1
|
Matsuyama A, Hashimoto A, Nishimura S, Yoshida M. A set of vectors and strains for chromosomal integration in fission yeast. Sci Rep 2023; 13:9295. [PMID: 37291244 PMCID: PMC10250367 DOI: 10.1038/s41598-023-36267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
The expression of heterologous genes is an important technique in yeast genetics. In fission yeast, the leu1 and ura4 genes have been used mainly as selectable markers for heterologous expression. To expand the repertoire of selection markers available for heterologous expression of genes, here we developed new host-vector systems employing lys1 and arg3. By employing genome editing with the CRISPR/Cas9 system, we isolated several alleles of lys1 and arg3, each having a critical mutation in the ORF region. In parallel, we developed a set of vectors that complement the amino acid auxotrophy of lys1 and arg3 mutants when integrated into each locus. Using these vectors in combination with the previously developed integration vector pDUAL, we successfully observed the localization of three proteins in a cell simultaneously by fusing them with different fluorescent proteins. Thus, these vectors enable combinatorial expression of heterologous genes, which addresses increasingly diverse experimental challenges.
Collapse
Affiliation(s)
- Akihisa Matsuyama
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan.
- Laboratory of Microbiology, Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
| | - Atsushi Hashimoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shinichi Nishimura
- Laboratory of Microbiology, Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
- Laboratory of Microbiology, Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|
2
|
Sharma SS, Sharma S, Zhao J, Bureik M. Mutual Influence of Human Cytochrome P450 Enzymes and UDP-Glucuronosyltransferases on Their Respective Activities in Recombinant Fission Yeast. Biomedicines 2023; 11:biomedicines11020281. [PMID: 36830817 PMCID: PMC9953201 DOI: 10.3390/biomedicines11020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Cytochromes P450 (CYPs) and UDP-glucuronosyltransferases (UGTs) are the most important human drug metabolizing enzymes, but their mutual interactions are poorly understood. In this study, we recombinantly co-expressed of each one of the 19 human members of the UGT families 1 and 2 with either CYP2C9, CYP2D6, or CYP4Z1 in fission yeast. Using these strains, we monitored a total of 72 interactions: 57 cases where we tested the influence of UGT co-expression on CYP activity and 15 cases of the opposite approach. In the majority of cases (88%), UGT co-expression had a statistically significant (p < 0.05) effect on P450 activity (58% positive and 30% negative). Strong changes were observed in nine cases, including one case with an activity increase by a factor of 23 (CYP2C9 activity in the presence of UGT2A3) but also four cases with a complete loss of activity. When monitoring the effect of CYP co-expression on the activity of five UGTs, activity changes were generally not so pronounced and, if observed, always detrimental. UGT2B7 activity was not influenced by CYP co-expression, while the other UGTs were affected to varying degrees. These data suggest the notion that mutual influence of CYPs and UGTs on each other's activity is a widespread phenomenon.
Collapse
|
3
|
Regulation Mechanisms of Meiotic Recombination Revealed from the Analysis of a Fission Yeast Recombination Hotspot ade6-M26. Biomolecules 2022; 12:biom12121761. [PMID: 36551189 PMCID: PMC9775316 DOI: 10.3390/biom12121761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Meiotic recombination is a pivotal event that ensures faithful chromosome segregation and creates genetic diversity in gametes. Meiotic recombination is initiated by programmed double-strand breaks (DSBs), which are catalyzed by the conserved Spo11 protein. Spo11 is an enzyme with structural similarity to topoisomerase II and induces DSBs through the nucleophilic attack of the phosphodiester bond by the hydroxy group of its tyrosine (Tyr) catalytic residue. DSBs caused by Spo11 are repaired by homologous recombination using homologous chromosomes as donors, resulting in crossovers/chiasmata, which ensure physical contact between homologous chromosomes. Thus, the site of meiotic recombination is determined by the site of the induced DSB on the chromosome. Meiotic recombination is not uniformly induced, and sites showing high recombination rates are referred to as recombination hotspots. In fission yeast, ade6-M26, a nonsense point mutation of ade6 is a well-characterized meiotic recombination hotspot caused by the heptanucleotide sequence 5'-ATGACGT-3' at the M26 mutation point. In this review, we summarize the meiotic recombination mechanisms revealed by the analysis of the fission ade6-M26 gene as a model system.
Collapse
|
4
|
Li Y, Molyneaux N, Zhang H, Zhou G, Kerr C, Adams MD, Berkner KL, Runge KW. A multiplexed, three-dimensional pooling and next-generation sequencing strategy for creating barcoded mutant arrays: construction of a Schizosaccharomyces pombe transposon insertion library. Nucleic Acids Res 2022; 50:e102. [PMID: 35766443 PMCID: PMC9508820 DOI: 10.1093/nar/gkac546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/02/2022] [Accepted: 06/12/2022] [Indexed: 11/14/2022] Open
Abstract
Arrayed libraries of defined mutants have been used to elucidate gene function in the post-genomic era. Yeast haploid gene deletion libraries have pioneered this effort, but are costly to construct, do not reveal phenotypes that may occur with partial gene function and lack essential genes required for growth. We therefore devised an efficient method to construct a library of barcoded insertion mutants with a wider range of phenotypes that can be generalized to other organisms or collections of DNA samples. We developed a novel but simple three-dimensional pooling and multiplexed sequencing approach that leveraged sequence information to reduce the number of required sequencing reactions by orders of magnitude, and were able to identify the barcode sequences and DNA insertion sites of 4391 Schizosaccharomyces pombe insertion mutations with only 40 sequencing preparations. The insertion mutations are in the genes and untranslated regions of nonessential, essential and noncoding RNA genes, and produced a wider range of phenotypes compared to the cognate deletion mutants, including novel phenotypes. This mutant library represents both a proof of principle for an efficient method to produce novel mutant libraries and a valuable resource for the S. pombe research community.
Collapse
Affiliation(s)
- Yanhui Li
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Genetics and Genomic Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Neil Molyneaux
- Department of Genetics and Genomic Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Haitao Zhang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Gang Zhou
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Carly Kerr
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Mark D Adams
- Department of Genetics and Genomic Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kathleen L Berkner
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Kurt W Runge
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Genetics and Genomic Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
5
|
Protacio RU, Davidson MK, Wahls WP. Adaptive Control of the Meiotic Recombination Landscape by DNA Site-dependent Hotspots With Implications for Evolution. Front Genet 2022; 13:947572. [PMID: 35812747 PMCID: PMC9257126 DOI: 10.3389/fgene.2022.947572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Meiosis is an essential component of the sexual life cycle in eukaryotes. The independent assortment of chromosomes in meiosis increases genetic diversity at the level of whole chromosomes and meiotic recombination increases genetic diversity within chromosomes. The resulting variability fuels evolution. Interestingly, global mapping of recombination in diverse taxa revealed dramatic changes in its frequency distribution between closely related species, subspecies, and even isolated populations of the same species. New insight into mechanisms for these evolutionarily rapid changes has come from analyses of environmentally induced plasticity of recombination in fission yeast. Many different DNA sites, and where identified their binding/activator proteins, control the positioning of recombination at hotspots. Each different class of hotspots functions as an independently controlled rheostat that modulates rates of recombination over a broad dynamic range in response to changing conditions. Together, this independent modulation can rapidly and dramatically alter the global frequency distribution of recombination. This process likely contributes substantially to (i.e., can largely explain) evolutionarily rapid, Prdm9-independent changes in the recombination landscape. Moreover, the precise control mechanisms allow cells to dynamically favor or disfavor newly arising combinations of linked alleles in response to changing extracellular and intracellular conditions, which has striking implications for the impacts of meiotic recombination on evolution.
Collapse
|
6
|
lncRNA transcription induces meiotic recombination through chromatin remodelling in fission yeast. Commun Biol 2021; 4:295. [PMID: 33674718 PMCID: PMC7935937 DOI: 10.1038/s42003-021-01798-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Noncoding RNAs (ncRNAs) are involved in various biological processes, including gene expression, development, and disease. Here, we identify a novel consensus sequence of a cis-element involved in long ncRNA (lncRNA) transcription and demonstrate that lncRNA transcription from this cis-element activates meiotic recombination via chromatin remodeling. In the fission yeast fbp1 gene, glucose starvation induces a series of promoter-associated lncRNAs, referred to as metabolic-stress-induced lncRNAs (mlonRNAs), which contribute to chromatin remodeling and fbp1 activation. Translocation of the cis-element required for mlonRNA into a well-characterized meiotic recombination hotspot, ade6-M26, further stimulates transcription and meiotic recombination via local chromatin remodeling. The consensus sequence of this cis-element (mlon-box) overlaps with meiotic recombination sites in the fission yeast genome. At one such site, the SPBC24C6.09c upstream region, meiotic double-strand break (DSB) formation is induced in an mlon-box-dependent manner. Therefore, mlonRNA transcription plays a universal role in chromatin remodeling and the regulation of transcription and recombination.
Collapse
|
7
|
Abstract
La proteins have well-established roles in the maturation of RNA polymerase III transcripts, including pre-tRNAs. In addition to protecting the 3' end of pre-tRNAs from exonuclease digestion, La proteins also promote the native fold of the pre-tRNA using RNA chaperone activity. tRNA-mediated suppression in the fission yeast S. pombe has been an invaluable tool in determining the mechanistic basis by which La proteins promote the maturation of defective pre-tRNAs that benefit from RNA chaperone activity. More recently, tRNA-mediated suppression has been adapted to test for RNA chaperone function in the La-related proteins and in the promoting of tRNA function by tRNA modification enzymes. Thus tRNA-mediated suppression can be a useful assay for the investigation of various proteins hypothesized to promote tRNA folding through RNA chaperone related activities.
Collapse
|
8
|
Targeted Forward Genetics: Population-Scale Analyses of Allele Replacements Spanning Thousands of Base Pairs in Fission Yeast. G3-GENES GENOMES GENETICS 2019; 9:4097-4106. [PMID: 31597677 PMCID: PMC6893178 DOI: 10.1534/g3.119.400805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Precise allele replacement (genome editing), without unwanted changes to the genome, provides a powerful tool to define the functions of DNA elements and encoded factors in their normal biological context. While CRISPR is now used extensively for gene targeting, its utility for precise allele replacement at population scale is limited because: (A) there is a strict requirement for a correctly positioned PAM motif to introduce recombinogenic dsDNA breaks (DSBs); (B) efficient replacements only occur very close to the DSBs; and (C) indels and off-target changes are frequently generated. Here we show, using a saturated mutation library with about 15,000 alleles of the ade6 gene of Schizosaccharomyces pombe, that pop-in, pop-out allele replacement circumvents these problems. Two rounds of selection ensure that clones arise by homologous recombination with the target locus. Moreover, the exceptionally high efficiency allows one to carry out the process in bulk, then screen individual clones for phenotypes and genotypes. Alleles were introduced successfully throughout the region targeted, up to 1,956 base pairs from the DSB. About 11% of mutant alleles were hypomorphic, demonstrating utility for analyses of essential genes and genetic elements. This process of “targeted forward genetics” can be used to analyze comprehensively, across thousands of base pairs within a specific target region, a variety of allelic changes, such as scanning amino acid substitutions, deletions, and epitope tags. The overall approach and optimized workflow are extensible to other organisms that support gene targeting.
Collapse
|
9
|
Storey AJ, Wang HP, Protacio RU, Davidson MK, Tackett AJ, Wahls WP. Chromatin-mediated regulators of meiotic recombination revealed by proteomics of a recombination hotspot. Epigenetics Chromatin 2018; 11:64. [PMID: 30373637 PMCID: PMC6205778 DOI: 10.1186/s13072-018-0233-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/20/2018] [Indexed: 11/14/2022] Open
Abstract
Background Meiotic recombination hotspots control the frequency and distribution of Spo11 (Rec12)-initiated recombination in the genome. Recombination occurs within and is regulated in part by chromatin structure, but relatively few of the many chromatin remodeling factors and histone posttranslational modifications (PTMs) have been interrogated for a role in the process. Results We developed a chromatin affinity purification and mass spectrometry-based approach to identify proteins and histone PTMs that regulate recombination hotspots. Small (4.2 kbp) minichromosomes (MiniCs) bearing the fission yeast ade6-M26 hotspot or a basal recombination control were purified approximately 100,000-fold under native conditions from meiosis; then, associated proteins and histone PTMs were identified by mass spectrometry. Proteins and PTMs enriched at the hotspot included known regulators (Atf1, Pcr1, Mst2, Snf22, H3K14ac), validating the approach. The abundance of individual histones varied dynamically during meiotic progression in hotspot versus basal control MiniCs, as did a subset of 34 different histone PTMs, implicating these as potential regulators. Measurements of basal and hotspot recombination in null mutants confirmed that additional, hotspot-enriched proteins are bona fide regulators of hotspot activation within the genome. These chromatin-mediated regulators include histone H2A-H2B and H3-H4 chaperones (Nap1, Hip1/Hir1), subunits of the Ino80 complex (Arp5, Arp8), a DNA helicase/E3 ubiquitin ligase (Rrp2), components of a Swi2/Snf2 family remodeling complex (Swr1, Swc2), and a nucleosome evictor (Fft3/Fun30). Conclusions Overall, our findings indicate that a remarkably diverse collection of chromatin remodeling factors and histone PTMs participate in designating where meiotic recombination occurs in the genome, and they provide new insight into molecular mechanisms of the process. Electronic supplementary material The online version of this article (10.1186/s13072-018-0233-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Hsin-Ping Wang
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Mari K Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA.
| |
Collapse
|
10
|
Okazaki K, Kato H, Iida T, Shinmyozu K, Nakayama JI, Murakami Y, Urano T. RNAi-dependent heterochromatin assembly in fission yeast Schizosaccharomyces pombe requires heat-shock molecular chaperones Hsp90 and Mas5. Epigenetics Chromatin 2018; 11:26. [PMID: 29866182 PMCID: PMC5985592 DOI: 10.1186/s13072-018-0199-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/31/2018] [Indexed: 11/28/2022] Open
Abstract
Background Heat-shock molecular chaperone proteins (Hsps) promote the loading of small interfering RNA (siRNA) onto RNA interference (RNAi) effector complexes. While the RNAi process is coupled with heterochromatin assembly in several model organisms, it remains unclear whether the Hsps contribute to epigenetic gene regulation. In this study, we used the fission yeast Schizosaccharomyces pombe as a model organism and investigated the roles of Hsp90 and Mas5 (a nucleocytoplasmic type-I Hsp40 protein) in RNAi-dependent heterochromatin assembly. Results Using a genetic screen and biochemical analyses, we identified Hsp90 and Mas5 as novel silencing factors. Mutations in the genes encoding these factors caused derepression of silencing at the pericentromere, where heterochromatin is assembled in an RNAi-dependent manner, but not at the subtelomere, where RNAi is dispensable. The mutations also caused a substantial reduction in the level of dimethylation of histone H3 at Lys9 at the pericentromere, where association of the Argonaute protein Ago1 was also abrogated. Consistently, siRNA corresponding to the pericentromeric repeats was undetectable in these mutant cells. In addition, levels of Tas3, which is a protein in the RNA-induced transcriptional silencing complex along with Ago1, were reduced in the absence of Mas5. Conclusions Our results suggest that the Hsps Hsp90 and Mas5 contribute to RNAi-dependent heterochromatin assembly. In particular, Mas5 appears to be required to stabilize Tas3 in vivo. We infer that impairment of Hsp90 and Hsp40 also may affect the integrity of the epigenome in other organisms. Electronic supplementary material The online version of this article (10.1186/s13072-018-0199-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kosuke Okazaki
- Department of Biochemistry, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.,KNC Laboratories Co. Ltd., Kobe, Hyogo, 651-2271, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Tetsushi Iida
- Division of Cytogenetics, National Institute of Genetics, Mishima, 1111 Yata, Mishima, 411-8540, Japan.,Laboratory for Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kaori Shinmyozu
- Proteomics Support Unit, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan.,National Cerebral and Cardiovascular Center, Suita, Osaka, 565-8565, Japan
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
11
|
Foulis SJ, Fowler KR, Steiner WW. Sequence requirement of the ade6-4095 meiotic recombination hotspot in Schizosaccharomyces pombe. Genetica 2017; 146:65-74. [PMID: 29071446 DOI: 10.1007/s10709-017-9997-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/13/2017] [Indexed: 10/18/2022]
Abstract
Homologous recombination occurs at a greatly elevated frequency in meiosis compared to mitosis and is initiated by programmed double-strand DNA breaks (DSBs). DSBs do not occur at uniform frequency throughout the genome in most organisms, but occur preferentially at a limited number of sites referred to as hotspots. The location of hotspots have been determined at nucleotide-level resolution in both the budding and fission yeasts, and while several patterns have emerged regarding preferred locations for DSB hotspots, it remains unclear why particular sites experience DSBs at much higher frequency than other sites with seemingly similar properties. Short sequence motifs, which are often sites for binding of transcription factors, are known to be responsible for a number of hotspots. In this study we identified the minimum sequence required for activity of one of such motif identified in a screen of random sequences capable of producing recombination hotspots. The experimentally determined sequence, GGTCTRGACC, closely matches the previously inferred sequence. Full hotspot activity requires an effective sequence length of 9.5 bp, whereas moderate activity requires an effective sequence length of approximately 8.2 bp and shows significant association with DSB hotspots. In combination with our previous work, this result is consistent with a large number of different sequence motifs capable of producing recombination hotspots, and supports a model in which hotspots can be rapidly regenerated by mutation as they are lost through recombination.
Collapse
Affiliation(s)
- Steven J Foulis
- Department of Biology, Niagara University, Box 2032, Lewiston, NY, 14109, USA.,Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214, USA
| | - Kyle R Fowler
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Walter W Steiner
- Department of Biology, Niagara University, Box 2032, Lewiston, NY, 14109, USA.
| |
Collapse
|
12
|
Abstract
In this introduction we discuss some basic genetic tools and techniques that are used with the fission yeast Schizosaccharomyces pombe Genes commonly used for selection or as reporters are discussed, with an emphasis on genes that permit counterselection, intragenic complementation, or colony-color assays. S. pombe is most stable as a haploid organism. We describe its mating-type system, how to perform genetic crosses and methods for selecting and propagating diploids. We discuss the relative merits of tetrad dissection and random spore preparation in strain construction and genetic analyses. Finally, we present several types of mutant screens, with an evaluation of their respective strengths and limitations in the light of emerging technologies such as next-generation sequencing.
Collapse
Affiliation(s)
- Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm SE-141 83, Sweden;
| | - Geneviève Thon
- Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
13
|
Schizosaccharomyces pombe MutSα and MutLα Maintain Stability of Tetra-Nucleotide Repeats and Msh3 of Hepta-Nucleotide Repeats. G3-GENES GENOMES GENETICS 2017; 7:1463-1473. [PMID: 28341698 PMCID: PMC5427490 DOI: 10.1534/g3.117.040816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Defective mismatch repair (MMR) in humans is associated with colon cancer and instability of microsatellites, that is, DNA sequences with one or several nucleotides repeated. Key factors of eukaryotic MMR are the heterodimers MutSα (Msh2-Msh6), which recognizes base-base mismatches and unpaired nucleotides in DNA, and MutLα (Mlh1-Pms1), which facilitates downstream steps. In addition, MutSβ (Msh2-Msh3) recognizes DNA loops of various sizes, although our previous data and the data presented here suggest that Msh3 of Schizosaccharomyces pombe does not play a role in MMR. To test microsatellite stability in S. pombe and hence DNA loop repair, we have inserted tetra-, penta-, and hepta-nucleotide repeats in the ade6 gene and determined their Ade+ reversion rates and spectra in wild type and various mutants. Our data indicate that loops with four unpaired nucleotides in the nascent and the template strand are the upper limit of MutSα- and MutLα-mediated MMR in S. pombe Stability of hepta-nucleotide repeats requires Msh3 and Exo1 in MMR-independent processes as well as the DNA repair proteins Rad50, Rad51, and Rad2FEN1 Most strikingly, mutation rates in the double mutants msh3 exo1 and msh3 rad51 were decreased when compared to respective single mutants, indicating that Msh3 prevents error prone processes carried out by Exo1 and Rad51. We conclude that Msh3 has no obvious function in MMR in S. pombe, but contributes to DNA repeat stability in MMR-independent processes.
Collapse
|
14
|
Correlation of Meiotic DSB Formation and Transcription Initiation Around Fission Yeast Recombination Hotspots. Genetics 2017; 206:801-809. [PMID: 28396503 DOI: 10.1534/genetics.116.197954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/31/2017] [Indexed: 11/18/2022] Open
Abstract
Meiotic homologous recombination, a critical event for ensuring faithful chromosome segregation and creating genetic diversity, is initiated by programmed DNA double-strand breaks (DSBs) formed at recombination hotspots. Meiotic DSB formation is likely to be influenced by other DNA-templated processes including transcription, but how DSB formation and transcription interact with each other has not been understood well. In this study, we used fission yeast to investigate a possible interplay of these two events. A group of hotspots in fission yeast are associated with sequences similar to the cyclic AMP response element and activated by the ATF/CREB family transcription factor dimer Atf1-Pcr1. We first focused on one of those hotspots, ade6-3049, and Atf1. Our results showed that multiple transcripts, shorter than the ade6 full-length messenger RNA, emanate from a region surrounding the ade6-3049 hotspot. Interestingly, we found that the previously known recombination-activation region of Atf1 is also a transactivation domain, whose deletion affected DSB formation and short transcript production at ade6-3049 These results point to a possibility that the two events may be related to each other at ade6-3049 In fact, comparison of published maps of meiotic transcripts and hotspots suggested that hotspots are very often located close to meiotically transcribed regions. These observations therefore propose that meiotic DSB formation in fission yeast may be connected to transcription of surrounding regions.
Collapse
|
15
|
Steiner WW, Recor CL, Zakrzewski BM. Unique properties of multiple tandem copies of the M26 recombination hotspot in mitosis and meiosis in Schizosaccharomyces pombe. Gene 2016; 593:185-192. [PMID: 27535724 DOI: 10.1016/j.gene.2016.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 11/18/2022]
Abstract
The M26 hotspot of the fission yeast Schizosaccharomyces pombe is one of the best-characterized eukaryotic hotspots of recombination. The hotspot requires a seven bp sequence, ATGACGT, that serves as a binding site for the Atf1-Pcr1 transcription factor, which is also required for activity. The M26 hotspot is active in meiosis but not mitosis and is active in some but not all chromosomal contexts and not on a plasmid. A longer palindromic version of M26, ATGACGTCAT, shows significantly greater activity than the seven bp sequence. Here, we tested whether the properties of the seven bp sequence were also true of the longer sequence by placing one, two, or three copies of the sequence into the ade6 gene, where M26 was originally discovered. These constructs were tested for activity when located on a plasmid or on a chromosome in mitosis and meiosis. We found that two copies of the 10bp M26 motif on a chromosome were significantly more active for meiotic recombination than one, but no further increase was observed with three copies. However, three copies of M26 on a chromosome created an Atf1-dependent mitotic recombination hotspot. When located on a plasmid, M26 also appears to behave as a mitotic recombination hotspot; however, this behavior most likely results from Atf1-dependent inter-allelic complementation between the plasmid and chromosomal ade6 alleles.
Collapse
Affiliation(s)
- Walter W Steiner
- Department of Biology, Box 2032, Niagara University, Lewiston, NY 14109, United States.
| | - Chelsea L Recor
- Department of Biology, Box 2032, Niagara University, Lewiston, NY 14109, United States
| | - Bethany M Zakrzewski
- Department of Biology, Box 2032, Niagara University, Lewiston, NY 14109, United States
| |
Collapse
|
16
|
Marayati BF, Hoskins V, Boger RW, Tucker JF, Fishman ES, Bray AS, Zhang K. The fission yeast MTREC and EJC orthologs ensure the maturation of meiotic transcripts during meiosis. RNA (NEW YORK, N.Y.) 2016; 22:1349-59. [PMID: 27365210 PMCID: PMC4986891 DOI: 10.1261/rna.055608.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
Meiosis is a highly regulated process by which genetic information is transmitted through sexual reproduction. It encompasses unique mechanisms that do not occur in vegetative cells, producing a distinct, well-regulated meiotic transcriptome. During vegetative growth, many meiotic genes are constitutively transcribed, but most of the resulting mRNAs are rapidly eliminated by the Mmi1-MTREC (Mtl1-Red1 core) complex. While Mmi1-MTREC targets premature meiotic RNAs for degradation by the nuclear 3'-5' exoribonuclease exosome during mitotic growth, its role in meiotic gene expression during meiosis is not known. Here, we report that Red5, an essential MTREC component, interacts with pFal1, an ortholog of eukaryotic translation initiation factor eIF4aIII in the fission yeast Schizosaccharomyces pombe In mammals, together with MAGO (Mnh1), Rnps1, and Y14, elF4AIII (pFal1) forms the core of the exon junction complex (EJC), which is essential for transcriptional surveillance and localization of mature mRNAs. In fission yeast, two EJC orthologs, pFal1 and Mnh1, are functionally connected with MTREC, specifically in the process of meiotic gene expression during meiosis. Although pFal1 interacts with Mnh1, Y14, and Rnps1, its association with Mnh1 is not disrupted upon loss of Y14 or Rnps1. Mutations of Red1, Red5, pFal1, or Mnh1 produce severe meiotic defects; the abundance of meiotic transcripts during meiosis decreases; and mRNA maturation processes such as splicing are impaired. Since studying meiosis in mammalian germline cells is difficult, our findings in fission yeast may help to define the general mechanisms involved in accurate meiotic gene expression in higher eukaryotes.
Collapse
Affiliation(s)
- Bahjat Fadi Marayati
- Department of Biology and Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| | - Victoria Hoskins
- Program of Human Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Robert W Boger
- Department of Biology and Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| | - James F Tucker
- Department of Biology and Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| | - Emily S Fishman
- Department of Biology and Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| | - Andrew S Bray
- Department of Biology and Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| | - Ke Zhang
- Department of Biology and Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| |
Collapse
|
17
|
Protacio RU, Storey AJ, Davidson MK, Wahls WP. Nonsense codon suppression in fission yeast due to mutations of tRNA(Ser.11) and translation release factor Sup35 (eRF3). Curr Genet 2015; 61:165-73. [PMID: 25519804 PMCID: PMC4393767 DOI: 10.1007/s00294-014-0465-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
Abstract
In the fission yeast Schizosaccharomyces pombe, sup9 mutations can suppress the termination of translation at nonsense (stop) codons. We localized sup9 physically to the spctrnaser.11 locus and confirmed that one allele (sup9-UGA) alters the anticodon of a serine tRNA. We also found that another purported allele is not allelic. Instead, strains with that suppressor (renamed sup35-F592S) have a single base pair substitution (T1775C) that introduces an amino acid substitution in the Sup35 protein (Sup35-F592S). Reduced functionality of Sup35 (eRF3), the ubiquitous guanine nucleotide-responsive translation release factor of eukaryotes, increases read-through of stop codons. Tetrad dissection revealed that suppression is tightly linked to (inseparable from) the sup35-F592S mutation and that there are no additional extragenic modifiers. The Mendelian inheritance indicates that the Sup35-F592S protein does not adopt an infectious amyloid state ([PSI (+)] prion) to affect suppression, consistent with recent evidence that fission yeast Sup35 does not form prions. We also report that sup9-UGA and sup35-F592S exhibit different strengths of suppression for opal stop codons of ade6-M26 and ade6-M375. We discuss possible mechanisms for the variation in suppressibility exhibited by the two alleles.
Collapse
Affiliation(s)
- Reine U. Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| | - Aaron J. Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| | - Mari K. Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| | - Wayne P. Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| |
Collapse
|
18
|
Lorenz A, Mehats A, Osman F, Whitby MC. Rad51/Dmc1 paralogs and mediators oppose DNA helicases to limit hybrid DNA formation and promote crossovers during meiotic recombination. Nucleic Acids Res 2014; 42:13723-35. [PMID: 25414342 PMCID: PMC4267644 DOI: 10.1093/nar/gku1219] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/17/2014] [Accepted: 11/06/2014] [Indexed: 11/30/2022] Open
Abstract
During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved.
Collapse
Affiliation(s)
- Alexander Lorenz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK The Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alizée Mehats
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Fekret Osman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Matthew C Whitby
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
19
|
Increased meiotic crossovers and reduced genome stability in absence of Schizosaccharomyces pombe Rad16 (XPF). Genetics 2014; 198:1457-72. [PMID: 25293972 DOI: 10.1534/genetics.114.171355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Schizosaccharomyces pombe Rad16 is the ortholog of the XPF structure-specific endonuclease, which is required for nucleotide excision repair and implicated in the single strand annealing mechanism of recombination. We show that Rad16 is important for proper completion of meiosis. In its absence, cells suffer reduced spore viability and abnormal chromosome segregation with evidence for fragmentation. Recombination between homologous chromosomes is increased, while recombination within sister chromatids is reduced, suggesting that Rad16 is not required for typical homolog crossovers but influences the balance of recombination between the homolog and the sister. In vegetative cells, rad16 mutants show evidence for genome instability. Similar phenotypes are associated with mutants affecting Rhp14(XPA) but are independent of other nucleotide excision repair proteins such as Rad13(XPG). Thus, the XPF/XPA module of the nucleotide excision repair pathway is incorporated into multiple aspects of genome maintenance even in the absence of external DNA damage.
Collapse
|
20
|
Rapid, efficient and precise allele replacement in the fission yeast Schizosaccharomyces pombe. Curr Genet 2013; 60:109-19. [PMID: 24026504 DOI: 10.1007/s00294-013-0406-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/12/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
Abstract
Gene targeting provides a powerful tool to modify endogenous loci to contain specific mutations, insertions and deletions. Precise allele replacement, with no other chromosomal changes (e.g., insertion of selectable markers or heterologous promoters), maintains physiologically relevant context. Established methods for precise allele replacement in fission yeast employ two successive rounds of transformation and homologous recombination and require genotyping at each step. The relative efficiency of homologous recombination is low and a high rate of false positives during the second round of gene targeting further complicates matters. We report that pop-in, pop-out allele replacement circumvents these problems. We present data for 39 different allele replacements, involving simple and complex modifications at seven different target loci, that illustrate the power and utility of the approach. We also developed and validated a rapid, efficient process for precise allele replacement that requires only one round each of transformation and genotyping. We show that this process can be applied in population scale to an individual target locus, without genotyping, to identify clones with an altered phenotype (targeted forward genetics). It is therefore suitable for saturating, in situ, locus-specific mutation screens (e.g., of essential or non-essential genes and regulatory DNA elements) within normal chromosomal context.
Collapse
|
21
|
A stress-activated, p38 mitogen-activated protein kinase-ATF/CREB pathway regulates posttranscriptional, sequence-dependent decay of target RNAs. Mol Cell Biol 2013; 33:3026-35. [PMID: 23732911 DOI: 10.1128/mcb.00349-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Broadly conserved, mitogen-activated/stress-activated protein kinases (MAPK/SAPK) of the p38 family regulate multiple cellular processes. They transduce signals via dimeric, basic leucine zipper (bZIP) transcription factors of the ATF/CREB family (such as Atf2, Fos, and Jun) to regulate the transcription of target genes. We report additional mechanisms for gene regulation by such pathways exerted through RNA stability controls. The Spc1 (Sty1/Phh1) kinase-regulated Atf1-Pcr1 (Mts1-Mts2) heterodimer of the fission yeast Schizosaccharomyces pombe controls the stress-induced, posttranscriptional stability and decay of sets of target RNAs. Whole transcriptome RNA sequencing data revealed that decay is associated nonrandomly with transcripts that contain an M26 sequence motif. Moreover, the ablation of an M26 sequence motif in a target mRNA is sufficient to block its stress-induced loss. Conversely, engineered M26 motifs can render a stable mRNA into one that is targeted for decay. This stress-activated RNA decay (SARD) provides a mechanism for reducing the expression of target genes without shutting off transcription itself. Thus, a single p38-ATF/CREB signal transduction pathway can coordinately induce (promote transcription and RNA stability) and repress (promote RNA decay) transcript levels for distinct sets of genes, as is required for developmental decisions in response to stress and other stimuli.
Collapse
|
22
|
Yamada S, Ohta K, Yamada T. Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast. Nucleic Acids Res 2013; 41:3504-17. [PMID: 23382177 PMCID: PMC3616738 DOI: 10.1093/nar/gkt049] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Histone modifications are associated with meiotic recombination hotspots, discrete sites with augmented recombination frequency. For example, trimethylation of histone H3 lysine4 (H3K4me3) marks most hotspots in budding yeast and mouse. Modified histones are known to regulate meiotic recombination partly by promoting DNA double-strand break (DSB) formation at hotspots, but the role and precise landscape of involved modifications remain unclear. Here, we studied hotspot-associated modifications in fission yeast and found general features: acetylation of H3 lysine9 (H3K9ac) is elevated, and H3K4me3 is not significantly enriched. Mutating H3K9 to non-acetylatable alanine mildly reduced levels of the DSB-inducing protein Rec12 (the fission yeast homologue of Spo11) and DSB at hotspots, indicating that H3K9ac may be involved in DSB formation by enhancing the interaction between Rec12 and hotspots. In addition, we found that the lack of the H3K4 methyltransferase Set1 generally increased Rec12 binding to chromatin but partially reduced DSB formation at some loci, suggesting that Set1 is also involved in DSB formation. These results suggest that meiotic DSB formation is redundantly regulated by multiple chromatin-related factors including H3K9ac and Set1 in fission yeast.
Collapse
Affiliation(s)
- Shintaro Yamada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | | | | |
Collapse
|
23
|
Wahls WP, Davidson MK. New paradigms for conserved, multifactorial, cis-acting regulation of meiotic recombination. Nucleic Acids Res 2012; 40:9983-9. [PMID: 22904082 PMCID: PMC3488224 DOI: 10.1093/nar/gks761] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
How do cells position the Spo11 (Rec12)-dependent initiation of meiotic recombination at hotspots? The mechanisms are poorly understood and a prevailing view is that they differ substantially between phylogenetic groups. However, recent work discovered that individual species have multiple different DNA sequence-specific, protein–DNA complexes that regulate (and are essential for the activation of) recombination hotspots. The cis-acting elements function combinatorially with documented examples of synergism, antagonism and redundancy. Furthermore, we provide evidence that all currently well-defined modules of this multifactorial, cis-acting regulation are conserved functionally between taxa whose latest common ancestor occurred more than 1 billion years ago. Functionally conserved components include the ATF/CREB-family heterodimer Atf1-Pcr1 and its CRE-like DNA site M26, the CCAAT-box-binding complex Php2-Php3-Php5 and the CCAAT-box, and the zinc-finger protein Rst2 and its Oligo-C motif. The newfound multiplicity, functional redundancy and conservation of cis-acting controls constitute a paradigm shift with broad implications. They provide compelling evidence that most meiotic recombination is, like transcription, regulated by sequence-specific protein–DNA complexes. And the new findings provide important mechanistic insight, such as a solution to the conundrum that Prdm9 is a ‘master regulator’ of—yet is dispensable for—hotspot activity in mammals.
Collapse
Affiliation(s)
- Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | | |
Collapse
|
24
|
Abstract
Hotspots regulate the position and frequency of Spo11 (Rec12)-initiated meiotic recombination, but paradoxically they are suicidal and are somehow resurrected elsewhere in the genome. After the DNA sequence-dependent activation of hotspots was discovered in fission yeast, nearly two decades elapsed before the key realizations that (A) DNA site-dependent regulation is broadly conserved and (B) individual eukaryotes have multiple different DNA sequence motifs that activate hotspots. From our perspective, such findings provide a conceptually straightforward solution to the hotspot paradox and can explain other, seemingly complex features of meiotic recombination. We describe how a small number of single-base-pair substitutions can generate hotspots de novo and dramatically alter their distribution in the genome. This model also shows how equilibrium rate kinetics could maintain the presence of hotspots over evolutionary timescales, without strong selective pressures invoked previously, and explains why hotspots localize preferentially to intergenic regions and introns. The model is robust enough to account for all hotspots of humans and chimpanzees repositioned since their divergence from the latest common ancestor.
Collapse
|
25
|
Phadnis N, Hyppa RW, Smith GR. New and old ways to control meiotic recombination. Trends Genet 2011; 27:411-21. [PMID: 21782271 PMCID: PMC3177014 DOI: 10.1016/j.tig.2011.06.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 11/25/2022]
Abstract
The unique segregation of homologs, rather than sister chromatids, at the first meiotic division requires the formation of crossovers (COs) between homologs by meiotic recombination in most species. Crossovers do not form at random along chromosomes. Rather, their formation is carefully controlled, both at the stage of formation of DNA double-strand breaks (DSBs) that can initiate COs and during the repair of these DSBs. Here, we review control of DSB formation and two recently recognized controls of DSB repair: CO homeostasis and CO invariance. Crossover homeostasis maintains a constant number of COs per cell when the total number of DSBs in a cell is experimentally or stochastically reduced. Crossover invariance maintains a constant CO density (COs per kb of DNA) across much of the genome despite strong DSB hotspots in some intervals. These recently uncovered phenomena show that CO control is even more complex than previously suspected.
Collapse
Affiliation(s)
- Naina Phadnis
- Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Randy W. Hyppa
- Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Gerald R. Smith
- Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| |
Collapse
|
26
|
Furuya K, Niki H. Construction of diploid zygotes by interallelic complementation of ade6 in Schizosaccharomyces japonicus. Yeast 2011; 28:747-54. [DOI: 10.1002/yea.1898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/10/2011] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kanji Furuya
- Microbial Genetics Laboratory and Department of Genetics; Genetic Strains Research Centre; National Institute of Genetics; Shizuoka; Japan
| | - Hironori Niki
- Microbial Genetics Laboratory and Department of Genetics; Genetic Strains Research Centre; National Institute of Genetics; Shizuoka; Japan
| |
Collapse
|
27
|
Hyppa RW, Smith GR. Crossover invariance determined by partner choice for meiotic DNA break repair. Cell 2010; 142:243-55. [PMID: 20655467 PMCID: PMC2911445 DOI: 10.1016/j.cell.2010.05.041] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/23/2010] [Accepted: 05/18/2010] [Indexed: 11/21/2022]
Abstract
Crossovers between meiotic homologs are crucial for their proper segregation, and crossover number and position are carefully controlled. Crossover homeostasis in budding yeast maintains crossovers at the expense of noncrossovers when double-strand DNA break (DSB) frequency is reduced. The mechanism of maintaining constant crossover levels in other species has been unknown. Here we investigate in fission yeast a different aspect of crossover control--the near invariance of crossover frequency per kb of DNA despite large variations in DSB intensity across the genome. Crossover invariance involves the choice of sister chromatid versus homolog for DSB repair. At strong DSB hotspots, intersister repair outnumbers interhomolog repair approximately 3:1, but our genetic and physical data indicate the converse in DSB-cold regions. This unanticipated mechanism of crossover control may operate in many species and explain, for example, the large excess of DSBs over crossovers and the repair of DSBs on unpaired chromosomes in diverse species.
Collapse
Affiliation(s)
- Randy W. Hyppa
- Fred Hutchinson Cancer Research Center Division of Basic Sciences Seattle, WA 98109 USA
| | - Gerald R. Smith
- Fred Hutchinson Cancer Research Center Division of Basic Sciences Seattle, WA 98109 USA
| |
Collapse
|
28
|
Wahls WP, Davidson MK. Discrete DNA sites regulate global distribution of meiotic recombination. Trends Genet 2010; 26:202-8. [PMID: 20381894 DOI: 10.1016/j.tig.2010.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/18/2022]
Abstract
Homologous recombination is induced to high levels in meiosis, is initiated by Spo11-catalyzed DNA double-strand breaks (DSBs) and is clustered at hotspots that regulate its positioning in the genome. Recombination is required for proper chromosome segregation in meiosis and defects in its frequency or positioning cause chromosome mis-segregation and, consequently, congenital birth defects such as Down's syndrome. Therefore, elucidating how meiotic recombination is positioned is of fundamental and biomedical interest. Our integration of historical and contemporary advances in the field, plus the re-analysis of published microarray data on the genome-wide distribution of recombination supports a unifying model for such regulation. We posit that discrete DNA sequence motifs position and regulate essentially all recombination across the genome, in much the same way that DNA sites position and regulate transcription. Moreover, we illustrate the use of overlapping mechanisms for the regulation of transcription and meiotic recombination. Bound transcription factors induce histone modifications that position recombination at hotspots.
Collapse
Affiliation(s)
- Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | | |
Collapse
|
29
|
Gao J, Davidson MK, Wahls WP. Phosphorylation-independent regulation of Atf1-promoted meiotic recombination by stress-activated, p38 kinase Spc1 of fission yeast. PLoS One 2009; 4:e5533. [PMID: 19436749 PMCID: PMC2677671 DOI: 10.1371/journal.pone.0005533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 03/29/2009] [Indexed: 11/23/2022] Open
Abstract
Background Stress-activated protein kinases regulate multiple cellular responses to a wide variety of intracellular and extracellular conditions. The conserved, multifunctional, ATF/CREB protein Atf1 (Mts1, Gad7) of fission yeast binds to CRE-like (M26) DNA sites. Atf1 is phosphorylated by the conserved, p38-family kinase Spc1 (Sty1, Phh1) and is required for many Spc1-dependent stress responses, efficient sexual differentiation, and activation of Rec12 (Spo11)-dependent meiotic recombination hotspots like ade6-M26. Methodology/Principal Findings We sought to define mechanisms by which Spc1 regulates Atf1 function at the ade6-M26 hotspot. The Spc1 kinase was essential for hotspot activity, but dispensable for basal recombination. Unexpectedly, a protein lacking all eleven MAPK phospho-acceptor sites and detectable phosphorylation (Atf1-11M) was fully proficient for hotspot recombination. Furthermore, tethering of Atf1 to ade6 in the chromosome by a heterologous DNA binding domain bypassed the requirement for Spc1 in promoting recombination. Conclusions/Significance The Spc1 protein kinase regulates the pathway of Atf1-promoted recombination at or before the point where Atf1 binds to chromosomes, and this pathway regulation is independent of the phosphorylation status of Atf1. Since basal recombination is Spc1-independent, the principal function of the Spc1 kinase in meiotic recombination is to correctly position Atf1-promoted recombination at hotspots along chromosomes. We also propose new hypotheses on regulatory mechanisms for shared (e.g., DNA binding) and distinct (e.g., osmoregulatory vs. recombinogenic) activities of multifunctional, stress-activated protein Atf1.
Collapse
Affiliation(s)
- Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Mari K. Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Wayne P. Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
30
|
Novel nucleotide sequence motifs that produce hotspots of meiotic recombination in Schizosaccharomyces pombe. Genetics 2009; 182:459-69. [PMID: 19363124 DOI: 10.1534/genetics.109.101253] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many organisms, including yeasts and humans, meiotic recombination is initiated preferentially at a limited number of sites in the genome referred to as recombination hotspots. Predicting precisely the location of most hotspots has remained elusive. In this study, we tested the hypothesis that hotspots can result from multiple different sequence motifs. We devised a method to rapidly screen many short random oligonucleotide sequences for hotspot activity in the fission yeast Schizosaccharomyces pombe and produced a library of approximately 500 unique 15- and 30-bp sequences containing hotspots. The frequency of hotspots found suggests that there may be a relatively large number of different sequence motifs that produce hotspots. Within our sequence library, we found many shorter 6- to 10-bp motifs that occurred multiple times, many of which produced hotspots when reconstructed in vivo. On the basis of sequence similarity, we were able to group those hotspots into five different sequence families. At least one of the novel hotspots we found appears to be a target for a transcription factor, as it requires that factor for its hotspot activity. We propose that many hotspots in S. pombe, and perhaps other organisms, result from simple sequence motifs, some of which are identified here.
Collapse
|
31
|
Furuya K, Niki H. Isolation of heterothallic haploid and auxotrophic mutants ofSchizosaccharomyces japonicus. Yeast 2009; 26:221-33. [DOI: 10.1002/yea.1662] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
32
|
Gao J, Davidson MK, Wahls WP. Distinct regions of ATF/CREB proteins Atf1 and Pcr1 control recombination hotspot ade6-M26 and the osmotic stress response. Nucleic Acids Res 2008; 36:2838-51. [PMID: 18375981 PMCID: PMC2396409 DOI: 10.1093/nar/gkn037] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Atf1 protein of Schizosaccharomyces pombe contains a bZIP (DNA-binding/protein dimerization) domain characteristic of ATF/CREB proteins, but no other functional domains or clear homologs have been reported. Atf1-containing, bZIP protein dimers bind to CRE-like DNA sites, regulate numerous stress responses, and activate meiotic recombination at hotspots like ade6–M26. We defined systematically the organization of Atf1 and its heterodimer partner Pcr1, which is required for a subset of Atf1-dependent functions. Surprisingly, only the bZIP domain of Pcr1 is required for hotspot activity and tethering of Atf1 to ade6 promotes recombination in the absence of its bZIP domain and the Pcr1 protein. Therefore the recombination–activation domain of Atf1-Pcr1 heterodimer resides exclusively in Atf1, and Pcr1 confers DNA-binding site specificity in vivo. Atf1 has a modular organization in which distinct regions affect differentially the osmotic stress response (OSA) and meiotic recombination (HRA, HRR). The HRA and HRR regions are necessary and sufficient to activate and repress recombination, respectively. Moreover, Atf1 defines a family of conserved proteins with discrete sequence motifs in the functional domains (OSA, HRA, HRR, bZIP). These findings reveal the functional organization of Atf1 and Pcr1, and illustrate several mechanisms by which bZIP proteins can regulate multiple, seemingly disparate activities.
Collapse
Affiliation(s)
- Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | | | | |
Collapse
|
33
|
Hirota K, Mizuno KI, Shibata T, Ohta K. Distinct chromatin modulators regulate the formation of accessible and repressive chromatin at the fission yeast recombination hotspot ade6-M26. Mol Biol Cell 2008; 19:1162-73. [PMID: 18199689 DOI: 10.1091/mbc.e07-04-0377] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling factors (ADCRs) regulate transcription and recombination via alteration of local chromatin configuration. The ade6-M26 allele of Schizosaccharomyces pombe creates a meiotic recombination hotspot that requires a cAMP-responsive element (CRE)-like sequence M26, the Atf1/Pcr1 heterodimeric ATF/CREB transcription factor, the Gcn5 HAT, and the Snf22 SWI2/SNF2 family ADCR. Chromatin alteration occurs meiotically around M26, leading to the activation of meiotic recombination. We newly report the roles of other chromatin remodeling factors that function positively and negatively in chromatin alteration at M26: two CHD-1 family ADCRs (Hrp1 and Hrp3), a Spt-Ada-Gcn5 acetyltransferase component (Ada2), and a member of Moz-Ybf2/Sas3-Sas2-Tip60 family (Mst2). Ada2, Mst2, and Hrp3 are required for the full activation of chromatin changes around M26 and meiotic recombination. Acetylation of histone H3 around M26 is remarkably reduced in gcn5Delta, ada2Delta and snf22Delta, suggesting cooperative functions of these HAT complexes and Snf22. Conversely, Hrp1, another CHD-1 family ADCR, maintains repressive chromatin configuration at ade6-M26. Interestingly, transcriptional initiation site is shifted to a site around M26 from the original initiation sites, in couple with the histone acetylation and meiotic chromatin alteration induced around 3' region of M26, suggesting a collaboration between these chromatin modulators and the transcriptional machinery to form accessible chromatin. These HATs and ADCRs are also required for the regulation of transcription and chromatin structure around M26 in response to osmotic stress. Thus, we propose that multiple chromatin modulators regulate chromatin structure reversibly and participate in the regulation of both meiotic recombination and stress-induced transcription around CRE-like sequences.
Collapse
Affiliation(s)
- Kouji Hirota
- Shibata Distinguished Senior Scientist Laboratory, RIKEN Discovery Research Institute, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
34
|
Cromie G, Smith GR. Meiotic Recombination in Schizosaccharomyces pombe: A Paradigm for Genetic and Molecular Analysis. GENOME DYNAMICS AND STABILITY 2008; 3:195. [PMID: 20157622 DOI: 10.1007/7050_2007_025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is especially well-suited for both genetic and biochemical analysis of meiotic recombination. Recent studies have revealed ~50 gene products and two DNA intermediates central to recombination, which we place into a pathway from parental to recombinant DNA. We divide recombination into three stages - chromosome alignment accompanying nuclear "horsetail" movement, formation of DNA breaks, and repair of those breaks - and we discuss the roles of the identified gene products and DNA intermediates in these stages. Although some aspects of recombination are similar to those in the distantly related budding yeast Saccharomyces cerevisiae, other aspects are distinctly different. In particular, many proteins required for recombination in one species have no clear ortholog in the other, and the roles of identified orthologs in regulating recombination often differ. Furthermore, in S. pombe the dominant joint DNA molecule intermediates contain single Holliday junctions, and intersister joint molecules are more frequent than interhomolog types, whereas in S. cerevisiae interhomolog double Holliday junctions predominate. We speculate that meiotic recombination in other organisms shares features of each of these yeasts.
Collapse
Affiliation(s)
- Gareth Cromie
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, U. S. A
| | | |
Collapse
|
35
|
Jaendling A, Ramayah S, Pryce DW, McFarlane RJ. Functional characterisation of the Schizosaccharomyces pombe homologue of the leukaemia-associated translocation breakpoint binding protein translin and its binding partner, TRAX. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:203-13. [PMID: 18062930 DOI: 10.1016/j.bbamcr.2007.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 09/10/2007] [Accepted: 10/25/2007] [Indexed: 11/25/2022]
Abstract
Translin is a conserved protein which associates with the breakpoint junctions of chromosomal translocations linked with the development of some human cancers. It binds to both DNA and RNA and has been implicated in mRNA metabolism and regulation of genome stability. It has a binding partner, translin-associated protein X (TRAX), levels of which are regulated by the translin protein in higher eukaryotes. In this study we find that this regulatory function is conserved in the lower eukaryotes, suggesting that translin and TRAX have important functions which provide a selective advantage to both unicellular and multi-cellular eukaryotes, indicating that this function may not be tissue-specific in nature. However, to date, the biological importance of translin and TRAX remains unclear. Here we systematically investigate proposals that suggest translin and TRAX play roles in controlling mitotic cell proliferation, DNA damage responses, genome stability, meiotic/mitotic recombination and stability of GT-rich repeat sequences. We find no evidence for translin and/or TRAX primary function in these pathways, indicating that the conserved biochemical function of translin is not implicated in primary pathways for regulating genome stability and/or segregation.
Collapse
Affiliation(s)
- Alessa Jaendling
- North West Cancer Research Fund Institute, University of Wales Bangor, Bangor, Gwynedd, LL57 2UW, United Kingdom
| | | | | | | |
Collapse
|
36
|
Hirota K, Steiner WW, Shibata T, Ohta K. Multiple modes of chromatin configuration at natural meiotic recombination hot spots in fission yeast. EUKARYOTIC CELL 2007; 6:2072-80. [PMID: 17827346 PMCID: PMC2168419 DOI: 10.1128/ec.00246-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ade6-M26 meiotic recombination hot spot of fission yeast is defined by a cyclic AMP-responsive element (CRE)-like heptanucleotide sequence, 5'-ATGACGT-3', which acts as a binding site for the Atf1/Pcr1 heterodimeric transcription factor required for hot spot activation. We previously demonstrated that the local chromatin around the M26 sequence motif alters to exhibit higher sensitivity to micrococcal nuclease before the initiation of meiotic recombination. In this study, we have examined whether or not such alterations in chromatin occur at natural meiotic DNA double-strand break (DSB) sites in Schizosaccharomyces pombe. At one of the most prominent DSB sites, mbs1 (meiotic break site 1), the chromatin structure has a constitutively accessible configuration at or near the DSB sites. The establishment of the open chromatin state and DSB formation are independent of the CRE-binding transcription factor, Atf1. Analysis of the chromatin configuration at CRE-dependent DSB sites revealed both differences from and similarities to mbs1. For example, the tdh1+ locus, which harbors a CRE consensus sequence near the DSB site, shows a meiotically induced open chromatin configuration, similar to ade6-M26. In contrast, the cds1+ locus is similar to mbs1 in that it exhibits a constitutive open configuration. Importantly, Atf1 is required for the open chromatin formation in both tdh1+ and cds1+. These results suggest that CRE-dependent meiotic chromatin changes are intrinsic processes related to DSB formation in fission yeast meiosis. In addition, the results suggest that the chromatin configuration in natural meiotic recombination hot spots can be classified into at least three distinct categories: (i) an Atf1-CRE-independent constitutively open chromatin configuration, (ii) an Atf1-CRE-dependent meiotically induced open chromatin configuration, and (iii) an Atf1-CRE-dependent constitutively open chromatin configuration.
Collapse
Affiliation(s)
- Kouji Hirota
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguroku, Tokyo 153-8902, Japan.
| | | | | | | |
Collapse
|
37
|
Wang CL, Malkus A, Zuzga SM, Chang PFL, Cunfer BM, Arseniuk E, Ueng PP. Diversity of the trifunctional histidine biosynthesis gene (his) in cereal Phaeosphaeria species. Genome 2007; 50:595-609. [PMID: 17632581 DOI: 10.1139/g07-038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phaeosphaeria species are important causal agents of Stagonospora leaf blotch diseases in cereals. In this study, the nucleotide sequence and deduced polypeptide of the trifunctional histidine biosynthesis gene (his) are used to investigate the phylogenetic relationships and provide molecular identification among cereal Phaeosphaeria species. The full-length sequences of the his gene were obtained by PCR amplification and compared among cereal Phaeosphaeria species. The coding sequence of the his gene in wheat-biotype P. nodorum (PN-w) was 2697 bp. The his genes in barley-biotype P. nodorum (PN-b), two P. avenaria f. sp. triticea isolates (homothallic Pat1 and Pat3), and Phaeosphaeria species from Polish rye and dallis grass were 2694 bp. The his gene in heterothallic isolate Pat2, however, was 2693 bp because the intron had one fewer base. In P. avenaria f. sp. avenaria (Paa), the his gene was only 2670 bp long. The differences in the size of the his gene contributed to the variation in amino acid sequences in the gap region located between the phosphoribosyl-ATP pyrophosphohydrolase and histidinol dehydrogenase sub-domains. Based on nucleotide and deduced amino acid sequences of the his gene, Pat1 was not closely related to either PN-w or the Paa clade. It appears that rates of evolution of the his gene were fast in cereal Phaeosphaeria species. The possible involvement of meiotic recombination in genetic diversity of the his gene in P. nodorum is discussed.
Collapse
Affiliation(s)
- Chih-Li Wang
- Department of Plant Protection, Fengshan Tropical Horticultural Experiment Station, Agricultural Research Institute, Kaohsiung 830, Taiwan
| | | | | | | | | | | | | |
Collapse
|
38
|
Davis L, Smith GR. The meiotic bouquet promotes homolog interactions and restricts ectopic recombination in Schizosaccharomyces pombe. Genetics 2006; 174:167-77. [PMID: 16988108 PMCID: PMC1569800 DOI: 10.1534/genetics.106.059733] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 07/06/2006] [Indexed: 11/18/2022] Open
Abstract
Chromosome architecture undergoes extensive, programmed changes as cells enter meiosis. A highly conserved change is the clustering of telomeres at the nuclear periphery to form the "bouquet" configuration. In the fission yeast Schizosaccharomyces pombe the bouquet and associated nuclear movement facilitate initial interactions between homologs. We show that Bqt2, a meiosis-specific protein required for bouquet formation, is required for wild-type levels of homolog pairing and meiotic allelic recombination. Both gene conversion and crossing over are reduced and exhibit negative interference in bqt2Delta mutants, reflecting reduced homolog pairing. While both the bouquet and nuclear movement promote pairing, only the bouquet restricts ectopic recombination (that between dispersed repetitive DNA). We discuss mechanisms by which the bouquet may prevent deleterious translocations by restricting ectopic recombination.
Collapse
Affiliation(s)
- Luther Davis
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | |
Collapse
|
39
|
Hansen KR, Ibarra PT, Thon G. Evolutionary-conserved telomere-linked helicase genes of fission yeast are repressed by silencing factors, RNAi components and the telomere-binding protein Taz1. Nucleic Acids Res 2006; 34:78-88. [PMID: 16407326 PMCID: PMC1326240 DOI: 10.1093/nar/gkj415] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In Schizosaccharomyces pombe the RNAi machinery and proteins mediating heterochromatin formation regulate the transcription of non-coding centromeric repeats. These repeats share a high sequence similarity with telomere-linked helicase (tlh) genes, implying an ancestral relationship between the two types of elements and suggesting that transcription of the tlh genes might be regulated by the same factors as centromeric repeats. Indeed, we found that mutants lacking the histone methyltransferase Clr4, the Pcu4 cullin, Clr7 or Clr8, accumulate high levels of tlh forward and reverse transcripts. Mutations and conditions perturbing histone acetylation had similar effects further demonstrating that the tlh genes are normally repressed by heterochromatin. In contrast, mutations in the RNAi factors Dcr1, Ago1 or Rdp1 led only to a modest derepression of the tlh genes indicating an alternate pathway recruits heterochromatin components to telomeres. The telomere-binding protein Taz1 might be part of such a redundant pathway, tlh transcripts being present at low levels in Deltataz1 mutants and at higher levels in Deltataz1 Deltadcr1 double mutants. Surprisingly, the chromodomain protein Chp1, a component of the Ago1-containing RITS complex, contributes more to tlh repression than Ago1, indicating the repressive effects of Chp1 are partially independent of RITS. The tlh genes are found in the subtelomeric regions of several other fungi raising the intriguing possibility of conserved regulation and function.
Collapse
Affiliation(s)
| | | | - Geneviève Thon
- To whom correspondence should be addressed at Department of Genetics, Institute of Molecular Biology and Physiology, University of Copenhagen, Øster Farimagsgade 2A, 1353 Copenhagen K, Denmark. Tel: +45 35 32 21 08; Fax: +45 35 32 21 13;
| |
Collapse
|
40
|
Karaer S, Sarikaya AT, Arda N, Temizkan G. The 3' terminal sequence of the inosine monophosphate dehydrogenase gene encodes an active domain in the yeast Schizosaccharomyces pombe. Genet Mol Biol 2006. [DOI: 10.1590/s1415-47572006000300026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Nazli Arda
- Istanbul University, Turkey; Istanbul University, Turkey
| | - Güler Temizkan
- Istanbul University, Turkey; Istanbul University, Turkey
| |
Collapse
|
41
|
Steiner WW, Smith GR. Natural meiotic recombination hot spots in the Schizosaccharomyces pombe genome successfully predicted from the simple sequence motif M26. Mol Cell Biol 2005; 25:9054-62. [PMID: 16199881 PMCID: PMC1265782 DOI: 10.1128/mcb.25.20.9054-9062.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 07/11/2005] [Accepted: 07/22/2005] [Indexed: 11/20/2022] Open
Abstract
The M26 hot spot of meiotic recombination in Schizosaccharomyces pombe is the eukaryotic hot spot most thoroughly investigated at the nucleotide level. The minimum sequence required for M26 activity was previously determined to be 5'-ATGACGT-3'. Originally identified by a mutant allele, ade6-M26, the M26 heptamer sequence occurs in the wild-type S. pombe genome approximately 300 times, but it has been unclear whether any of these are active hot spots. Recently, we showed that the M26 heptamer forms part of a larger consensus sequence, which is significantly more active than the heptamer alone. We used this expanded sequence as a guide to identify a smaller number of sites most likely to be active hot spots. Ten of the 15 sites tested showed meiotic DNA breaks, a hallmark of recombination hot spots, within 1 kb of the M26 sequence. Among those 10 sites, one occurred within a gene, cds1(+), and hot spot activity of this site was confirmed genetically. These results are, to our knowledge, the first demonstration in any organism of a simple, defined nucleotide sequence accurately predicting the locations of natural meiotic recombination hot spots. M26 may be the first example among a diverse group of simple sequences that determine the distribution, and hence predictability, of meiotic recombination hot spots in eukaryotic genomes.
Collapse
Affiliation(s)
- Walter W Steiner
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | |
Collapse
|
42
|
Pryce DW, Lorenz A, Smirnova JB, Loidl J, McFarlane RJ. Differential activation of M26-containing meiotic recombination hot spots in Schizosaccharomyces pombe. Genetics 2005; 170:95-106. [PMID: 15744055 PMCID: PMC1449712 DOI: 10.1534/genetics.104.036301] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 02/04/2005] [Indexed: 11/18/2022] Open
Abstract
Certain genomic loci, termed hot spots, are predisposed to undergo genetic recombination during meiosis at higher levels relative to the rest of the genome. The factors that specify hot-spot potential are not well understood. The M26 hot spot of Schizosaccharomyces pombe is dependent on certain trans activators and a specific nucleotide sequence, which can function as a hot spot in a position- and orientation-independent fashion within ade6. In this report we demonstrate that a linear element (LE) component, Rec10, has a function that is required for activation of some, but not all, M26-containing hot spots and from this we propose that, with respect to hot-spot activity, there are three classes of M26-containing sequences. We demonstrate that the localized sequence context in which the M26 heptamer is embedded is a major factor governing whether or not this Rec10 function is required for full hot-spot activation. Furthermore, we show that the rec10-144 mutant, which is defective in full activation of ade6-M26, but proficient for activation of other M26-containing hot spots, is also defective in the formation of LEs, suggesting an intimate link between higher-order chromatin structure and local influences on hot-spot activation.
Collapse
Affiliation(s)
- David W Pryce
- North West Cancer Research Fund Institute, University of Wales Bangor, UK
| | | | | | | | | |
Collapse
|
43
|
Fujita Y, Giga-Hama Y, Takegawa K. Development of a genetic transformation system using new selectable markers for fission yeast Schizosaccharomyces pombe. Yeast 2005; 22:193-202. [PMID: 15704224 DOI: 10.1002/yea.1201] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We describe the development of a new transformation system, using multiple auxotrophic marker genes, for the fission yeast Schizosaccharomyces pombe. We developed three new auxotrophic marker genes (arg12(+), tyr1(+) and ade7(+)) and generated a new host strain, YF043, by Cre-loxP-mediated gene disruption. YF043 possessed six mutated biosynthetic genes (leu1-32, ura4-M190T, arg12::loxP, tyr1::loxP, ade7::loxP and his2::loxP). The combination of this host strain and the new selectable markers can be used for gene disruption using the same preexisting transformation systems. In addition, Sz. pombe vectors were constructed, containing selectable marker genes that complement the auxotrophies of YF043. These new vectors are available for gene disruption and heterologous protein expression in strain YF043. The new Sz. pombe host strain will be a useful tool for molecular genetic studies of Sz. pombe where multiple recombinant modifications or multiple mutations are needed.
Collapse
Affiliation(s)
- Yasuko Fujita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | | | | |
Collapse
|
44
|
Steiner WW, Smith GR. Optimizing the nucleotide sequence of a meiotic recombination hotspot in Schizosaccharomyces pombe. Genetics 2005; 169:1973-83. [PMID: 15716492 PMCID: PMC1449614 DOI: 10.1534/genetics.104.039230] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ade6-M26 mutation of Schizosaccharomyces pombe created a meiotic recombination hotspot. Previous analyses indicated that the heptamer 5'-ATGACGT-3' was necessary and sufficient for hotspot activity; the Atf1-Pcr1 transcription factor binds to this sequence and activates M26. After finding cases in which the M26 heptamer in ade6 was, surprisingly, not active as a hotspot, we used an in vitro selection method (SELEX) that revealed an 18-bp consensus sequence for Atf1-Pcr1 binding, 5'-GNVTATGACGTCATNBNC-3', containing the M26 heptamer at its core. Using this consensus sequence as a guide, we made mutations on each side of the heptamer at two separate sites in ade6. These mutations increased the intracellular hotspot activity of the heptamer, in some cases by >15-fold. These results show that M26, the eukaryotic recombination hotspot with the most precisely defined nucleotide sequence, is larger than previously thought, and they provide valuable information for clarifying the role of M26, and perhaps other hotspots, in meiotic recombination.
Collapse
Affiliation(s)
- Walter W Steiner
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | |
Collapse
|
45
|
Farah JA, Cromie G, Steiner WW, Smith GR. A novel recombination pathway initiated by the Mre11/Rad50/Nbs1 complex eliminates palindromes during meiosis in Schizosaccharomyces pombe. Genetics 2005; 169:1261-74. [PMID: 15654094 PMCID: PMC1449568 DOI: 10.1534/genetics.104.037515] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA palindromes are rare in humans but are associated with meiosis-specific translocations. The conserved Mre11/Rad50/Nbs1 (MRN) complex is likely directly involved in processing palindromes through the homologous recombination pathway of DNA repair. Using the fission yeast Schizosaccharomyces pombe as a model system, we show that a 160-bp palindrome (M-pal) is a meiotic recombination hotspot and is preferentially eliminated by gene conversion. Importantly, this hotspot depends on the MRN complex for full activity and reveals a new pathway for generating meiotic DNA double-strand breaks (DSBs), separately from the Rec12 (ortholog of Spo11) pathway. We show that MRN-dependent DSBs are formed at or near the M-pal in vivo, and in contrast to the Rec12-dependent breaks, they appear early, during premeiotic replication. Analysis of mrn mutants indicates that the early DSBs are generated by the MRN nuclease activity, demonstrating the previously hypothesized MRN-dependent breakage of hairpins during replication. Our studies provide a genetic and physical basis for frequent translocations between palindromes in human meiosis and identify a conserved meiotic process that constantly selects against palindromes in eukaryotic genomes.
Collapse
Affiliation(s)
- Joseph A Farah
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | |
Collapse
|
46
|
Pebernard S, McDonald WH, Pavlova Y, Yates JR, Boddy MN. Nse1, Nse2, and a novel subunit of the Smc5-Smc6 complex, Nse3, play a crucial role in meiosis. Mol Biol Cell 2004; 15:4866-76. [PMID: 15331764 PMCID: PMC524734 DOI: 10.1091/mbc.e04-05-0436] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The structural maintenance of chromosomes (SMC) family of proteins play key roles in the organization, packaging, and repair of chromosomes. Cohesin (Smc1+3) holds replicated sister chromatids together until mitosis, condensin (Smc2+4) acts in chromosome condensation, and Smc5+6 performs currently enigmatic roles in DNA repair and chromatin structure. The SMC heterodimers must associate with non-SMC subunits to perform their functions. Using both biochemical and genetic methods, we have isolated a novel subunit of the Smc5+6 complex, Nse3. Nse3 is an essential nuclear protein that is required for normal mitotic chromosome segregation and cellular resistance to a number of genotoxic agents. Epistasis with Rhp51 (Rad51) suggests that like Smc5+6, Nse3 functions in the homologous recombination based repair of DNA damage. We previously identified two non-SMC subunits of Smc5+6 called Nse1 and Nse2. Analysis of nse1-1, nse2-1, and nse3-1 mutants demonstrates that they are crucial for meiosis. The Nse1 mutant displays meiotic DNA segregation and homologous recombination defects. Spore viability is reduced by nse2-1 and nse3-1, without affecting interhomolog recombination. Finally, genetic interactions shared by the nse mutants suggest that the Smc5+6 complex is important for replication fork stability.
Collapse
Affiliation(s)
- Stephanie Pebernard
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
47
|
Hirota K, Hoffman CS, Shibata T, Ohta K. Fission yeast Tup1-like repressors repress chromatin remodeling at the fbp1+ promoter and the ade6-M26 recombination hotspot. Genetics 2004; 165:505-15. [PMID: 14573465 PMCID: PMC1462784 DOI: 10.1093/genetics/165.2.505] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chromatin remodeling plays crucial roles in the regulation of gene expression and recombination. Transcription of the fission yeast fbp1(+) gene and recombination at the meiotic recombination hotspot ade6-M26 (M26) are both regulated by cAMP responsive element (CRE)-like sequences and the CREB/ATF-type transcription factor Atf1*Pcr1. The Tup11 and Tup12 proteins, the fission yeast counterparts of the Saccharomyces cerevisiae Tup1 corepressor, are involved in glucose repression of the fbp1(+) transcription. We have analyzed roles of the Tup1-like corepressors in chromatin regulation around the fbp1(+) promoter and the M26 hotspot. We found that the chromatin structure around two regulatory elements for fbp1(+) was remodeled under derepressed conditions in concert with the robust activation of fbp1(+) transcription. Strains with tup11delta tup12delta double deletions grown in repressed conditions exhibited the chromatin state associated with wild-type cells grown in derepressed conditions. Interestingly, deletion of rst2(+), encoding a transcription factor controlled by the cAMP-dependent kinase, alleviated the tup11delta tup12delta defects in chromatin regulation but not in transcription repression. The chromatin at the M26 site in mitotic cultures of a tup11delta tup12delta mutant resembled that of wild-type meiotic cells. These observations suggest that these fission yeast Tup1-like corepressors repress chromatin remodeling at CRE-related sequences and that Rst2 antagonizes this function.
Collapse
Affiliation(s)
- Kouji Hirota
- Genetic Dynamics Research Unit-Laboratory, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
48
|
Yamada T, Mizuno KI, Hirota K, Kon N, Wahls WP, Hartsuiker E, Murofushi H, Shibata T, Ohta K. Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot. EMBO J 2004; 23:1792-803. [PMID: 14988732 PMCID: PMC394230 DOI: 10.1038/sj.emboj.7600138] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Accepted: 02/02/2004] [Indexed: 12/31/2022] Open
Abstract
Histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling factors (ADCRs) are involved in selective gene regulation via modulation of local chromatin configuration. Activation of the recombination hotspot ade6-M26 of Schizosaccharomyces pombe is mediated by a cAMP responsive element (CRE)-like sequence, M26, and a heterodimeric ATF/CREB transcription factor, Atf1.Pcr1. Chromatin remodeling occurs meiotically around M26. We examined the roles of HATs and ADCRs in chromatin remodeling around M26. Histones H3 and H4 around M26 were hyperacetylated in an M26- and Atf1-dependent manner early in meiosis. SpGcn5, the S. pombe homolog of Gcn5p, was required for the majority of histone H3 acetylation around M26 in vivo. Deletion of gcn5+ caused a significant delay in chromatin remodeling but only partial reduction of M26 meiotic recombination frequency. The snf22+ (a Swi2/Snf2-ADCR homologue) deletion and snf22+ gcn5+ double deletion abolished chromatin remodeling and significant reduction of meiotic recombination around M26. These results suggest that HATs and ADCRs cooperatively alter local chromatin structure, as in selective transcription activation, to activate meiotic recombination at M26 in a site-specific manner.
Collapse
Affiliation(s)
- Takatomi Yamada
- Genetic Dynamics Research Unit-Laboratory, RIKEN, Wako, Saitama, Japan
- Cellular & Molecular Biology Laboratory, RIKEN/CREST of the JST, Wako, Saitama, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ken-ichi Mizuno
- Genetic Dynamics Research Unit-Laboratory, RIKEN, Wako, Saitama, Japan
- Cellular & Molecular Biology Laboratory, RIKEN/CREST of the JST, Wako, Saitama, Japan
| | - Kouji Hirota
- Genetic Dynamics Research Unit-Laboratory, RIKEN, Wako, Saitama, Japan
- Cellular & Molecular Biology Laboratory, RIKEN/CREST of the JST, Wako, Saitama, Japan
| | - Ning Kon
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Edgar Hartsuiker
- Genome Damage and Stability Centre, University of Sussex, Falmer Brighton, UK
| | - Hiromu Murofushi
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takehiko Shibata
- Cellular & Molecular Biology Laboratory, RIKEN/CREST of the JST, Wako, Saitama, Japan
| | - Kunihiro Ohta
- Genetic Dynamics Research Unit-Laboratory, RIKEN, Wako, Saitama, Japan
- Cellular & Molecular Biology Laboratory, RIKEN/CREST of the JST, Wako, Saitama, Japan
| |
Collapse
|
49
|
Hirota K, Hasemi T, Yamada T, Mizuno KI, Hoffman CS, Shibata T, Ohta K. Fission yeast global repressors regulate the specificity of chromatin alteration in response to distinct environmental stresses. Nucleic Acids Res 2004; 32:855-62. [PMID: 14762213 PMCID: PMC373364 DOI: 10.1093/nar/gkh251] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The specific induction of genes in response to distinct environmental stress is vital for all eukaryotes. To study the mechanisms that result in selective gene responses, we examined the role of the fission yeast Tup1 family repressors in chromatin regulation. We found that chromatin structure around a cAMP-responsive element (CRE)-like sequence in ade6-M26 that is bound by Atf1.Pcr1 transcriptional activation was altered in response to osmotic stress but not to heat and oxidative stresses. Such chromatin structure alteration occurred later than the Atf1 phosphorylation but correlated well with stress-induced transcriptional activation at ade6-M26. This chromatin structure alteration required components for the stress-activated protein kinase (SAPK) cascade and both subunits of the M26-binding CREB/ATF-type protein Atf1.Pcr1. Cation stress and glucose starvation selectively caused chromatin structure alteration around CRE-like sequences in cta3(+) and fbp1(+) promoters, respectively, in correlation with transcriptional activation. However, the tup11Delta tup12Delta double deletion mutants lost the selectivity of stress responses of chromatin structure and transcriptional regulation of cta3(+) and fbp1(+). These data indicate that the Tup1-like repressors regulate the chromatin structure to ensure the specificity of gene activation in response to particular stresses. Such a role for these proteins may serve as a paradigm for the regulation of stress response in higher eukaryotes.
Collapse
MESH Headings
- Activating Transcription Factor 1
- Cations/pharmacology
- Chromatin/drug effects
- Chromatin/genetics
- Chromatin/metabolism
- Chromatin Assembly and Disassembly/drug effects
- Environment
- Gene Expression Regulation, Fungal/drug effects
- Genes, Fungal/genetics
- Glucose/pharmacology
- Hot Temperature
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Mutation/genetics
- Nitrogen/deficiency
- Nitrogen/pharmacology
- Osmotic Pressure/drug effects
- Oxidative Stress
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombination, Genetic/genetics
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Schizosaccharomyces/drug effects
- Schizosaccharomyces/genetics
- Schizosaccharomyces/metabolism
- Schizosaccharomyces pombe Proteins/genetics
- Schizosaccharomyces pombe Proteins/metabolism
- Signal Transduction/drug effects
- Substrate Specificity
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Transcriptional Activation
Collapse
Affiliation(s)
- Kouji Hirota
- Genetic Dynamics Research Unit-Laboratory, RIKEN (Institute of Physical and Chemical Research), Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Smith GR, Boddy MN, Shanahan P, Russell P. Fission Yeast Mus81·Eme1 Holliday Junction Resolvase Is Required for Meiotic Crossing Over but Not for Gene Conversion. Genetics 2003; 165:2289-93. [PMID: 14704204 PMCID: PMC1462924 DOI: 10.1093/genetics/165.4.2289] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Most models of homologous recombination invoke cleavage of Holliday junctions to explain crossing over. The Mus81·Eme1 endonuclease from fission yeast and humans cleaves Holliday junctions and other branched DNA structures, leaving its physiological substrate uncertain. We report here that Schizosaccharomyces pombe mus81 mutants have normal or elevated frequencies of gene conversion but 20- to 100-fold reduced frequencies of crossing over. Thus, gene conversion and crossing over can be genetically separated, and Mus81 is required for crossing over, supporting the hypothesis that the fission yeast Mus81·Eme1 protein complex resolves Holliday junctions in meiotic cells.
Collapse
Affiliation(s)
- Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | | | | | |
Collapse
|