1
|
Simulation of the M13 life cycle I: Assembly of a genetically-structured deterministic chemical kinetic simulation. Virology 2016; 500:259-274. [PMID: 27644585 DOI: 10.1016/j.virol.2016.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/22/2022]
Abstract
To expand the quantitative, systems level understanding and foster the expansion of the biotechnological applications of the filamentous bacteriophage M13, we have unified the accumulated quantitative information on M13 biology into a genetically-structured, experimentally-based computational simulation of the entire phage life cycle. The deterministic chemical kinetic simulation explicitly includes the molecular details of DNA replication, mRNA transcription, protein translation and particle assembly, as well as the competing protein-protein and protein-nucleic acid interactions that control the timing and extent of phage production. The simulation reproduces the holistic behavior of M13, closely matching experimentally reported values of the intracellular levels of phage species and the timing of events in the M13 life cycle. The computational model provides a quantitative description of phage biology, highlights gaps in the present understanding of M13, and offers a framework for exploring alternative mechanisms of regulation in the context of the complete M13 life cycle.
Collapse
|
2
|
Kwaśnikowski P, Kristensen P, Markiewicz WT. Multivalent display system on filamentous bacteriophage pVII minor coat protein. J Immunol Methods 2005; 307:135-43. [PMID: 16277988 DOI: 10.1016/j.jim.2005.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 08/30/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
The systems for display of foreign peptides and polypeptides on filamentous bacteriophage have exploited genetic fusion to all of the five coat proteins. Multivalent display systems allowing selection of low affinity antibody fragments have been devised for fusions to gene III. However, since pIII has to interact with the bacterial receptors during the infection process, reduced infectivity can be observed. Alternative display systems utilizing other coat protein have been examined. These, however, take advantage of phagemid systems, in which a mixture of fusion and non-fusion coat proteins becomes displayed, thus preventing multivalent display. In this paper, we describe genetically stable fusion of scFv fragments to gene VII directly in the phage genome, thus giving rise to a multivalent display system where infectivity is not comprised. A hundred-fold enrichments factor can be obtained in model selection. Our results demonstrate that the small size of pVII (33 amino acids) is not structurally compromised by fusion of scFv antibody fragments at their N-terminus, thus demonstrating the feasibility of utilizing pVII as a fusion partner.
Collapse
|
3
|
Cesnaviciene E, Mitkaite G, Stankevicius K, Janulaitis A, Lubys A. Esp1396I restriction-modification system: structural organization and mode of regulation. Nucleic Acids Res 2003; 31:743-9. [PMID: 12527784 PMCID: PMC140501 DOI: 10.1093/nar/gkg135] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Esp1396I restriction-modification (RM) system recognizes an interrupted palindromic DNA sequence 5'-CCA(N)(5)TGG-3'. The Esp1396I RM system was found to reside on pEsp1396, a 5.6 kb plasmid naturally occurring in Enterobacter sp. strain RFL1396. The nucleotide sequence of the entire 5622 bp pEsp1396 plasmid was determined on both strands. Identified genes for DNA methyltransferase (esp1396IM) and restriction endonuclease (esp1396IR) are transcribed convergently. The restriction endonuclease gene is preceded by the small ORF (esp1396IC) that possesses a strong helix-turn-helix motif and resembles regulatory proteins found in PvuII, BamHI and few other RM systems. Gene regulation studies revealed that C.Esp1396I acts as both a repressor of methylase expression and an activator of regulatory protein and restriction endonuclease expression. Our data indicate that C protein from Esp1396I RM system activates the expression of the Enase gene, which is co-transcribed from the promoter of regulatory gene, by the mechanism of coupled translation.
Collapse
MESH Headings
- Base Sequence
- Chromosome Mapping
- Cloning, Molecular
- Codon, Initiator/genetics
- DNA Restriction-Modification Enzymes/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Enterobacter/enzymology
- Enterobacter/genetics
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plasmids/chemistry
- Plasmids/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Analysis, DNA
Collapse
|
4
|
Yu JS, Madison-Antenucci S, Steege DA. Translation at higher than an optimal level interferes with coupling at an intercistronic junction. Mol Microbiol 2001; 42:821-34. [PMID: 11722745 DOI: 10.1046/j.1365-2958.2001.02681.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In pairs of adjacent genes co-transcribed on bacterial polycistronic mRNAs, translation of the first coding region frequently functions as a positive factor to couple translation to the distal coding region. Coupling efficiencies vary over a wide range, but synthesis of both gene products at similar levels is common. We report the results of characterizing an unusual gene pair, in which only about 1% of the translational activity from the upstream gene is transmitted to the distal gene. The inefficient coupling was unexpected because the upstream gene is highly translated, the distal initiation site has weak but intrinsic ability to bind ribosomes, and the AUG is only two nucleotides beyond the stop codon for the upstream gene. The genes are those in the filamentous phage IKe genome, which encode the abundant single-stranded DNA binding protein (gene V) and the minor coat protein that caps one tip of the phage (gene VII). Here, we have used chimeras between the related phage IKe and f1 sequences to localize the region responsible for inefficient coupling. It mapped upstream from the intercistronic region containing the gene V stop codon and the gene VII initiation site, indicating that low coupling efficiency is associated with gene V. The basis for inefficient coupling emerged when coupling efficiency was found to increase as gene V translation was decreased below the high wild-type level. This was achieved by lowering the rate of elongation and by decreasing the efficiency of suppression at an amber codon within the gene. Increasing the strength of the Shine-Dalgarno interaction with 16S rRNA at the gene VII start also increased coupling efficiency substantially. In this gene pair, upstream translation thus functions in an unprecedented way as a negative factor to limit downstream expression. We interpret the results as evidence that translation in excess of an optimal level in an upstream gene interferes with coupling in the intercistronic junction.
Collapse
Affiliation(s)
- J S Yu
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
5
|
Madison-Antenucci S, Steege DA. Translation limits synthesis of an assembly-initiating coat protein of filamentous phage IKe. J Bacteriol 1998; 180:464-72. [PMID: 9457845 PMCID: PMC106909 DOI: 10.1128/jb.180.3.464-472.1998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Translation is shown to be downregulated sharply between genes V and VII of IKe, a filamentous bacteriophage classed with the Ff group (phages f1, M13, and fd) but having only 55% DNA sequence identity to it. Genes V and VII encode the following proteins which are used in very different amounts: pV, used to coat the large number of viral DNA molecules prior to assembly, and pVII, used to serve as a cap with pIX in 3 to 5 copies on the end of the phage particle that emerges first from Escherichia coli. The genes are immediately adjacent to each other and are represented in the same amounts on the Ff and IKe mRNAs. Ff gene VII has an initiation site that lacks detectable intrinsic activity yet through coupling is translated at a level 10-fold lower than that of upstream gene V. The experiments reported reveal that by contrast, the IKe gene VII initiation site had detectable activity but was coupled only marginally to upstream translation. The IKe gene V and VII initiation sites both showed higher activities than the Ff sites, but the drop in translation at the IKe V-VII junction was unexpectedly severe, approximately 75-fold. As a result, gene VII is translated at similarly low levels in IKe- and Ff-infected hosts, suggesting that selection to limit its expression has occurred.
Collapse
Affiliation(s)
- S Madison-Antenucci
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
6
|
Stump MD, Madison-Antenucci S, Kokoska RJ, Steege DA. Filamentous phage IKe mRNAs conserve form and function despite divergence in regulatory elements. J Mol Biol 1997; 266:51-65. [PMID: 9054970 DOI: 10.1006/jmbi.1996.0766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As a means of determining whether there has been selection to conserve the basic pattern of filamentous phage mRNAs, the major mRNAs representing genes II to VIII have been defined for a phage distantly related to the Ff group specific for Escherichia coli hosts bearing F pili. Phage IKe has a genome with 55% identity with the Ff genome and infects E. coli strains bearing N pili. The results reveal a remarkably similar pattern of overlapping polycistronic mRNAs with a common 3' end and unique 5' ends. The IKe mRNAs, like the Ff phage mRNAs, represent a combination of primary transcripts and processed RNAs. However, examination of the sequences containing the RNA endpoint positions revealed that effectively the only highly conserved regulatory element is the rho-independent terminator that generates the common 3' end. Promoters and processing sites have not been maintained in identical positions, but frequently are placed so as to yield RNAs with similar coding function. By conserving the pattern of transcription and processing despite divergence in the regulatory elements and possibly the requirements for host, endoribonucleases, the results argue that the pattern is not simply fortuitous.
Collapse
Affiliation(s)
- M D Stump
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
7
|
Darzins A. The Pseudomonas aeruginosa pilK gene encodes a chemotactic methyltransferase (CheR) homologue that is translationally regulated. Mol Microbiol 1995; 15:703-17. [PMID: 7783642 DOI: 10.1111/j.1365-2958.1995.tb02379.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new locus, designated pilK, located immediately adjacent to the previously described Pseudomonas aeruginosa pilG-J gene cluster, has been identified. Sequence analysis of a 1.3 kb region revealed the presence of a single open reading frame of 291 amino acid residues (M(r) 33,338) that contained significant homology to the chemotactic methyltransferase proteins of Escherichia coli, Bacillus subtilis and the gliding bacterium Myxococcus xanthus. The 60 bp pilJ-pilK intergenic region was devoid of promoter consensus sequences, suggesting that pilJ and pilK are contained within the same transcriptional unit. The intergenic region did contain, however, a large, highly GC-rich, inverted repeat that prevented PilK production in expression studies. To investigate the regulatory role of these sequences, pilK-lacZ gene fusions, as well as derivatives containing sequence alterations in the potential stem-loop region, were constructed and analysed in E. coli and P. aeruginosa. Modification of the inverted repeat region in pilK-lacZ protein fusion constructs resulted in as much as a 24-fold increase in beta-galactosidase activity, whereas similar modifications in pilK-lacZ transcriptional fusions had only a marginal effect on beta-galactosidase levels. These results indicated that PilK production may be largely regulated at the level of translation. In stark contrast to pilG-J mutants, which are dramatically impaired in pilus production and/or function, a PAO1 pilK deletion mutant was indistinguishable from the wild type. In addition, complementation studies suggested that the PilK and E. coli CheR proteins are not functionally interchangeable.
Collapse
Affiliation(s)
- A Darzins
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| |
Collapse
|
8
|
Yasueda H, Takechi S, Sugiyama T, Itoh T. Control of ColE2 plasmid replication: negative regulation of the expression of the plasmid-specified initiator protein, Rep, at a posttranscriptional step. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:41-8. [PMID: 8041360 DOI: 10.1007/bf00280185] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The incA gene of ColE2 is involved in the copy number control and incompatibility. Two promoters were identified around the incA gene. Transcription of the mRNA for the essential plasmid-coded initiator protein (Rep) mainly starts at a site about 140 bp upstream of the initiation codon of the Rep protein. The second transcript (RNA I) of about 115 nucleotides with two stem-and-loop structures is entirely complementary to the 5' untranslated region of the Rep mRNA. By using translational and transcriptional fusions of the rep gene of ColE2 and the lacZ gene of Escherichia coli, the incA gene product was shown to regulate expression of the rep gene at a posttranscriptional step. The results also suggest that the target of the incA gene product is the 5' untranslated region of the Rep mRNA. Deletion analyses reported here show that a region(s) about 17 to 70 bp upstream of the initiation codon of the Rep protein and another region inside the coding frame are important for efficient production of the Rep protein. This suggests that some additional sequence elements other than the initiation codon and the Shine-Dalgarno region and/or a secondary structure of the Rep mRNA are required for efficient production of the Rep protein. These results show that RNA I is an antisense RNA for the Rep mRNA and imply that it might regulate expression of the rep gene at the initiation step of translation by sequestering such additional sequence elements and/or by disrupting RNA secondary structure. We propose that RNA I represents the incA gene product.
Collapse
Affiliation(s)
- H Yasueda
- Department of Biology, Faculty of Science, Osaka University, Japan
| | | | | | | |
Collapse
|
9
|
Abstract
In a reverse of many studies of translational initiation sites, we have explored the basis for the inactivity of an apparently defective initiation site. Gene VII of the filamentous phage f1 has a translational start site with highly unusual functional properties and a sequence dissimilar to a prokaryotic ribosome binding site. The VII site shows no activity in assays of independent initiation, even in a deletion series designed to remove potentially interfering RNA secondary structure. Activity from the VII site is only observed if the site is coupled to a source of translation immediately upstream, but its efficiency is low at a one-nucleotide spacing from the stop codon of the upstream cistron and extremely sensitive to the distance between the stop codon and the gene VII AUG. These and other atypical characteristics of coupling distinguish the VII site from most coupled initiation sites. To identify the pattern of nucleotide substitutions that give the VII site the capacity for independent initiation, a series of designed and random point mutations were introduced in the sequence. Improving the Shine-Dalgarno complementarity from GG to GGAG or GGAGG made activity detectable, but at only low levels. Random substitutions, each increasing activity above background by a small increment, were found at 16 positions throughout the region of ribosome contact. These substitutions lengthened the Shine-Dalgarno complementarity or changed the G and C residues present in the wild-type site to A or T. Significant activity was not observed unless a strong Shine-Dalgarno sequence and a number of the up-mutations were present together. The nature and distribution of the substitutions and their agreement with the known preferences for nucleotides in initiation sites provide evidence that the VII site's major defect is its primary sequence overall. It appears to lack the specialized sequence required to bind free 30 S ribosomes, and thus depends on the translational coupling process to give it limited activity.
Collapse
Affiliation(s)
- M Ivey-Hoyle
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | | |
Collapse
|
10
|
McCarthy JE, Gerstel B, Surin B, Wiedemann U, Ziemke P. Differential gene expression from the Escherichia coli atp operon mediated by segmental differences in mRNA stability. Mol Microbiol 1991; 5:2447-58. [PMID: 1838784 DOI: 10.1111/j.1365-2958.1991.tb02090.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The atp operon of Escherichia coli directs synthesis rates of protein subunits that are well matched to the requirements of assembly of the membrane-bound H(+)-ATPase (alpha 3 beta 3 gamma 1 delta 1 epsilon 1a1b2c10-15). Segmental differences in mRNA stability are shown to contribute to the differential control of atp gene expression. The first two genes of the operon, atpl and atpB, are rapidly inactivated at the mRNA level. The remaining seven genes are more stable. It has previously been established that the translational efficiencies of the atp genes vary greatly. Thus differential expression from this operon is achieved via post-transcriptional control exerted at two levels. Neither enhancement of translational efficiency nor insertion of repetitive extragenic palindromic (REP) sequences into the atplB intercistronic region stabilized atpl. We discuss the implications of these results in terms of the pathway of mRNA degradation and of the role of mRNA stability in the control of gene expression.
Collapse
Affiliation(s)
- J E McCarthy
- Department of Gene Expression, GBF-Gesellschaft für Biotechnologische Forschung mbH, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
11
|
Zabin HB, Terwilliger TC. Isolation and in vitro characterization of temperature-sensitive mutants of the bacteriophage f1 gene V protein. J Mol Biol 1991; 219:257-75. [PMID: 2038057 DOI: 10.1016/0022-2836(91)90566-o] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In vivo selections were used to isolate 43 temperature-sensitive gene V mutants of the bacteriophage f1 from a collection of mutants constructed by saturation mutagenesis of the gene. The sites of temperature-sensitive substitutions are found in both the beta-sheets and the turns of the protein, and some sites are exposed to the solvent while others are not. Thirteen of the variant proteins were purified and characterized to evaluate their free energy changes upon unfolding and their affinities for single-stranded DNA, and eight were tested for their tendencies to aggregate at 42 degrees C. Each of the three temperature-sensitive mutants at buried sites and six of ten at surface sites had free energy changes of unfolding substantially lower (less stabilizing) than the wild-type at 25 degrees C. A seventh mutant at a surface site had a substantially altered unfolding transition and its free energy of unfolding was not estimated. The affinities of the mutant proteins for single-stranded DNA varied considerably, but two mutants at a surface site, Lys69, had much weaker binding to single-stranded DNA than any of the other mutants, while two mutants at another surface site, Glu30, had the highest DNA-binding affinities. The wild-type gene V protein is stable at 42 degrees C, but six of the eight mutants tested aggregated within a few minutes and the remaining two aggregated within 30 minutes at this temperature. Overall, each of the temperature-sensitive proteins tested had a tendency to aggregate at 42 degrees C, and most also had either a low free energy of unfolding (at 25 degrees C), or weak DNA binding. We suggest that any of these properties can lead to a temperature-sensitive gene V phenotype.
Collapse
Affiliation(s)
- H B Zabin
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637
| | | |
Collapse
|
12
|
Abstract
The genome of the class II filamentous bacteriophage Pf1 has been sequenced by a combination of the chain termination and chemical degradation methods. It consists of 7349 nucleotides in a closed, circular loop of single-stranded DNA. The size and position of its open reading frames (ORFs) in general resemble those of other filamentous bacteriophage genomes. The size and position of the spaces between the ORFs have not been conserved, however, and six short reading frames (2 of which overlap) occupy a region corresponding to that filled by genes 2 and 10 in the Ff genome. Most of the ORFs are preceded by sequences resembling ribosome binding sites from the phage's host. Pseudomonas aeruginosa, that appear to differ somewhat from their counterparts in Escherichia coli. A search for sequences related to known pseudomonad promoters suggests that the promoters in this bacteriophage may well be ntr-dependent, with the two strongest preceding the gene for the major coat protein (gene 8) and another ORF (430). Gene 8 is followed by a sequence with the properties of a rho-independent terminator of transcription, like that at the same position in the genome of Ff. The Pf1 genome contains no collection of potential stem-and-loop structures corresponding to those that initiate replication of Ff DNA and assembly of the Ff virion, although isolated structures of this kind are present. The available evidence suggests that at least 13 of the 14 major ORFs are expressed. Overall, the organization of the Pf1 genome differs from that of the other class II filamentous phage whose genome has been sequenced, Pf3, as much as it does from that of the class I phages Ff and IKe.
Collapse
Affiliation(s)
- D F Hill
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
13
|
de Smit MH, van Duin J. Control of prokaryotic translational initiation by mRNA secondary structure. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 38:1-35. [PMID: 2183291 DOI: 10.1016/s0079-6603(08)60707-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- M H de Smit
- Department of Biochemistry, Leiden University, The Netherlands
| | | |
Collapse
|
14
|
Zhang JR, Deutscher MP. Analysis of the upstream region of the Escherichia coli rnd gene encoding RNase D. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84701-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Spanjaard RA, van Dijk MC, Turion AJ, van Duin J. Expression of the rat interferon-alpha 1 gene in Escherichia coli controlled by the secondary structure of the translation-initiation region. Gene 1989; 80:345-51. [PMID: 2511076 DOI: 10.1016/0378-1119(89)90298-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A synthetic ribosome-binding site (RBS) containing a 7-nucleotide-long Shine-Dalgarno (SD) sequence was placed ahead of the rat interferon (IFN)-alpha 1 coding region. The translational efficiency of this construct was extremely low. Structural probing of transcripts with RNases T1 and U2 combined with computer predictions revealed the presence of a stable hairpin in which the SD region was base-paired to codons 3, 4 and 5 of the IFN mRNA. Each mutation in this stem changing an A-U to an A.C or a G-C a G.U pair increased translational efficiency about fourfold and this effect could be reversed by a compensating stabilizing substitution in the other strand of the stem. We conclude that the strength of an RBS is to a major degree determined by its involvement in secondary structure. We also show that the negative effect of secondary structure on the efficiency of an RBS can be overcome by allowing upstream translation to terminate within the base-paired region. In our clones, termination-dependent restarts occur at a frequency comparable to that taking place in constructs containing destabilized hairpins.
Collapse
Affiliation(s)
- R A Spanjaard
- Department of Biochemistry, University of Leiden, The Netherlands
| | | | | | | |
Collapse
|
16
|
Spanjaard RA, van Duin J. Translational reinitiation in the presence and absence of a Shine and Dalgarno sequence. Nucleic Acids Res 1989; 17:5501-7. [PMID: 2668889 PMCID: PMC318173 DOI: 10.1093/nar/17.14.5501] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The process of translational reinitiation in Escherichia coli was studied in a two cistron system where expression of the downstream reporter gene was dependent on translation of an upstream reading frame. The dependence was almost absolute. Upstream translation increased expression of the downstream gene by two to three orders of magnitude. This large difference allowed us to quantitate restarts in a meaningful manner. In the absence of a Shine and Dalgarno (SD) region reinitiation occurred but its efficiency was about 10% of that found in the SD carrying counterpart. We discuss three ways by which translational coupling between neighboring cistrons can be enforced.
Collapse
Affiliation(s)
- R A Spanjaard
- Department of Biochemistry, University of Leiden, The Netherlands
| | | |
Collapse
|
17
|
Ivey-Hoyle M, Steege DA. Translation of phage f1 gene VII occurs from an inherently defective initiation site made functional by coupling. J Mol Biol 1989; 208:233-44. [PMID: 2788746 DOI: 10.1016/0022-2836(89)90385-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Expression of the filamentous phage f1 gene VII is shown to be translationally coupled to that of the upstream gene V. Fusions of the gene VII initiation site to the lacZ coding region were used to determine that initiation at the VII site is completely dependent on the process of translation having proceeded up to a stop codon immediately upstream from the VII site. Coupled expression from the VII site was found to be inefficient, proportional to the level of upstream translation, and very sensitive to the distance from the functional upstream stop codon. Independent expression from the VII site was not observed, even in a deletion series designed to remove potentially masking RNA structure. On the basis of the VII site's dissimilarity to ribosome binding site sequences and its properties overall, we suggest that it inherently lacks the features required for independent recognition by ribosomes, and acquires the ability to initiate synthesis of gene VII protein by virtue of the coupling process.
Collapse
Affiliation(s)
- M Ivey-Hoyle
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | | |
Collapse
|
18
|
Lindahl L, Archer RH, McCormick JR, Freedman LP, Zengel JM. Translational coupling of the two proximal genes in the S10 ribosomal protein operon of Escherichia coli. J Bacteriol 1989; 171:2639-45. [PMID: 2651412 PMCID: PMC209946 DOI: 10.1128/jb.171.5.2639-2645.1989] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have examined the translational coupling between the first two genes in the S10 ribosomal protein operon. We isolated mutations blocking the translation of the first gene of the operon, coding for S10, and monitored their effects on translation of the downstream gene, coding for L3. All of the mutations inhibiting S10 synthesis also affected the synthesis of L3. However, these experiments were complicated by decreased mRNA synthesis resulting from transcription polarity, which we could only partially eliminate by using a rho-100 strain. To completely eliminate the problem of transcription polarity and obtain a more accurate measurement of the coupling, we replaced the natural S10 promoter with a promoter used by the bacteriophage T7 RNA polymerase. As expected, the T7 RNA polymerase was not subject to transcription polarity. Using this system, we were able to show that a complete abolishment of S10 translation resulted in an 80% inhibition of L3 synthesis. Other experiments show that the synthesis of L3 goes up as a function of increasing S10 synthesis, but the translational coupling does not assure strictly proportional output from the two genes.
Collapse
Affiliation(s)
- L Lindahl
- Department of Biology, University of Rochester, New York 14627
| | | | | | | | | |
Collapse
|
19
|
Dreyfus M. What constitutes the signal for the initiation of protein synthesis on Escherichia coli mRNAs? J Mol Biol 1988; 204:79-94. [PMID: 2464068 DOI: 10.1016/0022-2836(88)90601-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Small DNA fragments (60 to 80 nucleotides), randomly obtained from a collection of 14 catabolic, biosynthetic or regulatory Escherichia coli genes, have been shot-gun cloned in place of the lacZ ribosome binding site. A total of 47 recombinants showing substantial beta-galactosidase synthesis (at least 1/30th of the wild-type) were isolated, and their newly acquired translational starts were characterized. Of these, 46 were found to carry a ribosome binding site from one of the original genes, and only one, a non-natural start. Moreover, 12 out of the 14 natural starts were found. The two that were not found are the only ones lacking a Shine-Dalgarno element. So, real starts are generally active in the lac mRNA, whereas the many sites (approx. 100 in this gene collection) that carry a Shine-Dalgarno element followed by AUG or GUG but are located in intra- or intergenic regions, or on non-transcribed strands, are inactive. I conclude that: (1) these "false" starts, being strongly discriminated against in the lac message, are presumably also inactive in their original mRNAs; (2) the discriminating information, being portable from one mRNA to another, must be contained within a small DNA region surrounding the starts. Indeed, I further show that it generally lies within a sequence of about 35 nucleotides bracketing real starts; and (3) this information must have a larger effect on initiation than the exact structure of the mRNA, because the discrimination persists despite a complete change of this structure. Previous statistical analysis has shown that real starts differ from false starts in having a non-random sequence composition from nucleotides -20 to +15 with respect to the start. To uncover whether these biases constitute the discriminating information or simply reflect coding constraints, translational starts were randomly searched in eukaryotic, largely non-coding, DNA. These "eukaryotic" starts all have an in-phase AUG or GUG, preceded by a typical Shine-Dalgarno sequence; outside these elements, the initiator region is strikingly rich in A, and poor in C. These biases match those found around real starts, demonstrating that they are indeed part of the initiation signal. Finally, I describe a simple procedure for introducing any DNA fragment in place of the lac operator site on the E. coli chromosome.
Collapse
Affiliation(s)
- M Dreyfus
- Laboratoire de Génétique Moleculaire, Ecole Normale Supérieure, Paris, France
| |
Collapse
|
20
|
Shen P, Zengel JM, Lindahl L. Secondary structure of the leader transcript from the Escherichia coli S10 ribosomal protein operon. Nucleic Acids Res 1988; 16:8905-24. [PMID: 3050893 PMCID: PMC338642 DOI: 10.1093/nar/16.18.8905] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Genetic analysis of the autogenous control of the S10 ribosomal protein operon of Escherichia coli has suggested that the secondary or tertiary structure of the leader transcript is important for this regulation. We have therefore determined the secondary structure of the leader by enzyme digestion and chemical modification. Our results suggest that the 172 base leader exists in two forms, differing only immediately upstream of the Shine-Dalgarno sequence of the first gene. We discuss the possibility that the equilibrium between these alternate structures is important for the L4-mediated regulation of translation of the S10 operon. We have also determined the structure of several mutant transcripts. Correlation of these structures with the regulatory phenotypes suggest that a hairpin about 50 bases upstream of the first gene is essential for the control of translation of the operon. Finally, our results show that a two base substitution in an eight base loop destabilizes the attached stem.
Collapse
Affiliation(s)
- P Shen
- Department of Biology, University of Rochester, NY 14627
| | | | | |
Collapse
|