rich domain and its N-terminal DNA binding domain, a methyl-CpG-binding domain (MBD), attenuated the high affinity interaction of Zα and the D/E-rich domain. By monitoring the conformation transition of DNA, we found that Zα could compete with the MBD domain for binding to the Z-DNA forming sequence, but not vice versa. Furthermore, co-immunoprecipitation experiments confirmed the interaction of MBD3 and ADAR1 in vivo. Our findings suggest that the interplay of Zα and MBD3 may regulate the transition of the DNA conformation between B- and Z-DNA and thereby modulate chromatin accessibility, resulting in alterations in gene expression.
Collapse
Affiliation(s)
- Chi-Hua Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yan-Ping Shih
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
9
|
Specific and highly efficient condensation of GC and IC DNA by polyaza pyridinophane derivatives. Int J Biol Macromol 2018; 109:143-151. [PMID: 29247733 DOI: 10.1016/j.ijbiomac.2017.11.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 11/23/2022]
Abstract
Two bis-polyaza pyridinophane derivatives and their monomeric reference compounds revealed strong interactions with ds-DNA and RNA. The bis-derivatives show a specific condensation of GC- and IC-DNA, which is almost two orders of magnitude more efficient than the well-known condensation agent spermine. The type of condensed DNA was identified as ψ-DNA, characterized by the exceptionally strong CD signals. At variance to the almost silent AT(U) polynucleotides, these strong CD signals allow the determination of GC-condensates at nanomolar nucleobase concentrations. Detailed thermodynamic characterisation by ITC reveals significant differences between the DNA binding of the bis-derivative compounds (enthalpy driven) and that of spermine and of their monomeric counterparts (entropy driven). Atomic force microscopy confirmed GC-DNA compaction by the bis-derivatives and the formation of toroid- and rod-like structures responsible for the ψ-type pattern in the CD spectra.
Collapse
|
10
|
Abstract
Microsatellite repeat DNA is best known for its length mutability, which is implicated in several neurological diseases and cancers, and often exploited as a genetic marker. Less well-known is the body of work exploring the widespread and surprisingly diverse functional roles of microsatellites. Recently, emerging evidence includes the finding that normal microsatellite polymorphism contributes substantially to the heritability of human gene expression on a genome-wide scale, calling attention to the task of elucidating the mechanisms involved. At present, these are underexplored, but several themes have emerged. I review evidence demonstrating roles for microsatellites in modulation of transcription factor binding, spacing between promoter elements, enhancers, cytosine methylation, alternative splicing, mRNA stability, selection of transcription start and termination sites, unusual structural conformations, nucleosome positioning and modification, higher order chromatin structure, noncoding RNA, and meiotic recombination hot spots.
Collapse
|
11
|
Permanganate/S1 Nuclease Footprinting Reveals Non-B DNA Structures with Regulatory Potential across a Mammalian Genome. Cell Syst 2017; 4:344-356.e7. [PMID: 28237796 DOI: 10.1016/j.cels.2017.01.013] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 09/06/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022]
Abstract
DNA in cells is predominantly B-form double helix. Though certain DNA sequences in vitro may fold into other structures, such as triplex, left-handed Z form, or quadruplex DNA, the stability and prevalence of these structures in vivo are not known. Here, using computational analysis of sequence motifs, RNA polymerase II binding data, and genome-wide potassium permanganate-dependent nuclease footprinting data, we map thousands of putative non-B DNA sites at high resolution in mouse B cells. Computational analysis associates these non-B DNAs with particular structures and indicates that they form at locations compatible with an involvement in gene regulation. Further analyses support the notion that non-B DNA structure formation influences the occupancy and positioning of nucleosomes in chromatin. These results suggest that non-B DNAs contribute to the control of a variety of critical cellular and organismal processes.
Collapse
|
12
|
Adrian AB, Corchado JC, Comeron JM. Predictive Models of Recombination Rate Variation across the Drosophila melanogaster Genome. Genome Biol Evol 2016; 8:2597-612. [PMID: 27492232 PMCID: PMC5010912 DOI: 10.1093/gbe/evw181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In all eukaryotic species examined, meiotic recombination, and crossovers in particular, occur non‐randomly along chromosomes. The cause for this non-random distribution remains poorly understood but some specific DNA sequence motifs have been shown to be enriched near crossover hotspots in a number of species. We present analyses using machine learning algorithms to investigate whether DNA motif distribution across the genome can be used to predict crossover variation in Drosophila melanogaster, a species without hotspots. Our study exposes a combinatorial non-linear influence of motif presence able to account for a significant fraction of the genome-wide variation in crossover rates at all genomic scales investigated, from 20% at 5-kb to almost 70% at 2,500-kb scale. The models are particularly predictive for regions with the highest and lowest crossover rates and remain highly informative after removing sub-telomeric and -centromeric regions known to have strongly reduced crossover rates. Transcriptional activity during early meiosis and differences in motif use between autosomes and the X chromosome add to the predictive power of the models. Moreover, we show that population-specific differences in crossover rates can be partly explained by differences in motif presence. Our results suggest that crossover distribution in Drosophila is influenced by both meiosis-specific chromatin dynamics and very local constitutive open chromatin associated with DNA motifs that prevent nucleosome stabilization. These findings provide new information on the genetic factors influencing variation in recombination rates and a baseline to study epigenetic mechanisms responsible for plastic recombination as response to different biotic and abiotic conditions and stresses.
Collapse
Affiliation(s)
| | | | - Josep M Comeron
- Department of Biology, University of Iowa Interdisciplinary Graduate Program in Genetics, University of Iowa
| |
Collapse
|
13
|
The Influence of DNA Configuration on the Direct Strand Break Yield. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:417501. [PMID: 26124855 PMCID: PMC4466367 DOI: 10.1155/2015/417501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/11/2015] [Accepted: 01/28/2015] [Indexed: 11/24/2022]
Abstract
Purpose. To study the influence of DNA configuration on the direct damage yield. No indirect effect has been accounted for. Methods. The GEANT4-DNA code was used to simulate the interactions of protons and alpha particles with geometrical models of the A-, B-, and Z-DNA configurations. The direct total, single, and double strand break yields and site-hit probabilities were determined. Certain features of the energy deposition process were also studied. Results. A slight increase of the site-hit probability as a function of the incident particle linear energy transfer was found for each DNA configuration. Each DNA form presents a well-defined site-hit probability, independently of the particle linear energy transfer. Approximately 70% of the inelastic collisions and ~60% of the absorbed dose are due to secondary electrons. These fractions are slightly higher for protons than for alpha particles at the same incident energy. Conclusions. The total direct strand break yield for a given DNA form depends weakly on DNA conformation topology. This yield is practically determined by the target volume of the DNA configuration. However, the double strand break yield increases with the packing ratio of the DNA double helix; thus, it depends on the DNA conformation.
Collapse
|
14
|
le Roux K, Prinsloo LC, Meyer D. Cellular injury evidenced by impedance technology and infrared microspectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 138:321-330. [PMID: 25506649 DOI: 10.1016/j.saa.2014.11.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
Fourier Transform Infrared (FTIR) spectroscopy is finding increasing biological application, for example in the analysis of diseased tissues and cells, cell cycle studies and investigating the mechanisms of action of anticancer drugs. Cancer treatment studies routinely define the types of cell-drug responses as either total cell destruction by the drug (all cells die), moderate damage (cell deterioration where some cells survive) or reversible cell cycle arrest (cytostasis). In this study the loss of viability and related chemical stress experienced by cells treated with the medicinal plant, Plectranthus ciliatus, was investigated using real time cell electronic sensing (RT-CES) technology and FTIR microspectroscopy. The use of plants as medicines is well established and ethnobotany has proven that crude extracts can serve as treatments against various ailments. The aim of this study was to determine whether FTIR microspectroscopy would successfully distinguish between different types of cellular injury induced by a potentially anticancerous plant extract. Cervical adenocarcinoma (HeLa) cells were treated with a crude extract of Pciliatus and cells monitored using RT-CES to characterize the type of cellular responses induced. Cell populations were then investigated using FTIR microspectroscopy and statistically analysed using One-way Analysis of Variance (ANOVA) and Principal Component Analysis (PCA). The plant extract and a cancer drug control (actinomycin D) induced concentration dependent cellular responses ranging from nontoxic, cytostatic or cytotoxic. Thirteen spectral peaks (915cm(-)(1), 933cm(-)(1), 989cm(-)(1), 1192cm(-)(1), 1369cm(-)(1), 1437cm(-)(1), 1450cm(-)(1), 1546cm(-)(1), 1634cm(-)(1), 1679cm(-)(1) 1772cm(-)(1), 2874cm(-)(1) and 2962cm(-)(1)) associated with cytotoxicity were significantly (p value<0.05, one way ANOVA, Tukey test, Bonferroni) altered, while two of the bands were also indicative of early stress related responses. In PCA, poor separation between nontoxic and cytostatic responses was evident while clear separation was linked to cytotoxicity. RT-CES detected morphological changes as indicators of cell injury and could distinguish between viable, cytostatic and cytotoxic responses. FTIR microspectroscopy confirmed that cytostatic cells were viable and could still recover while also describing early cellular stress related responses on a molecular level.
Collapse
Affiliation(s)
- K le Roux
- Department of Biochemistry, University of Pretoria, Pretoria 0002, South Africa
| | - L C Prinsloo
- Department of Physics, University of Pretoria, Pretoria 0002, South Africa
| | - D Meyer
- Department of Biochemistry, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
15
|
Nam GM, Arya G. Torsional behavior of chromatin is modulated by rotational phasing of nucleosomes. Nucleic Acids Res 2014; 42:9691-9. [PMID: 25100871 PMCID: PMC4150795 DOI: 10.1093/nar/gku694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Torsionally stressed DNA plays a critical role in genome organization and regulation. While the effects of torsional stresses on naked DNA have been well studied, little is known about how these stresses propagate within chromatin and affect its organization. Here we investigate the torsional behavior of nucleosome arrays by means of Brownian dynamics simulations of a coarse-grained model of chromatin. Our simulations reveal a strong dependence of the torsional response on the rotational phase angle Ψ0 between adjacent nucleosomes. Extreme values of Ψ0 lead to asymmetric, bell-shaped extension-rotation profiles with sharp maxima shifted toward positive or negative rotations, depending on the sign of Ψ0, and to fast, irregular propagation of DNA twist. In contrast, moderate Ψ0 yield more symmetric profiles with broad maxima and slow, uniform propagation of twist. The observed behavior is shown to arise from an interplay between nucleosomal transitions into states with crossed and open linker DNAs and global supercoiling of arrays into left- and right-handed coils, where Ψ0 serves to modulate the energy landscape of nucleosomal states. Our results also explain the torsional resilience of chromatin, reconcile differences between experimentally measured extension-rotation profiles, and suggest a role of torsional stresses in regulating chromatin assembly and organization.
Collapse
Affiliation(s)
- Gi-Moon Nam
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0448, USA
| | - Gaurav Arya
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0448, USA
| |
Collapse
|
16
|
Harteis S, Schneider S. Making the bend: DNA tertiary structure and protein-DNA interactions. Int J Mol Sci 2014; 15:12335-63. [PMID: 25026169 PMCID: PMC4139847 DOI: 10.3390/ijms150712335] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 12/11/2022] Open
Abstract
DNA structure functions as an overlapping code to the DNA sequence. Rapid progress in understanding the role of DNA structure in gene regulation, DNA damage recognition and genome stability has been made. The three dimensional structure of both proteins and DNA plays a crucial role for their specific interaction, and proteins can recognise the chemical signature of DNA sequence ("base readout") as well as the intrinsic DNA structure ("shape recognition"). These recognition mechanisms do not exist in isolation but, depending on the individual interaction partners, are combined to various extents. Driving force for the interaction between protein and DNA remain the unique thermodynamics of each individual DNA-protein pair. In this review we focus on the structures and conformations adopted by DNA, both influenced by and influencing the specific interaction with the corresponding protein binding partner, as well as their underlying thermodynamics.
Collapse
Affiliation(s)
- Sabrina Harteis
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | - Sabine Schneider
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
17
|
Gangappa SN, Srivastava AK, Maurya JP, Ram H, Chattopadhyay S. Z-box binding transcription factors (ZBFs): a new class of transcription factors in Arabidopsis seedling development. MOLECULAR PLANT 2013; 6:1758-1768. [PMID: 24157607 DOI: 10.1093/mp/sst140] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
One set of genes encoding diverse groups of transcription factors that interact with the Z-box (ATACGTGT; a potential Z-DNA forming sequence) is called ZBFs (Z-box Binding Factors). ZBFs include ZBF1, ZBF2, and ZBF3, which encode ZBF1/MYC2 (bHLH), ZBF2/GBF1 (bZIP), and ZBF3/CAM7 (Calmodulin) proteins, respectively. With several recent reports, it is becoming increasingly evident that ZBFs play crucial roles in Arabidopsis seedling photomorphogenesis. ZBFs integrate signals from various wavelengths of light to coordinate the regulation of transcriptional networks that affect multiple facets of plant growth and development. The function of each ZBF is qualitatively and quantitatively distinct. The zbf mutants display pleiotropic effects including altered hypocotyl elongation, cotyledon expansion, lateral root development, and flowering time. In this inaugural review, we discuss the identification, molecular functions, and interacting partners of ZBFs in light-mediated Arabidopsis seedling development.
Collapse
Affiliation(s)
- Sreeramaiah N Gangappa
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, India
| | | | | | | | | |
Collapse
|
18
|
Bothe JR, Lowenhaupt K, Al-Hashimi HM. Incorporation of CC steps into Z-DNA: interplay between B-Z junction and Z-DNA helical formation. Biochemistry 2012; 51:6871-9. [PMID: 22873788 DOI: 10.1021/bi300785b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The left-handed DNA structure, Z-DNA, is believed to play important roles in gene expression and regulation. Z-DNA forms sequence-specifically with a preference for sequences rich in pyrimidine/purine dinucleotide steps. In vivo, Z-DNA is generated in the presence of negative supercoiling or upon binding proteins that absorb the high energetic cost of the B-to-Z transition, including the creation of distorted junctions between B-DNA and Z-DNA. To date, the sequence preferences for the B-to-Z transition have primarily been studied in the context of sequence repeats lacking B-Z junctions. Here, we develop a method for characterizing sequence-specific preferences for Z-DNA formation and B-Z junction localization within heterogeneous DNA duplexes that is based on combining 2-aminopurine fluorescence measurements with a new quantitative application of circular dichroism spectroscopy for determining the fraction of B- versus Z-DNA. Using this approach, we show that at least three consecutive CC dinucleotide steps, traditionally thought to disfavor Z-DNA, can be incorporated within heterogeneous Z-DNA containing B-Z junctions upon binding to the Zα domain of the RNA adenosine deaminase protein. Our results indicate that the incorporation of CC steps into Z-DNA is driven by favorable sequence-specific Z-Z and B-Z stacking interactions as well as by sequence-specific energetics that localize the distorted B-Z junction at flexible sites. Together, our results expose higher-order complexities in the Z-DNA code within heterogeneous sequences and suggest that Z-DNA can in principle propagate into a wider range of genomic sequence elements than previously thought.
Collapse
Affiliation(s)
- Jameson R Bothe
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
19
|
Takagi H, Inai Y, Watanabe SI, Tatemoto S, Yajima M, Akasaka K, Yamamoto T, Sakamoto N. Nucleosome exclusion from the interspecies-conserved central AT-rich region of the Ars insulator. J Biochem 2011; 151:75-87. [PMID: 21930654 DOI: 10.1093/jb/mvr118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Ars insulator is a boundary element identified in the upstream region of the arylsulfatase (HpArs) gene in the sea urchin, Hemicentrotus pulcherrimus, and possesses the ability to both block enhancer-promoter communications and protect transgenes from silent chromatin. To understand the molecular mechanism of the Ars insulator, we investigated the correlation between chromatin structure, DNA structure and insulator activity. Nuclease digestion of nuclei isolated from sea urchin embryos revealed the presence of a nuclease-hypersensitive site within the Ars insulator. Analysis of micrococcal nuclease-sensitive sites in the Ars insulator, reconstituted with nucleosomes, showed the exclusion of nucleosomes from the central AT-rich region. Furthermore, the central AT-rich region in naked DNA was sensitive to nucleotide base modification by diethylpyrocarbonate (DEPC). These observations suggest that non-B-DNA structures in the central AT-rich region may inhibit nucleosomal formation, which leads to nuclease hypersensitivity. Furthermore, comparison of nucleotide sequences between the HpArs gene and its ortholog in Strongylocentrotus purpuratus revealed that the central AT-rich region of the Ars insulator is conserved, and this conserved region showed significant enhancer blocking activity. These results suggest that the central AT-rich nucleosome-free region plays an important role in the function of the Ars insulator.
Collapse
Affiliation(s)
- Haruna Takagi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
D'Urso A, Holmes AE, Berova N, Balaz M, Purrello R. Z-DNA Recognition in B-Z-B Sequences by a Cationic Zinc Porphyrin. Chem Asian J 2011; 6:3104-9. [DOI: 10.1002/asia.201100161] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Indexed: 11/08/2022]
|
21
|
Gemayel R, Vinces MD, Legendre M, Verstrepen KJ. Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu Rev Genet 2011; 44:445-77. [PMID: 20809801 DOI: 10.1146/annurev-genet-072610-155046] [Citation(s) in RCA: 403] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genotype-to-phenotype mapping commonly focuses on two major classes of mutations: single nucleotide polymorphisms (SNPs) and copy number variation (CNV). Here, we discuss an underestimated third class of genotypic variation: changes in microsatellite and minisatellite repeats. Such tandem repeats (TRs) are ubiquitous, unstable genomic elements that have historically been designated as nonfunctional "junk DNA" and are therefore mostly ignored in comparative genomics. However, as many as 10% to 20% of eukaryotic genes and promoters contain an unstable repeat tract. Mutations in these repeats often have fascinating phenotypic consequences. For example, changes in unstable repeats located in or near human genes can lead to neurodegenerative diseases such as Huntington disease. Apart from their role in disease, variable repeats also confer useful phenotypic variability, including cell surface variability, plasticity in skeletal morphology, and tuning of the circadian rhythm. As such, TRs combine characteristics of genetic and epigenetic changes that may facilitate organismal evolvability.
Collapse
Affiliation(s)
- Rita Gemayel
- Laboratory for Systems Biology, VIB, B-3001 Heverlee, Belgium
| | | | | | | |
Collapse
|
22
|
Geng J, Zhao C, Ren J, Qu X. Alzheimer's disease amyloid beta converting left-handed Z-DNA back to right-handed B-form. Chem Commun (Camb) 2010; 46:7187-9. [DOI: 10.1039/c0cc02049d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Effects of non-B DNA sequences on transgene expression. J Biosci Bioeng 2009; 108:20-3. [PMID: 19577186 DOI: 10.1016/j.jbiosc.2009.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/13/2009] [Accepted: 02/16/2009] [Indexed: 11/21/2022]
Abstract
DNA conformation may be an important factor affecting gene transcription. In this study, we examined how DNA sequences with unusual conformations affect transgene expression. A(30) and (CG)(15) sequences that can adopt the B' and Z conformations, respectively, were introduced into a beta-actin promoter. Luciferase plasmids containing the manipulated promoter were transfected into NIH3T3 cells by electroporation and were delivered into mouse livers with a hydrodynamics-based injection. Expression from plasmid with the (CG)(15) sequence was multiple times higher than expression from control plasmid DNA. The A(30) sequence also tended to enhance expression. These results suggest that non-B DNA sequences could improve transgene expression in cells.
Collapse
|
24
|
Wang G, Vasquez KM. Models for chromosomal replication-independent non-B DNA structure-induced genetic instability. Mol Carcinog 2009; 48:286-98. [PMID: 19123200 PMCID: PMC2766916 DOI: 10.1002/mc.20508] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Regions of genomic DNA containing repetitive nucleotide sequences can adopt a number of different structures in addition to the canonical B-DNA form: many of these non-B DNA structures are causative factors in genetic instability and human disease. Although chromosomal DNA replication through such repetitive sequences has been considered a major cause of non-B form DNA structure-induced genetic instability, it is also observed in non-proliferative tissues. In this review, we discuss putative mechanisms responsible for the mutagenesis induced by non-B DNA structures in the absence of chromosomal DNA replication.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| | - Karen M. Vasquez
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| |
Collapse
|
25
|
Li H, Xiao J, Li J, Lu L, Feng S, Dröge P. Human genomic Z-DNA segments probed by the Z alpha domain of ADAR1. Nucleic Acids Res 2009; 37:2737-46. [PMID: 19276205 PMCID: PMC2677879 DOI: 10.1093/nar/gkp124] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Double-stranded DNA is a dynamic molecule that adopts different secondary structures. Experimental evidence indicates Z-DNA plays roles in DNA transactions such as transcription, chromatin remodeling and recombination. Furthermore, our computational analysis revealed that sequences with high Z-DNA forming potential at moderate levels of DNA supercoiling are enriched in human promoter regions. However, the actual distribution of Z-DNA segments in genomes of mammalian cells has been elusive due to the unstable nature of Z-DNA and lack of specific probes. Here we present a first human genome map of most stable Z-DNA segments obtained with A549 tumor cells. We used the Z-DNA binding domain, Zα, of the RNA editing enzyme ADAR1 as probe in conjunction with a novel chromatin affinity precipitation strategy. By applying stringent selection criteria, we identified 186 genomic Z-DNA hotspots. Interestingly, 46 hotspots were located in centromeres of 13 human chromosomes. There was a very strong correlation between these hotspots and high densities of single nucleotide polymorphism. Our study indicates that genetic instability and rapid evolution of human centromeres might, at least in part, be driven by Z-DNA segments. Contrary to in silico predictions, however, we found that only two of the 186 hotspots were located in promoter regions.
Collapse
Affiliation(s)
- Heng Li
- Division of Genomics and Genetics, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | | | | | | | | | | |
Collapse
|
26
|
Wong B, Chen S, Kwon JA, Rich A. Characterization of Z-DNA as a nucleosome-boundary element in yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2007; 104:2229-34. [PMID: 17284586 PMCID: PMC1892989 DOI: 10.1073/pnas.0611447104] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this article, the effect of a d(CG) DNA dinucleotide repeat sequence on RNA polymerase II transcription is examined in yeast Saccharomyces cerevisiae. Our previous report shows that a d(CG)n dinucleotide repeat sequence located proximally upstream of the TATA box enhances transcription from a minimal CYC1 promoter in a manner that depends on its surrounding negative supercoiling. Here, we demonstrate that the d(CG)9 repeat sequence stimulates gene activity by forming a Z-DNA secondary structure. Furthermore, the extent of transcriptional enhancement by Z-DNA is promoter-specific and determined by its separation distance relative to the TATA box. The stimulatory effect exerted by promoter proximal Z-DNA is not affected by helical phasing relative to the TATA box, suggesting that Z-DNA effects transcription without interacting with the general transcription machinery by looping-out the intervening DNA. A nucleosome-scanning assay reveals that the d(CG)9 repeat sequence in the Z conformation blocks nucleosome formation, and it is found in the linker DNA with two flanking nucleosomes. This result suggests that Z-DNA formation proximally upstream of a promoter is sufficient to demarcate the boundaries of its neighboring nucleosomes, which produces transcriptionally favorable locations for the TATA box near the nucleosomal DNA-entry site and at dyad positions on the nucleosome. These findings suggest that Z-DNA formation in chromatin is a part of the "genomic code" for nucleosome positioning in vivo.
Collapse
Affiliation(s)
- Ben Wong
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Shuai Chen
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Jin-Ah Kwon
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | | |
Collapse
|
27
|
Morohashi N, Yamamoto Y, Kuwana S, Morita W, Shindo H, Mitchell AP, Shimizu M. Effect of sequence-directed nucleosome disruption on cell-type-specific repression by alpha2/Mcm1 in the yeast genome. EUKARYOTIC CELL 2006; 5:1925-33. [PMID: 16980406 PMCID: PMC1694797 DOI: 10.1128/ec.00105-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, a-cell-specific genes are repressed in MATalpha cells by alpha2/Mcm1, acting in concert with the Ssn6-Tup1 corepressors and the Isw2 chromatin remodeling complex, and nucleosome positioning has been proposed as one mechanism of repression. However, prior studies showed that nucleosome positioning is not essential for repression by alpha2/Mcm1 in artificial reporter plasmids, and the importance of the nucleosome positioning remains questionable. We have tested the function of positioned nucleosomes through alteration of genomic chromatin at the a-cell-specific gene BAR1. We report here that a positioned nucleosome in the BAR1 promoter is disrupted in cis by the insertion of diverse DNA sequences such as poly(dA) . poly(dT) and poly(dC-dG) . poly(dC-dG), leading to inappropriate partial derepression of BAR1. Also, we show that isw2 mutation causes loss of nucleosome positioning in BAR1 in MATalpha cells as well as partial disruption of repression. Thus, nucleosome positioning is required for full repression, but loss of nucleosome positioning is not sufficient to relieve repression completely. Even though disruption of nucleosome positioning by the cis- and trans-acting modulators of chromatin has a modest effect on the level of transcription, it causes significant degradation of the alpha-mating pheromone in MATalpha cells, thereby affecting its cell type identity. Our results illustrate a useful paradigm for analysis of chromatin structural effects at genomic loci.
Collapse
Affiliation(s)
- Nobuyuki Morohashi
- Department of Chemistry, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Aplan PD. Causes of oncogenic chromosomal translocation. Trends Genet 2005; 22:46-55. [PMID: 16257470 PMCID: PMC1762911 DOI: 10.1016/j.tig.2005.10.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/16/2005] [Accepted: 10/10/2005] [Indexed: 11/21/2022]
Abstract
Non-random chromosomal translocations are frequently associated with a variety of cancers, particularly hematologic malignancies and childhood sarcomas. In addition to their diagnostic utility, chromosomal translocations are increasingly being used in the clinic to guide therapeutic decisions. However, the mechanisms that cause these translocations remain poorly understood. Illegitimate V(D)J recombination, class switch recombination, homologous recombination, non-homologous end-joining and genome fragile sites all have potential roles in the production of non-random chromosomal translocations. In addition, mutations in DNA-repair pathways have been implicated in the production of chromosomal translocations in humans, mice and yeast. Although initially surprising, the identification of these same oncogenic chromosomal translocations in peripheral blood from healthy individuals strongly suggests that the translocation is not sufficient to induce malignant transformation, and that complementary mutations are required to produce a frank malignancy.
Collapse
Affiliation(s)
- Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 8901 Wisconsin Ave, Bethesda, Maryland, MD 20889-5105, USA.
| |
Collapse
|
29
|
Kwon JA, Rich A. Biological function of the vaccinia virus Z-DNA-binding protein E3L: gene transactivation and antiapoptotic activity in HeLa cells. Proc Natl Acad Sci U S A 2005; 102:12759-64. [PMID: 16126896 PMCID: PMC1200295 DOI: 10.1073/pnas.0506011102] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The vaccinia virus (VV) E3L protein is essential for virulence and has anti-apoptotic activity. In mice, Z-DNA-binding activity of the N-terminal domain of E3L (Z alpha) is necessary for viral lethality. Here, we report that inhibition of hygromycin-B-induced apoptosis in HeLa cells depends on Z-DNA binding of the E3L Z alpha domain. Z-DNA-binding domains of other proteins are equally effective in blocking apoptosis. Using a transient reporter assay, we demonstrate transactivation of human IL-6, nuclear factor of activated T cells (NF-AT), and p53 genes by E3L. This activation also requires Z-DNA binding of the N-terminal domain of E3L. Overall, this work suggests that the important role of E3L in VV pathogenesis involves modulating expression of host cellular genes at the transcriptional level and inhibiting apoptosis of host cells through Z-DNA binding.
Collapse
Affiliation(s)
- Jin-Ah Kwon
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 68-233, Cambridge, MA 02139-4307, USA.
| | | |
Collapse
|
30
|
Champ PC, Maurice S, Vargason JM, Camp T, Ho PS. Distributions of Z-DNA and nuclear factor I in human chromosome 22: a model for coupled transcriptional regulation. Nucleic Acids Res 2004; 32:6501-10. [PMID: 15598822 PMCID: PMC545456 DOI: 10.1093/nar/gkh988] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An analysis of the human chromosome 22 genomic sequence shows that both Z-DNA forming regions (ZDRs) and promoter sites for nuclear factor-I (NFI) are correlated with the locations of known and predicted genes across the chromosome and accumulate around the transcriptional start sites of the known genes. Thus, the occurrence of Z-DNA across human genomic sequences mirrors that of a known eukaryotic transcription factor. In addition, 43 of the 383 fully annotated chromosomal genes have ZDRs within 2 nucleosomes upstream of strong NFIs. This suggests a distinct class of human genes that may potentially be transcriptionally regulated by a mechanism that couples Z-DNA with NFI activation, similar to the mechanism previously elucidated for the human colony stimulation factor-I promoter [Liu et al. (2001) Cell, 106, 309-318]. The results from this study will facilitate the design of experimental studies to test the generality of this mechanism for other genes in the cell.
Collapse
Affiliation(s)
- P Christoph Champ
- Department of Biochemistry and Biophysics, ALS 2011, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|
31
|
Shaw CJ, Withers MA, Lupski JR. Uncommon deletions of the Smith-Magenis syndrome region can be recurrent when alternate low-copy repeats act as homologous recombination substrates. Am J Hum Genet 2004; 75:75-81. [PMID: 15148657 PMCID: PMC1182010 DOI: 10.1086/422016] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 04/07/2004] [Indexed: 11/03/2022] Open
Abstract
Several homologous recombination "hotspots," or sites of positional preference for strand exchanges, associated with recurrent deletions and duplications have been reported within large low-copy repeats (LCRs). Recently, such a hotspot was identified in patients with the Smith-Magenis syndrome (SMS) common deletion of approximately 4 Mb or a reciprocal duplication within the KER gene cluster of the SMS-REP LCRs, in which 50% of analyzed strand exchanges resulting in deletion and 23% of those resulting in duplication occurred. Here, we report an additional recombination hotspot within LCR17pA and LCR17pD, which serve as alternative substrates for nonallelic homologous recombination that results in large (approximately 5 Mb) deletions of 17p11.2, which include the SMS region. Using polymerase-chain-reaction mapping of somatic cell hybrid lines, we refined the breakpoints of six deletions within these LCRs. Sequence analysis of the recombinant junctions revealed that all six strand exchanges occurred within a 524-bp interval, and four of them occurred within an AluSq/x element. This interval represents only 0.5% of the 124-kb stretch of 98.6% sequence identity between LCR17pA and LCR17pD. A search for potentially stimulating sequence motifs revealed short AT-rich segments flanking the recombination hotspot. Our findings indicate that alternative LCRs can mediate rearrangements, resulting in haploinsufficiency of the SMS critical region, and reimplicate homologous recombination as a major mechanism for genomic disorders.
Collapse
Affiliation(s)
- Christine J. Shaw
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - Marjorie A. Withers
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - James R. Lupski
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| |
Collapse
|
32
|
Kim YG, Lowenhaupt K, Oh DB, Kim KK, Rich A. Evidence that vaccinia virulence factor E3L binds to Z-DNA in vivo: Implications for development of a therapy for poxvirus infection. Proc Natl Acad Sci U S A 2004; 101:1514-8. [PMID: 14757814 PMCID: PMC341766 DOI: 10.1073/pnas.0308260100] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The E3L gene product found in all poxviruses is required for the lethality of mice in vaccinia virus infection. Both the C-terminal region, consisting of a double-stranded RNA-binding motif, and the N-terminal region (vZ(E3L)), which is similar to the Zalpha family of Z-DNA-binding proteins, are required for infection. It has recently been demonstrated that the function of the N-terminal domain depends on its ability to bind Z-DNA; Z-DNA-binding domains from unrelated mammalian proteins fully complement an N-terminal deletion of E3L. Mutations that decrease affinity for Z-DNA have similar effects in decreasing pathogenicity. Compounds that block the Z-DNA-binding activity of E3L may also limit infection by the poxvirus. Here we show both an in vitro and an in vivo assay with the potential to be used in screening for such compounds. Using a conformation-specific yeast one-hybrid assay, we compared the results for Z-DNA binding of vZ(E3L) with those for human Zbeta(ADAR1), a peptide that has similarity to the Zalpha motif but does not bind Z-DNA, and with a mutant of hZbeta(ADAR1), which binds Z-DNA. The results suggest that this system can be used for high-throughput screening.
Collapse
Affiliation(s)
- Yang-Gyun Kim
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
33
|
Abeysinghe SS, Chuzhanova N, Krawczak M, Ball EV, Cooper DN. Translocation and gross deletion breakpoints in human inherited disease and cancer I: Nucleotide composition and recombination-associated motifs. Hum Mutat 2003; 22:229-44. [PMID: 12938088 DOI: 10.1002/humu.10254] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Translocations and gross deletions are important causes of both cancer and inherited disease. Such gene rearrangements are nonrandomly distributed in the human genome as a consequence of selection for growth advantage and/or the inherent potential of some DNA sequences to be frequently involved in breakage and recombination. Using the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] (containing 397 germ-line and somatic DNA breakpoint junction sequences derived from 219 different rearrangements underlying human inherited disease and cancer), we have analyzed the sequence context of translocation and deletion breakpoints in a search for general characteristics that might have rendered these sequences prone to rearrangement. The oligonucleotide composition of breakpoint junctions and a set of reference sequences, matched for length and genomic location, were compared with respect to their nucleotide composition. Deletion breakpoints were found to be AT-rich whereas by comparison, translocation breakpoints were GC-rich. Alternating purine-pyrimidine sequences were found to be significantly over-represented in the vicinity of deletion breakpoints while polypyrimidine tracts were over-represented at translocation breakpoints. A number of recombination-associated motifs were found to be over-represented at translocation breakpoints (including DNA polymerase pause sites/frameshift hotspots, immunoglobulin heavy chain class switch sites, heptamer/nonamer V(D)J recombination signal sequences, translin binding sites, and the chi element) but, with the exception of the translin-binding site and immunoglobulin heavy chain class switch sites, none of these motifs were over-represented at deletion breakpoints. Alu sequences were found to span both breakpoints in seven cases of gross deletion that may thus be inferred to have arisen by homologous recombination. Our results are therefore consistent with a role for homologous unequal recombination in deletion mutagenesis and a role for nonhomologous recombination in the generation of translocations.
Collapse
Affiliation(s)
- Shaun S Abeysinghe
- Institute of Medical Genetics, University of Wales College of Medicine, Cardiff, UK
| | | | | | | | | |
Collapse
|
34
|
Abstract
Biologists were puzzled by the discovery of left-handed Z-DNA because it seemed unnecessary. Z-DNA was stabilized by the negative supercoiling generated by transcription, which indicated a transient localized conformational change. Few laboratories worked on the biology of Z-DNA. However, the discovery that certain classes of proteins bound to Z-DNA with high affinity and great specificity indicated a biological role. The most recent data show that some of these proteins participate in the pathology of poxviruses.
Collapse
Affiliation(s)
- Alexander Rich
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 68-233, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
35
|
Li G, Tolstonog GV, Traub P. Interaction in vitro of type III intermediate filament proteins with Z-DNA and B-Z-DNA junctions. DNA Cell Biol 2003; 22:141-69. [PMID: 12804114 DOI: 10.1089/104454903321655783] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The selection of DNA fragments containing simple d(GT)(n) and composite d(GT)(m). d(GA)(n) microsatellites during affinity binding of mouse genomic DNA to type III cytoplasmic intermediate filaments (cIFs) in vitro, and the detection of such repeats, often as parts of nuclear matrix attachment region (MAR)-like DNA, in SDS-stable DNA-vimentin crosslinkage products isolated from intact fibroblasts, prompted a detailed study of the interaction of type III cIF proteins with left-handed Z-DNA formed from d(GT)(17) and d(CG)(17) repeats under the topological tension of negatively supercoiled plasmids. Although d(GT)(n) tracts possess a distinctly lower Z-DNA-forming potential than d(CG)(n) tracts, the filament proteins produced a stronger electrophoretic mobility shift with a plasmid carrying a d(GT)(17) insert than with plasmids containing different d(CG)(n) inserts, consistent with the facts that the B-Z transition of d(GT)(n) repeats requires a higher negative superhelical density than that of d(CG)(n) repeats and the affinity of cIF proteins for plasmid DNA increases with its superhelical tension. That both types of dinucleotide repeat had indeed undergone B-Z transition was confirmed by S1 nuclease and chemical footprinting analysis of the plasmids, which also demonstrated efficient protection by cIF proteins from nucleolytic and chemical attack of the Z-DNA helices as such, as well as of the flanking B-Z junctions. The analysis also revealed sensibilization of nucleotides in the center of one of the two strands of a perfect d(CG)(17) insert toward S1 nuclease, indicating cIF protein-induced bending of the repeat. In all these assays, vimentin and glial fibrillary acidic protein (GFAP) showed comparable activities, versus desmin, which was almost inactive. In addition, vimentin and GFAP exhibited much higher affinities for the Z-DNA conformation of brominated, linear d(CG)(25) repeats than for the B-DNA configuration of the unmodified oligonucleotides. While double-stranded DNA was incapable of chasing the Z-DNA from its protein complexes, and Holliday junction and single-stranded (ss)DNA were distinguished by reasonable competitiveness, phosphatidylinositol (PI) and, particularly, phosphatidylinositol 4,5-diphosphate (PIP(2)) turned out to be extremely potent competitors. Because PIP(2) is an important member of the nuclear PI signal transduction cascade, it might exert a regulatory influence on the binding of cIF proteins to Z- and other DNA conformations. From this interaction of cIF proteins with Z- and bent DNA and their previously detected affinities for MAR-like, ss, triple helical, and four-way junction DNA, it may be concluded that the filament proteins play a general role in such nuclear matrix-associated processes as DNA replication, recombination, repair, and transcription.
Collapse
Affiliation(s)
- Guohong Li
- Max-Planck Institut für Zellbiologie, Rosenhof, 68526 Ladenburg, Germany
| | | | | |
Collapse
|
36
|
Oh DB, Kim YG, Rich A. Z-DNA-binding proteins can act as potent effectors of gene expression in vivo. Proc Natl Acad Sci U S A 2002; 99:16666-71. [PMID: 12486233 PMCID: PMC139201 DOI: 10.1073/pnas.262672699] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of Z-DNA-binding proteins in vivo is explored in yeast. A conformation-specific yeast one-hybrid system is made in which formation of Z-DNA is studied near a minimal promoter site where it can be stabilized by negative supercoiling in addition to protein binding. Experiments were carried out with a Z-DNA-binding protein domain from the editing enzyme, double-stranded RNA adenosine deaminase 1. In the one-hybrid system, the reporter gene is activated when a Z-DNA-specific binding domain is fused with an activation domain and expressed in vivo. Significantly, it was found that even in the absence of the activation domain there is substantial transcription of the reporter gene if the Z-DNA-binding protein is expressed in the cell. This result suggests that Z-DNA formation in the promoter region induced or stabilized by a Z-DNA-binding protein can act as a cis-element in gene regulation. Related results have been found recently when the human chromatin-remodeling system converts a segment of DNA in the promoter region of the human colony-stimulating factor 1 gene into the left-handed Z-conformation.
Collapse
Affiliation(s)
- Doo-Byoung Oh
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
37
|
Latha KS, Anitha S, Rao KSJ, Viswamitra MA. Molecular understanding of aluminum-induced topological changes in (CCG)12 triplet repeats: relevance to neurological disorders. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1588:56-64. [PMID: 12379314 DOI: 10.1016/s0925-4439(02)00133-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent studies have shown that gene mutations are involved in the pathology of neurological disorders. CCG repeats cause genetic instability and are localized at the 5' end of the non-coding regions of the FMR1 gene in fragile X syndrome. Our studies for the first time showed that aluminum (Al) levels were elevated in the serum samples of fragile X syndrome and also provide evidence for the interaction of aluminum with (CCG)12-repeats. Circular dichroism spectroscopic studies of (CCG)12 indicated B-DNA conformation and in the presence of Al (10(-5) M) CCG repeats attained Z-DNA conformation. Further spectroscopic studies, which included melting profiles, ethidium bromide binding patterns and interaction of Z-DNA specific polyclonal antibodies confirmed the Z-conformation in (CCG)12-repeats in the presence of Al (10(-5) M). It is interesting to mention that Al-induced Z-conformation is stable even after the total removal of Al from CCG by desferoximine, a chelating drug. This is the first report to proof the role of Al in modulating the DNA (CCG repeats) topology and this information provides a clue about the possible involvement of Al at a molecular level in neurological/neurodegenerative disorders.
Collapse
Affiliation(s)
- Kallur Siddaramaiah Latha
- Centre for Human Genetics, Institute of Biotechnology, G-05, Discoverer, ITPL, Whitefield Road, Bangalore, India
| | | | | | | |
Collapse
|
38
|
The Complexity of Aluminum-DNA Interactions: Relevance to Alzheimer’s and Other Neurological Diseases. STRUCTURE AND BONDING 2002. [DOI: 10.1007/3-540-45425-x_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
|
39
|
Abstract
The mammalian BAF complex regulates gene expression by modifying chromatin structure. In this report, we identify 80 genes activated and 2 genes repressed by the BAF complex in SW-13 cells. We find that prior binding of NFI/CTF to the NFI/CTF binding site in CSF1 promoter is required for the recruitment of the BAF complex and the BAF-dependent activation of the promoter. Furthermore, the activation of the CSF1 promoter requires Z-DNA-forming sequences that are converted to Z-DNA structure upon activation by the BAF complex. The BAF complex facilitates Z-DNA formation in a nucleosomal template in vitro. We propose a model in which the BAF complex promotes Z-DNA formation which, in turn, stabilizes the open chromatin structure at the CSF1 promoter.
Collapse
Affiliation(s)
- R Liu
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
40
|
Geall AJ, Eaton MA, Baker T, Catterall C, Blagbrough IS. The regiochemical distribution of positive charges along cholesterol polyamine carbamates plays significant roles in modulating DNA binding affinity and lipofection. FEBS Lett 1999; 459:337-42. [PMID: 10526161 DOI: 10.1016/s0014-5793(99)01262-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have quantified the effects of the regiochemical distribution of positive charges along the polyamine moiety in lipopolyamines for DNA molecular recognition. High affinity binding leads to charge neutralisation, DNA condensation and ultimately to lipofection. Binding affinities for calf thymus DNA were determined using an ethidium bromide displacement assay and condensation was detected by changes in turbidity using light scattering. The in vitro transfection competence of cholesterol polyamine carbamates was measured in CHO cells. In the design of DNA condensing and transfecting agents for non-viral gene therapy, the interrelationship of ammonium ions, not just their number, must be considered.
Collapse
Affiliation(s)
- A J Geall
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | | | | | | | | |
Collapse
|
41
|
Santoni MJ, Aït-Ahmed O, Marilley M. A sequence based computational identification of a Drosophila developmentally regulated TATA-less RNA polymerase II promoter and its experimental validation. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1399:117-25. [PMID: 9765588 DOI: 10.1016/s0167-4781(98)00093-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many RNA polymerase II promoters lack the characteristic TATA box sequence located -25/-30 nucleotides upstream from the transcription start. In Drosophila, half of the promoters identified so far are TATA-deficient. The yemanuclein-alpha gene whose promoter activity is restricted to oogenesis, falls in this class. A number of upstream and downstream promoter elements have been identified for some TATA-less promoters. The yem-alpha promoter contains none of the consensus elements identified so far. Our work was based on the assumption that the physical parameters of the DNA could be used to predict the location of the yem-alpha promoter. A sequence based computational analysis allowed us to determine the characteristic changes of DNA curvature and helix stability in the presumptive regulatory region. Our experimental data were in good agreement with the computational analysis. We have started to investigate the general value of this approach by analyzing other promoters.
Collapse
Affiliation(s)
- M J Santoni
- LGPD/IBDM, CNRS/Université de la Méditerranée, Parc Scientifique et Technologique de Luminy, Marseilles, France
| | | | | |
Collapse
|
42
|
Gerdes D, Wehling M, Leube B, Falkenstein E. Cloning and tissue expression of two putative steroid membrane receptors. Biol Chem 1998; 379:907-11. [PMID: 9705155 DOI: 10.1515/bchm.1998.379.7.907] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have cloned two human putative steroid binding membrane proteins, termed Hpr6.6 and Dg6. Hpr6.6 is the human homolog of a previously cloned porcine progesterone binding protein. Both proteins contain a putative transmembrane domain and a highly conserved stretch of 58 amino acids. Hpr6.6 mRNA is expressed predominantly in liver and kidney, whereas Dg6 mRNA is preferentially expressed in placenta. Hpr6.6 is located on the X chromosome and dg6 on chromosome 4. The two proteins are the first putative steroid membrane receptors cloned from man.
Collapse
Affiliation(s)
- D Gerdes
- Institute of Clinical Pharmacology, Faculty of Clinical Medicine at Mannheim, University of Heidelberg, Germany
| | | | | | | |
Collapse
|
43
|
|
44
|
|
45
|
Sessa A, Tunici P, Rabellotti E, Perin A. Transglutaminase Activity in Rat Brain after Ethanol Exposure. Alcohol Clin Exp Res 1997. [DOI: 10.1111/j.1530-0277.1997.tb04444.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Abstract
We have measured the ability of oligoadenosine tracts 25 base pairs in length to influence nucleosome formation. Such tracts can cause DNA to bind in nucleosomes at higher temperatures with a free energy up to 1 kcal/mol more favorable than heterogenous-sequence DNA. Furthermore, the position of the oligoadenosine tract affects the free energy of binding, with the most favorable position occurring at the dyad axis.
Collapse
Affiliation(s)
- H Mahloogi
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | |
Collapse
|
47
|
Tippin DB, Sundaralingam M. Nine polymorphic crystal structures of d(CCGGGCCCGG), d(CCGGGCCm5CGG), d(Cm5CGGGCCm5CGG) and d(CCGGGCC(Br)5CGG) in three different conformations: effects of spermine binding and methylation on the bending and condensation of A-DNA. J Mol Biol 1997; 267:1171-85. [PMID: 9150405 DOI: 10.1006/jmbi.1997.0945] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The A-DNA decamer d(CCGGGCCm5CGG) crystallizes in the presence of spermine in three polymorphic forms and with one duplex in the asymmetric unit: hexagonal (P6(1)), unit cell of 55.0 A x 55.0 A x 45.9 A; orthorhombic (P2(1)2(1)2(1)), unit cell of 24.8 A x 44.6 A x 48.0 A, and a second orthorhombic (P2(1)2(1)2(1)), unit cell of 23.6 A x 40.8 A x 43.4 A. The reduction in cell volume among the three different forms is accompanied by a large reduction in solvent content (67% versus 40% versus 24%) and a significant reduction in volume per base-pair (2005 A(3) versus 1325 A(3) versus 1048 A(3)). There is also a concomitant increase in the number of bound spermine molecules per duplex (0 versus 1 versus 2) as well as an increase in DNA bending (10 degrees versus 16 degrees versus 31 degrees), which correspond to major groove widths of 8.0 A versus 4.5 A versus 1.3 A, respectively. The P6(1) crystal form, which represents a new space group for A-DNA decamers, supports one of the most hydrated and extended DNA duplexes to date, while the second orthorhombic form supports one of the least-hydrated and most-condensed non-Z-DNA duplexes. The unmethylated analogue d(CCGGGCCCGG), the double-methyl derivative d(Cm5CGGGCCm5CGG) and the bromine derivative d(CCGGGCC(Br)5CGG) also crystallize in at least two of the aforementioned conformations, and all nine crystal structures were determined. We report, in detail, on the three crystal structures of d(CCGGGCCm5CGG) and the effects of methylation and spermine binding on A-DNA conformation.
Collapse
Affiliation(s)
- D B Tippin
- Department of Chemistry, The Ohio State University, Columbus 43210-1002, USA
| | | |
Collapse
|
48
|
Abstract
One of the mechanisms proposed to explain how CpG methylation effects gene repression invokes a DNA methylation-determined chromatin structure. Previous work implied that this DNA modification does not influence nucleosome formation in vitro, thus current models propose that certain non-histone proteins or a preferential affinity by linker histones for methylated DNA may mediate changes in chromatin structure. We have reinvestigated whether CpG methylation alters the chromatin structure of reconstitutes comprising only core histones and DNA. We find that DNA methylation prevents the histone octamer from interacting with an otherwise high affinity positioning sequence in the promoter region of the chicken adult beta-globin gene. This exclusion is attributed to methylation-determined changes in DNA structure within a triplet of CpG dinucleotides. In the affected nucleosome, this sequence motif is located 1.5 helical turns from the dyad axis and is oriented towards the histone core. These findings establish that DNA methylation does have the capacity to modulate chromatin structure directly, at its most fundamental level. Furthermore, our observations strongly suggest that a very limited number of nucleotides can make a decisive contribution to the translational positioning of nucleosomes.
Collapse
Affiliation(s)
- C Davey
- Department of Biochemistry, University of Edinburgh, UK
| | | | | |
Collapse
|
49
|
Krajewski WA. Enhancement of transcription by short alternating C.G tracts incorporated within a Rous sarcoma virus-based chimeric promoter: in vivo studies. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:249-54. [PMID: 8842144 DOI: 10.1007/bf02173770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In view of the wide chromosomal distribution of short alternating purine-pyrimidine sequences capable of adopting a number of superhelical stress-dependent structural configurations (left-handed helices and cruciforms), the question has been posed whether such sequences exert any functional effects in vivo. A series of eukaryotic expression vectors were constructed which contained C.G tracts of various lengths in the promoter region. It was shown that insertion of C.G tracts of 12-16 bp significantly increased the level of expression of the chloramphenicol acetyltransferase reporter gene. It was also demonstrated that the formation of additional activation complexes and the use of a preferred "face" or side of the DNA molecule is not responsible for the increased transcription which was observed upon insertion of the C.G tracts. Comparative assays of chromatin structure at the chimeric promoters indicate that the alternating C.G tracts adopt a structure which is incapable of binding histone proteins. These results strongly suggest that control of access to chromatin is involved in regulating the transcriptional activity of the chimeric promoters. Possible molecular bases for this phenomena are discussed.
Collapse
Affiliation(s)
- W A Krajewski
- Institute of Developmental Biology, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
50
|
Kim JM, DasSarma S. Isolation and chromosomal distribution of natural Z-DNA-forming sequences in Halobacterium halobium. J Biol Chem 1996; 271:19724-31. [PMID: 8702677 DOI: 10.1074/jbc.271.33.19724] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Conditions favoring left-handed Z-DNA such as high salinity (> 4 ), high negative DNA supercoiling, and GC-rich DNA [statistically favoring d(CG)n repeat sequences], are all found in the extremely halophilic archaeum (archaebacterium) Halobacterium halobium. In order to identify and study Z-DNA regions of the H. halobium genome, an affinity chromatography method with high Z-DNA selection efficiency was developed. Supercoiled plasmids were incubated with a Z-DNA-specific antibody (Z22) and passed over a protein A-agarose column, and the bound plasmids were eluted using an ethidium bromide gradient. In control experiments using mixtures of pUC12 (Z-negative) and a d(CG)5-containing (Z-positive) pUC12 derivative, up to 4,000-fold enrichment of the Z-DNA-containing plasmid was demonstrated per cycle of the Z-DNA selection procedure. The selection efficiency was determined by transformation of Escherichia coli DH5alpha with eluted plasmids and blue-white screening on X-gal plates. Twenty recombinant plasmids containing Z-DNA-forming sequences of H. halobium were isolated from a genomic library using affinity chromatography. Z-DNA-forming sequences in selected plasmids were identified by bandshift and antibody footprinting assays using Z22 monoclonal antibody. Alternating purine-pyrimidine sequences ranging from 8 base pairs (bp) to 13 bp with at least a 6-bp alternating d(GC) stretch were found in the Z22 antibody binding regions of isolated plasmids. The distribution of Z-DNA-forming sequences in the Halobacterium salinarum GRB chromosome was analyzed by dot-blot hybridization of an ordered cosmid library using the cloned H. halobium Z-DNA segments as probe. Among the 11 Z-DNA segments tested, five were found to be clustered in a 100-kilobase pair region of the genome, whereas six others were distributed throughout the rest of the genome.
Collapse
Affiliation(s)
- J m Kim
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|