1
|
Baidyaroy D, Hausner G, Fulbright DW, Bertrand H. Mitochondrial plasmid-like elements in some hypovirulent strains of Cryphonectria parasitica. Fungal Genet Biol 2011; 48:764-74. [DOI: 10.1016/j.fgb.2011.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 03/17/2011] [Accepted: 05/08/2011] [Indexed: 10/18/2022]
|
2
|
van Diepeningen AD, Goedbloed DJ, Slakhorst SM, Koopmanschap AB, Maas MFPM, Hoekstra RF, Debets AJM. Mitochondrial recombination increases with age in Podospora anserina. Mech Ageing Dev 2010; 131:315-22. [PMID: 20226205 DOI: 10.1016/j.mad.2010.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 12/15/2022]
Abstract
With uniparental inheritance of mitochondria, there seems little reason for homologous recombination in mitochondria, but the machinery for mitochondrial recombination is quite well-conserved in many eukaryote species. In fungi and yeasts heteroplasmons may be formed when strains fuse and transfer of organelles takes place, making it possible to study mitochondrial recombination when introduced mitochondria contain different markers. A survey of wild-type isolates from a local population of the filamentous fungus Podospora anserina for the presence of seven optional mitochondrial introns indicated that mitochondrial recombination does take place in nature. Moreover the recombination frequency appeared to be correlated with age: the more rapidly ageing fraction of the population had a significantly lower linkage disequilibrium indicating more recombination. Direct confrontation experiments with heterokaryon incompatible strains with different mitochondrial markers at different (relative) age confirmed that mitochondrial recombination increases with age. We propose that with increasing mitochondrial damage over time, mitochondrial recombination - even within a homoplasmic population of mitochondria - is a mechanism that may restore mitochondrial function.
Collapse
Affiliation(s)
- Anne D van Diepeningen
- Laboratory of Genetics, Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
3
|
van Diepeningen AD, Slakhorst SM, Koopmanschap AB, Ikink GJ, Debets AJM, Hoekstra RF. Calorie restriction in the filamentous fungus Podospora anserina. Exp Gerontol 2010; 45:516-24. [PMID: 20064602 DOI: 10.1016/j.exger.2010.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/04/2010] [Accepted: 01/06/2010] [Indexed: 11/27/2022]
Abstract
Calorie restriction (CR) is a regimen of reduced food intake that, although the underlying mechanism is unknown, in many organisms leads to life span extension. Podospora anserina is one of the few known ageing filamentous fungi and the ageing process and concomitant degeneration of mitochondria have been well-studied. CR in P. anserina increases not only life span but also forestalls the ageing-related decline in fertility. Here we review what is known about CR in P. anserina and about possibly involved mechanisms like enhanced mitochondrial stability, reduced production of reactive oxygen species and changes in the OXPHOS machinery. Additionally, we present new microscopic data on mitochondrial dynamics under rich nutritional and CR conditions at different points in life. Lines that have grown under severe CR for more than 50x the normal life span, show no accumulation of age-related damage, though fecundity is reduced in some of these lines. Finally, we discuss the possible role of CR in P. anserina in nature and the effect of CR at different points in life.
Collapse
Affiliation(s)
- Anne D van Diepeningen
- Laboratory of Genetics, Plant Sciences, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
4
|
Maas MFPM, Sellem CH, Hoekstra RF, Debets AJM, Sainsard-Chanet A. Integration of a pAL2-1 homologous mitochondrial plasmid associated with life span extension in Podospora anserina. Fungal Genet Biol 2007; 44:659-71. [PMID: 17166751 DOI: 10.1016/j.fgb.2006.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 09/29/2006] [Accepted: 10/27/2006] [Indexed: 11/16/2022]
Abstract
We isolated and characterized a novel spontaneous longevity mutant of Podospora anserina strain Wa32 carrying one of the pAL2-1 homologous mitochondrial plasmids. This mutant is at least ten fold longer-lived than the wild type, and is hence a formal suppressor of both the regular and the 'plasmid-based' senescence process. We show that the longevity trait is maternally inherited and coincides with the presence of a copy of the plasmid integrated in the 5' UTR of the mitochondrial Complex I genes nd2 and nd3. This mutation is associated with complex alterations in the respiratory chain, including a dispensable induction of the alternative oxidase. It is also associated with a stabilization of the mitochondrial chromosome and a reduction of the overall cellular level of reactive oxygen species.
Collapse
Affiliation(s)
- M F P M Maas
- CNRS, Centre de Génétique Moléculaire, 1 Avenue de la terrasse, 91198 Gif-sur-Yvette cedex, France.
| | | | | | | | | |
Collapse
|
5
|
Hausner G, Nummy KA, Stoltzner S, Hubert SK, Bertrand H. Biogenesis and replication of small plasmid-like derivatives of the mitochondrial DNA in Neurospora crassa. Fungal Genet Biol 2006; 43:75-89. [PMID: 16386436 DOI: 10.1016/j.fgb.2005.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/04/2005] [Accepted: 10/28/2005] [Indexed: 11/20/2022]
Abstract
For reasons that are not obvious, sets of related, small, plasmid-like elements appear spontaneously and become amplified in the mitochondria of some cytochrome-deficient and/or UV-sensitive mutants of Neurospora crassa. These plasmid-like DNAs are multimeric series of circular molecules, each consisting of a finite number of identical tandem repeats of a relatively short mtDNA-derived nucleotide sequence (monomer). The plasmid-like elements that have been characterized in this study consist of monomers that vary in length from 125 to 296 base pairs, depending on the strain of origin. Each monomer includes a GC-rich palindrome that is followed by the promoter and a short section of the 5' terminal region of the mitochondrial large-subunit rRNA gene (rnl). Analyses of the nucleotide sequences of variants of this group of elements indicates that they are not generated by intra-molecular recombination, but are the result of single- or double-strand DNA breaks that are produced by a mismatch or base excision repair process. These elements do not appear to contain a defined origin of replication, but replicate by a recombination-dependent rolling-circle mechanism. One- and two-dimensional gel electrophoresis of the plasmid-like element derived Hind III and Pst I fragments combined with S1 nuclease treatments suggest that the intergenic GC-rich palindromes, which are ubiquitous in the mtDNA Neurospora, could be replication fork pausing points.
Collapse
Affiliation(s)
- Georg Hausner
- Department of Microbiology, Michigan State University, East-Lansing, MI 48824-1101, USA.
| | | | | | | | | |
Collapse
|
6
|
Hausner G, Nummy KA, Bertrand H. Asexual transmission, non-suppressiveness and meiotic extinction of small plasmid-like derivatives of the mitochondrial DNA in Neurospora crassa. Fungal Genet Biol 2005; 43:90-101. [PMID: 16386438 DOI: 10.1016/j.fgb.2005.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/04/2005] [Accepted: 10/28/2005] [Indexed: 11/22/2022]
Abstract
For reasons that are not obvious, sets of related plasmid-like elements that consist of short segments of DNA that overlap the 5' terminal region of the mitochondrial large-subunit rRNA gene sometimes appear spontaneously and become amplified in the mitochondria of some cytochrome-deficient and/or UV-sensitive mutants of Neurospora crassa. These elements are transmitted efficiently through hyphal anastomoses and appear to invade the mitochondria of recipient strains, but they do not cause senescence and at best cause only slight deficiencies in cytochromes a and b even though they are transcribed copiously. Hence, the small elements are not suppressive and, unlike large deletion derivatives of the mitochondrial chromosome, do not displace normal mtDNA molecules in vegetatively propagated mycelia. Unlike the mitochondrial chromosome, large plasmid-like mtDNA derivatives and true mitochondrial plasmids, the small plasmid-like mtDNA derivatives are rarely transmitted sexually even though they persist without selection in very high copy numbers in vegetative cells. The high copy numbers and high stability of these elements in vegetatively propagated cultures suggests that their monomers contain all the features required for their replication and transmission in the hyphae and conidia of Neurospora. However, the mt-rnl-derived molecules appear to lack a sequence or attribute required for the maintenance or transmission of mitochondrial genetic elements at some stage of the sexual reproductive cycle, including ascospore maturation and germination.
Collapse
Affiliation(s)
- Georg Hausner
- Department of Microbiology, Michigan State University, East-Lansing, MI 48824-1101, USA
| | | | | |
Collapse
|
7
|
|
8
|
Moore CA, Gudikote J, Van Tuyle GC. Mitochondrial DNA rearrangements, including partial duplications, occur in young and old rat tissues. Mutat Res 1998; 421:205-17. [PMID: 9852994 DOI: 10.1016/s0027-5107(98)00169-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using polymerase chain reaction (PCR) with back-to-back primers, 85 different mitochondrial DNA (mtDNA) rearrangements, consisting of partial duplications or mini-circles, were detected in brain, liver, and heart tissue from Fischer 344 rats. The regions around the mitochondrial tRNALeu(UUR) gene, the cluster of three tRNA genes [His, Ser(AGY), Leu(UUC)], as well as the region of the displacement loop were analyzed separately with different primer sets. Rearrangements were detected in all regions analyzed in samples taken throughout the animal life span, ranging from 1 day old to 33 months of age (senescent). Two-thirds of the rearrangements terminated at short (3-9-bp) direct repeats. Three of the different rearrangements were detected in more than one animal; the most common rearrangement was found in nine different template preparations. Two loci (hot spots) were found to be particularly susceptible to rearrangement, and both were located at sequences that exhibited highly conserved potential for secondary structure formation. The displacement loop region of 10 samples exhibited the presence of multiple tandem duplications ranging between 324 and 449 bp in length. One of these consisted of heterologous, but overlapping, repeating units. Identical PCR protocols were carried out in control experiments using a cloned fragment of mtDNA that encompassed the most common hot spot sequence. The results showed that this fragment did not artifactually generate a rearrangement junction under our PCR conditions and suggested that this sequence does not promote rearrangement mutations in bacteria during the cloning process.
Collapse
Affiliation(s)
- C A Moore
- Department of Biochemistry and Molecular Biophysics, Virginia Commonwealth University, Richmond 23298, USA
| | | | | |
Collapse
|
9
|
Koll F, Boulay J, Belcour L, d'Aubenton-Carafa Y. Contribution of ultra-short invasive elements to the evolution of the mitochondrial genome in the genus Podospora. Nucleic Acids Res 1996; 24:1734-41. [PMID: 8649993 PMCID: PMC145831 DOI: 10.1093/nar/24.9.1734] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the filamentous fungus Podospora anserina, senescence is associated with major rearrangements of the mitochondrial DNA. The undecamer GGCGCAAGCTC has been described as a preferential site for these recombination events. We show that: (i) copies of this short sequence GGCGCAAGCTC are present in unexpectedly high numbers in the mitochondrial genome of this fungus; (ii) a short cluster of this sequence, localised in a group II intronic ORF, encodes amino acids that disrupt a protein domain that is otherwise highly conserved between various species; (iii) most of the polymorphisms observed between three related species, P.anserina, P.curvicolla and P.comata, are associated with the presence/absence of this sequence; (iv) this element lies at the boundaries of major rearrangements of the mitochondrial genomes; (v) at least two other short elements in the Podospora mitochondrial genomes display similar features. We suggest that these short elements, called MUSEs (mitochondrial ultra-short elements), could be mobile and that they contribute to evolution of the mitochondrial genome in the genus Podospora. A model for mobility involving a target DNA-primed reverse transcription step is discussed.
Collapse
Affiliation(s)
- F Koll
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | | | | | | |
Collapse
|
10
|
Van Tuyle GC, Gudikote JP, Hurt VR, Miller BB, Moore CA. Multiple, large deletions in rat mitochondrial DNA: evidence for a major hot spot. Mutat Res 1996; 349:95-107. [PMID: 8569796 DOI: 10.1016/0027-5107(95)00165-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study identified 33 different deletions in mitochondrial DNA from four aging Fischer-344 rat brains and from a cultured rat lymphoma cell line (Nb2 cells). The deletions were located in the longer arc between the heavy and light strand origins of replication. PCR products that spanned across the deleted regions were sequenced, and deletions ranging between 6548 bp and 9977 bp in length were identified. Short direct repeats of < or = 8 bp were present at the end points of all but one of the deletions. The remaining deletion contained, instead, a near-perfect direct repeat (9/10 bp) within two base pairs of its end points. In 24 of the deletions, a sequence equivalent to one member of the paired direct repeats was lost with the deleted segment. In the remaining nine, either more or less of the base pairs of a single repeat were lost. Twelve of the 33 different deletions terminated on one side at a common locus (major hot spot) of 5 bp in length, located at the 5' end of the tRNAThr gene. The opposite ends of these 12 deletions were at different sites. The hot spot was located in a region of the mtDNA with strong potential for secondary structure and was flanked by a pair of AT-rich sequences. The utilization of the hot spot as an end point for deletions appeared to be widespread in that it was represented in 1/3-1/2 of the deletions characterized in each of the five mtDNA sources examined. In addition, several minor hot spots, where one end of two or three different deletions coincided, were also identified.
Collapse
Affiliation(s)
- G C Van Tuyle
- Department of Biochemistry and Molecular Biophysics, Virginia Commonwealth University, Richmond 23298, USA.
| | | | | | | | | |
Collapse
|
11
|
Jamet-Vierny C, Shechter E. Senescence-specific mitochondrial DNA molecules in P. anserina: evidence for transcription and normal processing of the RNA. Curr Genet 1994; 25:538-44. [PMID: 8082206 DOI: 10.1007/bf00351675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In Podospora anserina the phenomenon of senescence was previously shown to be correlated with the presence of senescence-specific circular DNAs (senDNAs), resulting from the amplification of distinct regions (alpha, beta, gamma and epsilon) of the mitochondrial chromosome. The beta region gives rise to senDNAs with variable sizes, but sharing a 1-kb common sequence. Here, we present a molecular analysis of five beta senDNAs. We have determined the nucleotide sequence around the circularization site of each senDNA monomer. In two cases, the presence of a tRNA gene, very close to the 3' end of the monomer, has been observed. This suggests that some beta senDNAs could be generated via a reverse transcription step. We have furthermore shown that the beta senDNAs produce specific transcripts which undergo normal processing of their introns. We propose that a transcription start site, located in the beta common region, is involved in mitochondrial replication allowing the amplification of the beta senDNAs.
Collapse
Affiliation(s)
- C Jamet-Vierny
- Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|
12
|
Hermanns J, Osiewacz HD. Three mitochondrial unassigned open reading frames of Podospora anserina represent remnants of a viral-type RNA polymerase gene. Curr Genet 1994; 25:150-7. [PMID: 8087884 DOI: 10.1007/bf00309541] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mitochondrial DNA of Podospora anserina is complex, consisting of a characteristic set of genes with a large number of introns and a substantial amount of sequence of unknown function and origin. In addition, as indicated by various types of reorganization, this genome is highly flexible. Here we report the identification of three unassigned mitochondrial open reading frames (ORF P', ORF Q', ORF 11) as remnants of a rearranged viral-type RNA polymerase gene. These ORFs are not transcribed and may be derived from the integration of a linear plasmid of the type recently identified in a mutant of P. anserina.
Collapse
Affiliation(s)
- J Hermanns
- Department of Molecular Biology of Aging Processes, German Cancer Research Center, Heidelberg
| | | |
Collapse
|
13
|
Morikawa Y, Matsuura N, Kakudo K, Higuchi R, Koike M, Kobayashi Y. Pearson's marrow/pancreas syndrome: a histological and genetic study. VIRCHOWS ARCHIV. A, PATHOLOGICAL ANATOMY AND HISTOPATHOLOGY 1993; 423:227-31. [PMID: 8236818 DOI: 10.1007/bf01614775] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A patient with features of Pearson's syndrome who presented with transfusion-dependent severe macrocytic anaemia, neutropenia, thrombocytopenia, and insulin-dependent diabetes mellitus in the neonatal period is described. His bone marrow was characterized by marked vacuolization of myeloid precursors and ringed sideroblasts. Autopsy examination revealed fibrosis and steatosis of the liver, reduction in the size and number of the islets, fibrosis and acinar atrophy of the pancreas, vacuolation of renal tubules, glomerulosclerosis, and "ragged red" fibres of skeletal muscles. Analysis of mitochondrial DNA (mtDNA) from the autopsied liver and skeletal muscle showed mtDNA heteroplasmy in both tissues, with one population of mtDNA deleted by 7374 bp. The deleted region was bridged by a single nucleotide, C, in normal mtDNA.
Collapse
Affiliation(s)
- Y Morikawa
- Department of Pathology, Wakayama Medical School, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Harosh I, Mezzina M, Harris PV, Boyd JB. Purification and characterization of a mitochondrial endonuclease from Drosophila melanogaster embryos. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:455-60. [PMID: 1333952 DOI: 10.1111/j.1432-1033.1992.tb17442.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A mitochondrial endonuclease from Drosophila melanogaster embryos was purified to near homogeneity by successive fractionation with DEAE-cellulose and heparin--avidgel-F, followed by FPLC chromatography on mono S, Superose 12 and a second mono S column. This enzyme digests double-stranded DNA more efficiently than heat-denatured DNA. The endonuclease activity has a molecular mass of 44 kDa, as determined under native conditions using a gel-filtration Superose 12 column. The prominent peptide detected by SDS/polyacrylamide gel electrophoresis likewise has a molecular mass of 44 kDa, suggesting a monomeric protein. The enzyme has an absolute requirement for divalent cations, preferring Mg2+ over Mn2+. No activity could be detected when these cations were replaced by Ca2+ or Zn2+. The pH optimum for this enzyme activity is 6.5-7.4 and its isoelectric point is 4.9. Both single-strand and double-strand breaks are introduced simultaneously into a supercoiled substrate in the presence of MgCl2 or MnCl2. Endonuclease-treated DNA serves as a substrate for DNA polymerase I from Escherichia coli, suggesting that 3'-OH termini are generated during cleavage. The enzyme is free from any detectable DNA exonuclease activity but not from RNase activity. Partial inhibition by antibodies raised against mitochondrial endonucleases derived from bovine heart and Saccharomyces cerevisiae have revealed a potential structural homology between these nucleases.
Collapse
Affiliation(s)
- I Harosh
- Department of Genetics, University of California, Davis
| | | | | | | |
Collapse
|
15
|
Ogihara Y, Terachi T, Sasakuma T. Structural analysis of length mutations in a hot-spot region of wheat chloroplast DNAs. Curr Genet 1992; 22:251-8. [PMID: 1339325 DOI: 10.1007/bf00351733] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The hot-spot region related to length mutations in the chloroplast genome of the wheat group was precisely analyzed at the DNA sequence level. This region, located downstream from the rbcL gene, was highly enriched in A + T, and contained a number of direct and inverted repeats. Many deletions/insertions were observed in the region. In most deletions/insertions of multiple nucleotides, short repeated sequences were found at the mutation points. Furthermore, a pair of short repeated sequences was also observed at the border of the translocated gene. A sequence homologous with ORF512 of tobacco cpDNA was truncated in cpDNAs of the wheat group and found only in the mitochondrial DNA of Ae. crassa, suggesting the inter-organellar translocation of this sequence. Mechanisms that could generate structural alterations of the chloroplast genome in the wheat group are discussed.
Collapse
Affiliation(s)
- Y Ogihara
- Kihara Institute for Biological Research, Yokohama City University, Japan
| | | | | |
Collapse
|
16
|
Clark-Walker GD. Evolution of mitochondrial genomes in fungi. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 141:89-127. [PMID: 1452434 DOI: 10.1016/s0074-7696(08)62064-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- G D Clark-Walker
- Molecular and Population Genetics Group, Research School of Biological Sciences, Australian National University, Canberra City
| |
Collapse
|
17
|
Almasan A, Mishra NC. Recombination by sequence repeats with formation of suppressive or residual mitochondrial DNA in Neurospora. Proc Natl Acad Sci U S A 1991; 88:7684-8. [PMID: 1881910 PMCID: PMC52366 DOI: 10.1073/pnas.88.17.7684] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recombination junctions of several Neurospora mitochondrial DNA (mtDNA) mutants and their revertants were identified. Their nucleotide sequences and putative secondary structures were determined in order to understand the nature of the elements involved in intramolecular recombination. Multiple deletions, involving the same portion of Neurospora mtDNA, were identified in six independently isolated mutants. A 9-nucleotide repeat element, CCCCNCCCC, was found to be involved in these and other Neurospora mitochondrial recombination events. The repeat elements were clustered as hot spots on the Neurospora mtDNA and were associated with palindromic DNA sequences. The palindromes have a potential to generate hairpin structures. A much lower free energy of the putative hairpins at the 5' end of the recombination site, and the possible formation of non-B-DNA structure by polypyrimidine tracks, may be important in the initiation of recombination. Using PCR, we found low levels of a specific mitochondrial deletion in certain Neurospora mutants. Their presence in low amounts in a population with a much larger number of normal mtDNA is unexpected. Contrary to earlier belief, this finding supports the view that deleted, smaller DNA molecules are not always suppressive relative to normal mtDNAs.
Collapse
Affiliation(s)
- A Almasan
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| | | |
Collapse
|
18
|
Silliker ME, Cummings DJ. A mitochondrial DNA rearrangement and three new mitochondrial plasmids from long-lived strains of Podospora anserina. Plasmid 1990; 24:37-44. [PMID: 2270228 DOI: 10.1016/0147-619x(90)90023-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The excision-junction sites of a mtDNA rearrangement of a long-lived strain of Podospora anserina, Mn19, were cloned and sequenced. Analysis of sequence and hybridization data lead to the conclusion that the Mn19 mtDNA consists of two nonoverlapping circular molecules. Three plasmids, LMt-2, LMt-3, and LMt-4, cloned from long-lived progeny of crosses between the Mn19 strain and wild type were cloned and sequenced. These plasmids share features and excision-junction sites with previously described longevity and senescence plasmids. The Mn19 mtDNA rearrangement and plasmids LMt-2, LMt-3, and LMt-4 are described. The possible significance of similarities to previously described plasmids is discussed.
Collapse
Affiliation(s)
- M E Silliker
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | |
Collapse
|
19
|
Cummings DJ, McNally KL, Domenico JM, Matsuura ET. The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet 1990; 17:375-402. [PMID: 2357736 DOI: 10.1007/bf00334517] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complete 94,192 bp sequence of the mitochondrial genome from race s of Podospora anserina is presented (1 kb = 10(3) base pairs). Three regions unique to race A are also presented bringing the size of this genome to 100,314 bp. Race s contains 31 group I introns (33 in race A) and 2 group II introns (3 in race A). Analysis shows that the group I introns can be categorized according to families both with regard to secondary structure and their open reading frames. All identified genes are transcribed from the same strand. Except for the lack of ATPase 9, the Podospora genome contains the same genes as its fungal counterparts, N. crassa and A. nidulans. About 20% of the genome has not yet been identified. DNA sequence studies of several excision-amplification plasmids demonstrate a common feature to be the presence of short repeated sequences at both termini with a prevalence of GGCGCAAGCTC.
Collapse
Affiliation(s)
- D J Cummings
- Department of Microbiology/Immunology, University of Colorado School of Medicine, Denver 80262
| | | | | | | |
Collapse
|
20
|
Cummings DJ, Michel F, Domenico JM, McNally KL. Mitochondrial DNA sequence analysis of the cytochrome oxidase subunit II gene from Podospora anserina. A group IA intron with a putative alternative splice site. J Mol Biol 1990; 212:287-94. [PMID: 2157023 DOI: 10.1016/0022-2836(90)90125-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A 5 kb region of the 95 kb mitochondrial genome of Podospora anserina race s has been mapped and sequenced (1 kb = 10(3) base-pairs). This DNA region is continuous with the sequence for the ND4L and ND5 gene complex in the accompanying paper. We show that this sequence contains the gene for cytochrome oxidase subunit II (COII). This gene is 4 kb in length and is interrupted by a subgroup IB intron (1267 base-pairs (bp) in length) and a subgroup IA intron (1992 bp in length). This group IA intron has a long open reading frame (ORF; 472 amino acid residues) discontinuous with the upstream exon sequence. A putative alternative splice site is present, which brings the ORF into phase with the 5' exon sequence. The 5'- and 3'-flanking regions of the COII gene contain G + C-rich palindromic sequences that resemble similar sequences flanking many Neurospora crassa mitochondrial genes.
Collapse
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | | | | | |
Collapse
|
21
|
Sainsard-Chanet A, Begel O. Insertion of an LrDNA gene fragment and of filler DNA at a mitochondrial exon-intron junction in Podospora. Nucleic Acids Res 1990; 18:779-83. [PMID: 2156230 PMCID: PMC330327 DOI: 10.1093/nar/18.4.779] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A rearrangement of the mitochondrial genome of a long lived mutant of Podospora anserina is presented. It consists in the insertion of 191 bp of the LrDNA gene (coding for the large ribosomal RNA) at the junction between exon1 and intron alpha of gene co1 (coding for subunit 1 of cytochrome oxidase). This insertion is accompanied by a 53 bp deletion of the junction and the presence of extra A and T nucleotides at both sides of the inserted sequence. We discuss possible mechanisms of production of this rearrangement. The presence of extra nucleotides at the recombination junctions suggests that it may pass through a stage of free DNA ends originating from a DNA break at the junction between exon1 and intron alpha of gene co1. The possibility that such a DNA break plays a major role in the instability of the mitochondrial genome is envisaged.
Collapse
Affiliation(s)
- A Sainsard-Chanet
- Centre de Genetique Moleculaire, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | | |
Collapse
|
22
|
Mita S, Rizzuto R, Moraes CT, Shanske S, Arnaudo E, Fabrizi GM, Koga Y, DiMauro S, Schon EA. Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA. Nucleic Acids Res 1990; 18:561-7. [PMID: 2308845 PMCID: PMC333462 DOI: 10.1093/nar/18.3.561] [Citation(s) in RCA: 263] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Large-scale deletions of mitochondrial DNA (mtDNA) have been described in patients with progressive external ophthalmoplegia (PEO) and ragged red fibers. We have determined the exact deletion breakpoint in 28 cases with PEO, including 12 patients already shown to harbor an identical deletion; the other patients had 16 different deletions. The deletions fell into two classes. In Class I (9 deletions; 71% of the patients), the deletion was flanked by perfect direct repeats, located (in normal mtDNA) at the edges of the deletion. In Class II (8 deletions; 29% of patients), the deletions were not flanked by any obviously unique repeat element, or they were flanked by repeat elements which were located imprecisely relative to the breakpoints. Computer analysis showed a correlation between the location of the deletion breakpoints and sequences in human mtDNA similar to the target sequence for Drosophila topoisomerase II. It is not known how these deletions originate, but both slipped mispairing and legitimate recombination could be mechanisms playing a major role in the generation of the large mtDNA deletions found in PEO.
Collapse
Affiliation(s)
- S Mita
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cummings DJ, Michel F, McNally KL. DNA sequence analysis of the 24.5 kilobase pair cytochrome oxidase subunit I mitochondrial gene from Podospora anserina: a gene with sixteen introns. Curr Genet 1989; 16:381-406. [PMID: 2558809 DOI: 10.1007/bf00340719] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The DNA sequence of a 26.7 Kilobase pair (10(3) base pairs = 1 Kb) region of the mitochondrial genomes of races s and A from Podospora anserina was determined. Within this region, the 24.5 Kb cytochrome oxidase subunit I gene was located and its exon sequences determined by computer analysis comparisons with other fungal genes. The Podospora COI gene was interrupted by two group II introns (one in race s) and fourteen group I introns ranging in size from about 2.2 Kb to 404 bp. Earlier studies on secondary structure analysis, as well as comparison of their open reading frames (ORFs), showed that the two group II introns were closely related. The fourteen group I introns were representatives of three subgroupings (IB, C and a new category, subgroup ID). Two of these group I introns were separated by just a single exon codon. The analysis of all these introns is discussed in comparison with other fungal introns as well as with the known Podospora anserina introns.
Collapse
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | | | |
Collapse
|
24
|
|
25
|
Rotig A, Colonna M, Bonnefont JP, Blanche S, Fischer A, Saudubray JM, Munnich A. Mitochondrial DNA deletion in Pearson's marrow/pancreas syndrome. Lancet 1989; 1:902-3. [PMID: 2564980 DOI: 10.1016/s0140-6736(89)92897-3] [Citation(s) in RCA: 207] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Schon EA, Rizzuto R, Moraes CT, Nakase H, Zeviani M, DiMauro S. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 1989; 244:346-9. [PMID: 2711184 DOI: 10.1126/science.2711184] [Citation(s) in RCA: 385] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Kearns-Sayre syndrome (KSS) and progressive external ophthalmoplegia (PEO) are related neuromuscular disorders characterized by ocular myopathy and ophthalmoplegia. Almost all patients with KSS and about half with PEO harbor large deletions in their mitochondrial genomes. The deletions differ in both size and location, except for one, 5 kilobases long, that is found in more than one-third of all patients examined. This common deletion was found to be flanked by a perfect 13-base pair direct repeat in the normal mitochondrial genome. This result suggests that homologous recombination deleting large regions of intervening mitochondrial DNA, which previously had been observed only in lower eukaryotes and plants, operates in mammalian mitochondrial genomes as well, and is at least one cause of the deletions found in these two related mitochondrial myopathies.
Collapse
Affiliation(s)
- E A Schon
- Department of Neurology, Columbia University, New York, NY 10032
| | | | | | | | | | | |
Collapse
|
27
|
Cummings DJ, Domenico JM, Nelson J. DNA sequence and secondary structures of the large subunit rRNA coding regions and its two class I introns of mitochondrial DNA from Podospora anserina. J Mol Evol 1989; 28:242-55. [PMID: 2494353 DOI: 10.1007/bf02102482] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA sequence analysis has shown that the gene coding for the mitochondrial (mt) large subunit ribosomal RNA (rRNA) from Podospora anserina is interrupted by two class I introns. The coding region for the large subunit rRNA itself is 3715 bp and the two introns are 1544 (r1) and 2404 (r2) bp in length. Secondary structure models for the large subunit rRNA were constructed and compared with the equivalent structure from Escherichia coli 23S rRNA. The two structures were remarkably similar despite an 800-base difference in length. The additional bases in the P. anserina rRNA appear to be mostly in unstructured regions in the 3' part of the RNA. Secondary structure models for the two introns show striking similarities with each other as well as with the intron models from the equivalent introns in Saccharomyces cerevisiae, Neurospora crassa, and Aspergillus nidulans. The long open reading frames in each intron are different from each other, however, and the nucleotide sequence similarity diverges as it proceeds away from the core structure. Each intron is located within regions of the large subunit rRNA gene that are highly conserved in both sequence and structure. Computer analysis showed that the open reading frame for intron r1 contained a common maturase-like polypeptide. The open reading frames of intron r2 appeared to be chimeric, displaying high sequence similarity with the open reading frames in the r1 and ATPase 6 introns of N. crassa.
Collapse
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | | | |
Collapse
|
28
|
Vierny-Jamet C. Senescence in Podospora anserina: a possible role for nucleic acid interacting proteins suggested by the sequence analysis of a mitochondrial DNA region specifically amplified in senescent cultures. Gene 1988; 74:387-98. [PMID: 3246349 DOI: 10.1016/0378-1119(88)90172-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In Podospora anserina, the phenomenon of senescence was previously shown to be correlated with the presence of a senescence-specific DNA (sen-DNA) resulting from the amplification of some regions (alpha, beta, gamma, epsilon) of the mitochondrial chromosome. The beta region gives rise to sen-DNAs with variable sizes and junctions which share a 1,100-bp common sequence. Here we report the complete nucleotide sequence of one 4-kb beta sen-DNA. Included in the sequence are a large part of the first intron open reading frame (ORF) of the gene ND4L and three short unidentified ORFs more precisely located in the common beta region. The primary structure of the polypeptide possibly encoded by one of them is very similar to the glycine-rich domains present in various single-stranded DNA-binding proteins. The comparison of the information content of this beta sen-DNA with that of other previously sequenced sen-DNAs suggests that the role in the senescence process attributed to the sen-DNAs could be related to the overproduction of a variety of proteins which interact with nucleic acids.
Collapse
Affiliation(s)
- C Vierny-Jamet
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| |
Collapse
|
29
|
Cummings DJ, Domenico JM. Sequence analysis of mitochondrial DNA from Podospora anserina. Pervasiveness of a class I intron in three separate genes. J Mol Biol 1988; 204:815-39. [PMID: 2975708 DOI: 10.1016/0022-2836(88)90044-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A 48 kb region of the 95 kb mitochondrial genome of Podospora anserina has been mapped and sequenced (1 kb = 10(3) base-pairs). The DNA sequence of the genes for ND2, 3, 4, ATPase 6 and URFC are presented here. As in Neurospora crassa, the ND2 and 3 genes consist of a unit separated by one TAA stop codon. ND3, 4 and ATPase 6 are interrupted by class I introns. All three introns are remarkably similar in the C-domain of their secondary structure, sufficient enough to designate them as new subgroup, class IC introns. The open reading frames of the ND3 and 4 introns bear a high sequence similarity to the open reading frame of the class IB introns of ATPase 6 from N. crassa and ND1 from Neurospora intermedia Varkud. We also show that the tRNA Met-2 gene is duplicated and is involved in a recombinational event. The 5' region of URFC is also duplicated but no involvement of this gene with recombination or formation of plasmids is known. The evolutionary significance of the similarities of intron secondary structures and open reading frames of the ND3, 4 and ATPase 6 genes is discussed, including the possible separate evolution of structural and coding sequences.
Collapse
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | |
Collapse
|
30
|
Joyce PB, Spencer DF, Gray MW. Multiple sequence rearrangements accompanying the duplication of a tRNA(Pro) gene in wheat mitochondrial DNA. PLANT MOLECULAR BIOLOGY 1988; 11:833-843. [PMID: 24272633 DOI: 10.1007/bf00019523] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/1988] [Accepted: 09/21/1988] [Indexed: 06/02/2023]
Abstract
In the course of isolating tRNA genes from wheat mtDNA, we have found the same tRNA(Pro) gene in two different Hind III restriction fragments, H-P1 (0.7 kbp) and H-P2 (1.7 kbp). Sequences immediately flanking these duplicate genes are closely related, although not identical; sequence comparisons suggest that multiple rearrangements have occurred in the vicinity of the H-P2 tRNA(Pro) gene, relative to the H-P1 version. The chimeric nature of H-P2 is emphasized by the presence of sequences that are also found upstream of the wheat mitochondrial 26S rRNA gene, as well as sequences derived from chloroplast DNA. Comparison of H-P2 with H-P1 plus upstream sequences provides some insight into possible molecular events that might have generated H-P2. In particular, such comparisons suggest a model in which the homologous sequences in H-P2 are seen to be derived from H-P1 plus upstream sequences as a result of an intragenomic, site-specific rearrangement event, followed by amplification of the product, its fixation in the mitochondrial genome, and subsequent sequence divergence (single base changes as well as insertions/deletions of up to 50 nucleotides). The results reported here implicate particular primary sequence motifs in certain of the rearrangements that characterize H-P2.
Collapse
Affiliation(s)
- P B Joyce
- Department of Biochemistry, Dalhousie University, B3H 4H7, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
31
|
Palmer JD, Osorio B, Thompson WF. Evolutionary significance of inversions in legume chloroplast DNAs. Curr Genet 1988. [DOI: 10.1007/bf00405856] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Howe CJ, Barker RF, Bowman CM, Dyer TA. Common features of three inversions in wheat chloroplast DNA. Curr Genet 1988; 13:343-9. [PMID: 3390875 DOI: 10.1007/bf00424430] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have determined the DNA sequences of regions involved in two of the three inversions known to have occurred during the evolution of wheat chloroplast DNA. This establishes the extent of the second largest of the three inversions. Examination of these sequences suggests that although short repeated sequences are present, the endpoints of the second and third inversions are not associated with repeated sequences as long as those associated with the first inversion. However the endpoints of all three inversions are all adjacent to at least one tRNA gene, and there is evidence that three of the tRNA genes have been subjected to partial duplication, possibly at the time of inversion. This suggests that tRNA genes might be involved with rearrangements of chloroplast DNA, as has also been postulated for mitochondrial DNA.
Collapse
Affiliation(s)
- C J Howe
- Department of Biochemistry, University of Cambridge, UK
| | | | | | | |
Collapse
|