1
|
Ando T. Studies on the impellers generating force in muscle. Biophys Rev 2020; 12:767-769. [PMID: 32529598 DOI: 10.1007/s12551-020-00705-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/05/2020] [Indexed: 02/01/2023] Open
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
2
|
Lu Y, Jeffries CM, Trewhella J. Invited review: probing the structures of muscle regulatory proteins using small-angle solution scattering. Biopolymers 2011; 95:505-16. [PMID: 21442605 DOI: 10.1002/bip.21624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 11/09/2022]
Abstract
Small-angle X-ray and neutron scattering with contrast variation have made important contributions in advancing our understanding of muscle regulatory protein structures in the context of the dynamic molecular processes governing muscle action. The contributions of the scattering investigations have depended upon the results of key crystallographic, NMR, and electron microscopy experiments that have provided detailed structural information that has aided in the interpretation of the scattering data. This review will cover the advances made using small-angle scattering techniques, in combination with the results from these complementary techniques, in probing the structures of troponin and myosin binding protein C. A focus of the troponin work has been to understand the isoform differences between the skeletal and cardiac isoforms of this major calcium receptor in muscle. In the case of myosin binding protein C, significant data are accumulating, indicating that this protein may act to modulate the primary calcium signals from troponin, and interest in its biological role has grown because of linkages between gene mutations in the cardiac isoform and serious heart disease.
Collapse
Affiliation(s)
- Yanling Lu
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
3
|
Matsumoto F, Makino K, Maeda K, Patzelt H, Maéda Y, Fujiwara S. Conformational Changes of Troponin C Within the Thin Filaments Detected by Neutron Scattering. J Mol Biol 2004; 342:1209-21. [PMID: 15351646 DOI: 10.1016/j.jmb.2004.07.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 06/16/2004] [Accepted: 07/22/2004] [Indexed: 10/26/2022]
Abstract
Regulation of skeletal and cardiac muscle contraction is associated with structural changes of the thin filament-based proteins, troponin consisting of three subunits (TnC, TnI, and TnT), tropomyosin, and actin, triggered by Ca2+-binding to TnC. Knowledge of in situ structures of these proteins is indispensable for elucidating the molecular mechanism of this Ca2+-sensitive regulation. Here, the in situ structure of TnC within the thin filaments was investigated with neutron scattering, combined with selective deuteration and the contrast matching technique. Deuterated TnC (dTnC) was first prepared, this dTnC was then reconstituted into the native thin filaments, and finally neutron scattering patterns of these reconstituted thin filaments containing dTnC were measured under the condition where non-deuterated components were rendered "invisible" to neutrons. The obtained scattering curves arising only from dTnC showed distinct difference in the absence and presence of Ca2+. These curves were analyzed by model calculations using the Monte Carlo method, in which inter-dTnC interference was explicitly taken into consideration. The model calculation showed that in situ radius of gyration of TnC was 23 A (99% confidence limits between 22 A and 23 A) and 24 A (99% confidence limits between 23 A and 25 A) in the absence and presence of Ca2+, respectively, indicating that TnC within the thin filaments assumes a conformation consistent with the extended dumbbell structure, which is different from the structures found in the crystals of various Tn complexes. Elongation of TnC by binding of Ca2+ was also suggested. Furthermore, the radial position of TnC within the thin filament was estimated to be 53 A (99% confidence limits between 49 A and 57 A) and 49 A (99% confidence limits between 44 A and 53 A) in the absence and presence of Ca2+, respectively, suggesting that this radial movement of TnC by 4A is associated with large conformational changes of the entire Tn molecule by binding of Ca2+.
Collapse
Affiliation(s)
- Fumiko Matsumoto
- Neutron Science Research Center, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Brown LJ, Klonis N, Sawyer WH, Fajer PG, Hambly BD. Independent movement of the regulatory and catalytic domains of myosin heads revealed by phosphorescence anisotropy. Biochemistry 2001; 40:8283-91. [PMID: 11444974 DOI: 10.1021/bi010566f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inter- and intradomain flexibility of the myosin head was measured using phosphorescence anisotropy of selectively labeled parts of the molecule. Whole myosin and the myosin head, subfragment-1 (S1), were labeled with eosin-5-iodoacetamide on the catalytic domain (Cys 707) and on two sites on the regulatory domain (Cys 177 on the essential light chain and Cys 154 on the regulatory light chain). Phosphorescence anisotropy was measured in soluble S1 and myosin, with and without F-actin, as well as in synthetic myosin filaments. The anisotropy of the former were too low to observe differences in the domain mobilities, including when bound to actin. However, this was not the case in the myosin filament. The final anisotropy of the probe on the catalytic domain was 0.051, which increased for probes bound to the essential and regulatory light chains to 0.085 and 0.089, respectively. These differences can be expressed in terms of a "wobble in a cone" model, suggesting various amplitudes. The catalytic domain was least restricted, with a 51 +/- 5 degrees half-cone angle, whereas the essential and regulatory light chain amplitude was less than 29 degrees. These data demonstrate the presence of a point of flexibility between the catalytic and regulatory domains. The presence of the "hinge" between the catalytic and regulatory domains, with a rigid regulatory domain, is consistent with both the "swinging lever arm" and "Brownian ratchet" models of force generation. However, in the former case there is a postulated requirement for the hinge to stiffen to transmit the generated torque associated by nucleotide hydrolysis and actin binding.
Collapse
Affiliation(s)
- L J Brown
- Department of Pathology, University of Sydney NSW 2006, Australia
| | | | | | | | | |
Collapse
|
5
|
Xiao M, Li H, Snyder GE, Cooke R, Yount RG, Selvin PR. Conformational changes between the active-site and regulatory light chain of myosin as determined by luminescence resonance energy transfer: the effect of nucleotides and actin. Proc Natl Acad Sci U S A 1998; 95:15309-14. [PMID: 9860965 PMCID: PMC28039 DOI: 10.1073/pnas.95.26.15309] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin is thought to generate movement of actin filaments via a conformational change between its light-chain domain and its catalytic domain that is driven by the binding of nucleotides and actin. To monitor this change, we have measured distances between a gizzard regulatory light chain (Cys 108) and the active site (near or at Trp 130) of skeletal myosin subfragment 1 (S1) by using luminescence resonance energy transfer and a photoaffinity ATP-lanthanide analog. The technique allows relatively long distances to be measured, and the label enables site-specific attachment at the active-site with only modest affect on myosin's enzymology. The distance between these sites is 66.8 +/- 2.3 A when the nucleotide is ADP and is unchanged on binding to actin. The distance decreases slightly with ADP-BeF3, (-1.6 +/- 0.3 A) and more significantly with ADP-AlF4 (-4.6 +/- 0.2 A). During steady-state hydrolysis of ATP, the distance is temperature-dependent, becoming shorter as temperature increases and the complex with ADP.Pi is favored over that with ATP. We conclude that the distance between the active site and the light chain varies as Acto-S1-ADP approximately S1-ADP > S1-ADP-BeF3 > S1-ADP-AlF4 approximately S1-ADP-Pi and that S1-ATP > S1-ADP-Pi. The changes in distance are consistent with a substantial rotation of the light-chain binding domain of skeletal S1 between the prepowerstroke state, simulated by S1-ADP-AlF4, and the post-powerstroke state, simulated by acto-S1-ADP.
Collapse
Affiliation(s)
- M Xiao
- Physics Department and Biophysics Center, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
6
|
Chacón P, Morán F, Díaz JF, Pantos E, Andreu JM. Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm. Biophys J 1998; 74:2760-75. [PMID: 9635731 PMCID: PMC1299618 DOI: 10.1016/s0006-3495(98)77984-6] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Small-angle x-ray solution scattering (SAXS) is analyzed with a new method to retrieve convergent model structures that fit the scattering profiles. An arbitrary hexagonal packing of several hundred beads containing the problem object is defined. Instead of attempting to compute the Debye formula for all of the possible mass distributions, a genetic algorithm is employed that efficiently searches the configurational space and evolves best-fit bead models. Models from different runs of the algorithm have similar or identical structures. The modeling resolution is increased by reducing the bead radius together with the search space in successive cycles of refinement. The method has been tested with protein SAXS (0.001 < S < 0.06 A(-1)) calculated from x-ray crystal structures, adding noise to the profiles. The models obtained closely approach the volumes and radii of gyration of the known structures, and faithfully reproduce the dimensions and shape of each of them. This includes finding the active site cavity of lysozyme, the bilobed structure of gamma-crystallin, two domains connected by a stalk in betab2-crystallin, and the horseshoe shape of pancreatic ribonuclease inhibitor. The low-resolution solution structure of lysozyme has been directly modeled from its experimental SAXS profile (0.003 < S < 0.03 A(-1)). The model describes lysozyme size and shape to the resolution of the measurement. The method may be applied to other proteins, to the analysis of domain movements, to the comparison of solution and crystal structures, as well as to large macromolecular assemblies.
Collapse
Affiliation(s)
- P Chacón
- Centro de Investigaciones Biológicas, C.S.I.C. Velázquez 144, Madrid, Spain
| | | | | | | | | |
Collapse
|
7
|
Ivkov R, Forbes JG, Greer SC. The polymerization of actin: Study by small angle neutron scattering. J Chem Phys 1998. [DOI: 10.1063/1.475948] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Hunt JF, McCrea PD, Zaccaï G, Engelman DM. Assessment of the aggregation state of integral membrane proteins in reconstituted phospholipid vesicles using small angle neutron scattering. J Mol Biol 1997; 273:1004-19. [PMID: 9367787 DOI: 10.1006/jmbi.1997.1330] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The assessment of the physical size of integral membrane protein complexes has generally been limited to samples solubilized in non-ionic detergent, a process which may introduce artifacts of unknown scope and severity. A system has been developed that allows observation of the small angle scattering profile of an integral membrane protein while incorporated in small unilamellar phospholipid vesicles. Contrast matching of isotopically substituted phospholipid eliminates the contribution of the bilayer to the observed scattering, resulting in a profile dependent only on the structure of the individual membrane protein complexes and their spatial arrangement in the vesicle. After appropriate compensation for their spatial arrangement, information about the molecular mass and radius of gyration of the individual complexes can be obtained. The validity of the approach has been established using monomeric bacteriorhodopsin as a model system.
Collapse
Affiliation(s)
- J F Hunt
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | | | | | | |
Collapse
|
9
|
Burghardt TP, Garamszegi SP, Ajtai K. Probes bound to myosin Cys-707 rotate during length transients in contraction. Proc Natl Acad Sci U S A 1997; 94:9631-6. [PMID: 9275174 PMCID: PMC23239 DOI: 10.1073/pnas.94.18.9631] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/1997] [Accepted: 07/14/1997] [Indexed: 02/05/2023] Open
Abstract
It is widely conjectured that muscle shortens because portions of myosin molecules (the "cross-bridges") impel the actin filament to which they transiently attach and that the impulses result from rotation of the cross-bridges. Crystallography indicates that a cross-bridge is articulated-consisting of a globular catalytic/actin-binding domain and a long lever arm that may rotate. Conveniently, a rhodamine probe with detectable attitude can be attached between the globular domain and the lever arm, enabling the observer to tell whether the anchoring region rotates. Well-established signature effects observed in shortening are tension changes resulting from the sudden release or quick stretch of active muscle fibers. In this investigation we found that closely correlated with such tension changes are changes in the attitude of the rhodamine probes. This correlation strongly supports the conjecture about how shortening is achieved.
Collapse
Affiliation(s)
- T P Burghardt
- Department of Biochemistry and Molecular Biology, Mayo Foundation, 200 First Street South West, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
10
|
Abstract
The rate of translational diffusion of skeletal muscle myosin subfragment 1 (S1) was determined from polarized dynamic light scattering autocorrelation measurements. Diffusion rates were expressed in terms of the hydrodynamic radii Rh. At 20 degrees C, in low ionic strength pH 8 solutions, Rh increased from 4.3 nm to 5.7 nm as [S1] was increased from 1.6 to 72 microM. Including MgATP to maintain S1. MgADP. Pi gave equivalent results. When the light scattering data were analyzed, assuming a monomer-dimer equilibrium, a dissociation constant of 83 microM was obtained. Steady state MgATPase activity measurements were made as a function of [ATP] for S1 in the 0.4-7 microM range, and analyzed assuming Michaelis-Menten kinetics. VMAX did not change, but KM increased about tenfold as [S1] was increased over this range. The light scattering and kinetic data were consistent with S1 aggregation at high [S1].
Collapse
Affiliation(s)
- K Claire
- Department of Chemistry, Stanford University, CA 94305, USA
| | | | | |
Collapse
|
11
|
Fujiwara S, Kull FJ, Sablin EP, Stone DB, Mendelson RA. The shapes of the motor domains of two oppositely directed microtubule motors, ncd and kinesin: a neutron scattering study. Biophys J 1995; 69:1563-8. [PMID: 8534827 PMCID: PMC1236387 DOI: 10.1016/s0006-3495(95)80028-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The shapes of the motor domains of kinesin and ncd, which move in opposite directions along microtubules, have been investigated. Using proteins expressed in Escherichia coli, it was found that at high salt (> 200 mM) Drosophila ncd motor domain (R335-K700) and human kinesin motor domain (M1-E349) were both sufficiently monomeric to allow an accurate determination of their radii of gyration (Rg) and their molecular weights. The measured Rg values of the ncd and kinesin motor domains in D2O were 2.06 +/- 0.06 and 2.05 +/- 0.04 nm, respectively, and the molecular weights were consistent with those computed from the amino acid compositions. Fitting of the scattering curves to approximately 3.5 nm resolution showed that the ncd and kinesin motor domains can be described adequately by triaxial ellipsoids having half-axes of 1.42 +/- 0.38, 2.24 +/- 0.44, and 3.65 +/- 0.22 nm, and half-axes of 1.52 +/- 0.23, 2.00 +/- 0.25, and 3.73 +/- 0.10 nm, respectively. Both motor domains are described adequately as somewhat flattened prolate ellipsoids with a maximum dimension of approximately 7.5 nm. Thus, it appears that the overall shapes of these motor domains are not the major determinants of the directionality of their movement along microtubules.
Collapse
Affiliation(s)
- S Fujiwara
- Cardiovascular Research Institute, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
The determination of the iodoacetamide spin label orientation in myosin heads (Fajer, 1994) allows us for the first time to determine directly protein orientation from EPR spectra. Computational simulations have been used to determine the sensitivity of EPR to both torsional and tilting motions of myosin heads. For rigor heads (no nucleotide), we can detect 0.2 degree changes in the tilt angle and 4 degrees in the torsion of the head. Sensitivity decreases with increasing head disorder, but even in the presence of +/- 30 degrees disorder as expected for detached heads, 10 degree changes in the center of the orientational distribution can be detected. We have combined these numerical simulations with a Simplex optimization to compare the orientation of intrinsic heads, with the orientation of labeled extrinsic heads that have been infused into unlabeled muscle fibers. The near identity (within 2 degrees) of the orientational distribution in the two instances can be attributed to myosin elasticity taking up the mechanical strain induced by the mismatch of myosin and actin filament periodicity. A similar analysis of the spectra of fibers with ADP bound to myosin revealed a small (approximately 5 degrees-10 degrees) torsional reorientation, without a substantial change of the tilt angle (< 2 degrees).
Collapse
Affiliation(s)
- P G Fajer
- Institute of Molecular Biophysics, Florida State University, Tallahassee 32300
| |
Collapse
|
13
|
Sidick E, Baskin RJ, Yeh Y, Knoesen A. Rigorous analysis of light diffraction ellipsometry by striated muscle fibers. Biophys J 1994; 66:2051-61. [PMID: 8075338 PMCID: PMC1275930 DOI: 10.1016/s0006-3495(94)80999-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A rigorous analysis of both the transverse electric and the transverse magnetic modes of light diffracted from a muscle fiber is performed. From the expressions of electromagnetic field components, ellipsometry parameters, differential field ratio, r, and birefringence, delta n, have been obtained. A theoretical formulation that introduces myofibril skew planes and a randomization factor about the average skew plane yields a relationship that shows good fit to experimental data of Chen et al. (Biophys. J. 56:595, 1989) and Burton et al. (J. Muscle Res. Cell Motil. 11:258, 1990). Using indices of refraction within each of the regions of the sarcomeric unit that are consistent with our knowledge of the molecular structure of the sarcomere in the analysis, it is shown that the transition from the rigor state to the resting state leads to as much as a approximately 13% decrease in the r-value and an equally significant change in delta n.
Collapse
Affiliation(s)
- E Sidick
- Department of Electrical and Computer Engineering, University of California, Davis 95616
| | | | | | | |
Collapse
|
14
|
Pollard TD, Bhandari D, Maupin P, Wachsstock D, Weeds AG, Zot HG. Direct visualization by electron microscopy of the weakly bound intermediates in the actomyosin adenosine triphosphatase cycle. Biophys J 1993; 64:454-71. [PMID: 8457671 PMCID: PMC1262348 DOI: 10.1016/s0006-3495(93)81387-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We used a novel stopped-flow/rapid-freezing machine to prepare the transient intermediates in the actin-myosin adenosine triphosphatase (ATPase) cycle for direct observation by electron microscopy. We focused on the low affinity complexes of myosin-adenosine triphosphate (ATP) and myosin-adenosine diphosphate (ADP)-Pi with actin filaments since the transition from these states to the high affinity actin-myosin-ADP and actin-myosin states is postulated to generate the molecular motion that drives muscle contraction and other types of cellular movements. After rapid freezing and metal replication of mixtures of myosin subfragment-1, actin filaments, and ATP, the structure of the weakly bound intermediates is indistinguishable from nucleotide-free rigor complexes. In particular, the average angle of attachment of the myosin head to the actin filament is approximately 40 degrees in both cases. At all stages in the ATPase cycle, the configuration of most of the myosin heads bound to actin filaments is similar, and the part of the myosin head preserved in freeze-fracture replicas does not tilt by more than a few degrees during the transition from the low affinity to high affinity states. In contrast, myosin heads chemically cross-linked to actin filaments differ in their attachment angles from ordered at 40 degrees without ATP to nearly random in the presence of ATP when viewed by negative staining (Craig, R., L.E. Greene, and E. Eisenberg. 1985. Proc. Natl. Acad. Sci. USA. 82:3247-3251, and confirmed here), freezing in vitreous ice (Applegate, D., and P. Flicker. 1987. J. Biol. Chem. 262:6856-6863), and in replicas of rapidly frozen samples. This suggests that many of the cross-linked heads in these preparations are dissociated from but tethered to the actin filaments in the presence of ATP. These observations suggest that the molecular motion produced by myosin and actin takes place with the myosin head at a point some distance from the actin binding site or does not involve a large change in the shape of the myosin head.
Collapse
Affiliation(s)
- T D Pollard
- Department of Cell Biology and Anatomy, Johns Hopkins Medical School, Baltimore, Maryland 21205
| | | | | | | | | | | |
Collapse
|
15
|
Squire J, Harford J. Time-resolved studies of crossbridge movement: why use X-rays? Why use fish muscle? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 332:435-48; discussion 448-50. [PMID: 8109356 DOI: 10.1007/978-1-4615-2872-2_40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The advantages of using time-resolved X-ray diffraction as a means of probing myosin cross-bridge behaviour in active muscle are outlined, together with the reasons that bony fish muscle has advantages in such studies. We show that the observed X-ray diffraction patterns from fish muscle can be analysed in a way that is rigorous enough to allow reliable information about crossbridge activity to be defined. Among the advantages of this muscle are that diffraction patterns from resting, active and rigor muscles are all well-sampled at least out to the 30 row-line, that the resting myosin layer-line pattern can be 'solved' crystallographically to define the starting position of the crossbridges in resting muscle, and that the equatorial intensity distribution, which in all patterns from vertebrate skeletal muscles comprises overlapping peaks from the A-band and the Z-band, can be analysed sufficiently rigorously to allow separation of the two patterns, both of which change when the muscle is active. Finally, we present results both on a new set of myosin-based layer-lines in patterns from active muscle (consistent with the presence of low-force bridges as also indicated by the time-courses of the intensity changes on the equator and the changing mass distribution in the A-band unit cell) and also on changes of the actin-based layer-lines (consistent with stereospecific labelling of the actin filaments by force-producing crossbridges). Our results to date, which demonstrate the enormous power of time-resolved X-ray diffraction studies, strongly support the swinging of myosin heads on actin as part of the contractile cycle.
Collapse
Affiliation(s)
- J Squire
- Biophysics Section, Blackett Laboratory, Imperial College, London, UK
| | | |
Collapse
|
16
|
Garrigos M, Mallam S, Vachette P, Bordas J. Structure of the myosin head in solution and the effect of light chain 2 removal. Biophys J 1992; 63:1462-70. [PMID: 1489906 PMCID: PMC1262260 DOI: 10.1016/s0006-3495(92)81743-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Structural properties of rabbit skeletal myosin head (S1) and the influence of the DTNB light chain (LC2) on the size and shape of myosin heads in solution were investigated by small angle x-ray scattering. The LC2 deficient myosin head, S1 (-LC2), and the S1 containing LC2 light chain, S1 (+LC2) were studied in parallel. The respective values of the radius of gyration were found to be (40.2 +/- 0.5) A and (46.7 +/- 1) A, while the maximum dimension was (190 +/- 15) A for both species. The large difference between the two Rg values suggest that LC2 is located close to one extremity of the myosin head, in agreement with most electron microscopy observations. All models derived from the x-ray scattering pattern of the native myosin head share a common overall morphology, showing two main regions, an asymmetric globular portion which tapers smoothly into a thinner domain of roughly equivalent length making an angle of approximately 60 degrees, with a contour length of approximately 210 A.
Collapse
Affiliation(s)
- M Garrigos
- Département de Biologie, CEN-Saclay, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
17
|
Wakabayashi K, Tokunaga M, Kohno I, Sugimoto Y, Hamanaka T, Takezawa Y, Wakabayashi T, Amemiya Y. Small-angle synchrotron x-ray scattering reveals distinct shape changes of the myosin head during hydrolysis of ATP. Science 1992; 258:443-7. [PMID: 1411537 DOI: 10.1126/science.1411537] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the energy transduction of muscle contraction, it is important to know the nature and extent of conformational changes of the head portion of the myosin molecules. In the presence of magnesium adenosine triphosphate (MgATP), fairly large conformational changes of the myosin head [subfragment-1 (S1)] in solution were observed by small-angle x-ray scattering with the use of synchrotron radiation as an intense and stable x-ray source. The presence of MgATP reduced the radius of gyration of the molecule by about 3 angstrom units and the maximum chord length by about 10 angstroms, showing that the shape of S1 becomes more compact or round during hydrolysis of MgATP. Comparison with various nucleotide-bound S1 complexes that correspond to the known intermediate states during ATP hydrolysis indicates that the shape of S1 in a key intermediate state, S1-bound adenosine diphosphate (ADP) and phosphate [S1**.ADP.P(i)], differs significantly from the shape in the other intermediate states of the S1 adenosine triphosphatase cycle as well as that of nucleotide-free S1.
Collapse
Affiliation(s)
- K Wakabayashi
- Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Harford JJ, Squire JM. Evidence for structurally different attached states of myosin cross-bridges on actin during contraction of fish muscle. Biophys J 1992; 63:387-96. [PMID: 1420885 PMCID: PMC1262162 DOI: 10.1016/s0006-3495(92)81613-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Using data from fast time-resolved x-ray diffraction experiments on the synchrotrons at Daresbury and (Deutsches Elektronen Synchrotron [DESY]), it is shown that during contraction of fish muscle there are at least two distinct configurations of myosin cross-bridges on actin, that they appear to have different tension producing properties and that they probably differ in the axial tilt of the cross-bridges on actin. Evidence is presented for newly observed myosin-based layer lines in patterns from active fish muscle, together with intensity changes of the actin layer lines. On the equator, the 110 reflection changes much faster (time for 50% change t1/2 = 21 +/- 4 ms after activation) than the 100 reflection (t1/2 = 35 +/- 8 ms) and tension (t1/2 = 41 +/- 3 ms) during the rising phase of tetanic contractions. These and higher order reflections have been used to show the time course of mass attachment at actin during this rising phase. Mass arrival (t1/2 = 25 ms) precedes tension by approximately 15 ms. Analysis has been carried out to evaluate the effects of changes in sarcomere length during the tetanus. It is shown that any such effects are very small. Difference "equatorial" electron density maps between active muscle at a time when mass arrival at actin is just complete, but the tension is still rising, and at a later time well into the tension plateau, show that the structural difference between the lower and higher force states corresponds to mass movement consistent with axial swinging of heads from a nonstereospecific actin attached state (low force) to a more stereospecific (high force) state.
Collapse
Affiliation(s)
- J J Harford
- Biophysics Section, Blackett Laboratory, Imperial College, London, United Kingdom
| | | |
Collapse
|
19
|
Aspenström P, Lindberg U, Karlsson R. Site-specific amino-terminal mutants of yeast-expressed beta-actin. Characterization of the interaction with myosin and tropomyosin. FEBS Lett 1992; 303:59-63. [PMID: 1534298 DOI: 10.1016/0014-5793(92)80477-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neutral or charge-shifting mutagenesis of beta-actin at positions 3 and 4 strongly influenced the actomyosin interaction under non-rigor conditions. The polymerization behaviour and tropomyosin binding properties on the other hand remained unaffected.
Collapse
Affiliation(s)
- P Aspenström
- Dept. Developmental Biology, Uppsala University, Sweden
| | | | | |
Collapse
|
20
|
Abstract
There is controversy concerning the shape and length of myosin heads. In the present paper we try to analyse the data and to draw clear conclusions in this field. When the myosin heads are isolated (S1) from the rest of the molecule, their length is approximately 12 nm and their shape is close to that of a prolate ellipsoid with an axial ratio approximately 2.3 (in solution) or close to that of a comma when attached to F-actin (with a length of 12-13 nm). When the myosin heads are observed on a whole molecule, their length is approximately 19 nm and they are pear-shaped. Here we suggest that all these observations are compatible. We believe that, for a whole myosin molecule, a large part of the head-rod joint (S1/S2 joint) is measured with the head, owing to a particularly heavy staining or shadowing of this joint. On the other hand, S1 is probably built up of a head part plus the S1/S2 joint, which is not revealed by the usual techniques (hydrodynamics, X-ray and neutron scattering). Finally, the comma shape would be related to a flexible part in the head region of S1, which is significantly bent when S1 is attached to F-actin, but which would be less bent for S1 in solution. A similar bending also occurs in crystalline S1.
Collapse
Affiliation(s)
- J E Morel
- Ecole Centrale des Arts et Manufacturers, Laboratoire de Biologie, Grande Voie des Vignes, Chatenay-Malabry, France
| | | | | |
Collapse
|
21
|
Johnson WC, Bivin DB, Ue K, Morales MF. A search for protein structural changes accompanying the contractile interaction. Proc Natl Acad Sci U S A 1991; 88:9748-50. [PMID: 1946397 PMCID: PMC52797 DOI: 10.1073/pnas.88.21.9748] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It appears that small movements (detected hitherto only by fluorescence resonance energy transfer measurements and crosslinking studies) in a region of the myosin S-1 particle may mediate chemomechanical energy transduction in the contractile system. Here we find under conditions of high precision at 10 degrees C and 20 degrees C that ATP binding to S-1 causes small (0.4%) changes in CD signal, delta epsilon 222, as do temperature changes in the regime below 16 degrees C. ATP binding perturbs tryptophan residues that we now think are in the mobile region, and we find here that temperature affects tryptophan fluorescence in much the same way that it affects the CD signal, so we believe that the CD signal reports transduction-related movements in S-1. If S-1 is exposed to the range 16-30 degrees C, CD signal falls with temperature; ATP counteracts this fall. Analysis of vacuum-UV CD spectra yields 42% alpha-helix, 9% antiparallel beta-sheet, 7% parallel beta-sheet, 14% beta-turns, and 29% other structures.
Collapse
Affiliation(s)
- W C Johnson
- Department of Biophysics and Biochemistry, Oregon State University, Corvallis 97331
| | | | | | | |
Collapse
|
22
|
Becker EW. Efficiency of muscle contraction. The chemimechanic equilibrium. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 1991; 78:445-9. [PMID: 1836543 DOI: 10.1007/bf01134378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although muscle contraction is one of the principal themes of biological research, the exact mechanism whereby the chemical free energy of ATP hydrolysis is converted into mechanical work remains elusive. The high thermodynamic efficiency of the process, above all, is difficult to explain on the basis of present theories. A model of the elementary effect in muscle contraction is proposed which aims at high thermodynamic efficiency based on an approximate equilibrium between chemical and mechanical forces throughout the transfer of free energy. The experimental results described in the literature support the assumption that chemimechanic equilibrium is approximated by a free energy transfer system based on the binding of divalent metal ions to the myosin light chains. Muscle contraction demonstrated without light chains is expected to proceed with a considerably lower efficiency. Free energy transfer systems based on the binding of ions to proteins seem to be widespread in the cell. By establishing an approximate chemimechanic equilibrium, they could facilitate biological reactions considerably and save large amounts of free energy. The concept of chemimechanic equilibrium is seen as a supplementation to the concept of chemiosmotic equilibrium introduced for the membrane transport by P. Mitchell.
Collapse
Affiliation(s)
- E W Becker
- Institut für Mikrostrukturtechnik, Universität Karlsruhe, FRG
| |
Collapse
|
23
|
Agarwal R, Burke M. Temperature-induced changes in the flexibility of the loop between SH1 (Cys-707) and SH3 (Cys-522) in myosin subfragment 1 detected by cross-linking. Arch Biochem Biophys 1991; 290:1-6. [PMID: 1898079 DOI: 10.1016/0003-9861(91)90583-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ability of dibromobimane to cross-link SH1 (Cys-707) in the 21-kDa C-terminal segment to SH3 (Cys-522) in the 50-kDa middle segment of the myosin S1 heavy chain has been examined as a function of nucleotide binding and temperature. The results obtained indicate that, while the reagent rapidly reacts with SH1 at both 25 and 4 degrees C, its ability to cross-link to SH3 is highly dependent on temperature. At 25 degrees C, substantial cross-linking from monofunctionally labeled SH1 to SH3 occurs, in agreement with recent work of Mornet, Ue, and Morales (1985, Proc. Natl. Acad. Sci, USA 82, 1658-1662) and of Ue (1987, Biochemistry 26, 1889-1894) and with their conclusion that a loop, allowing SH1 and SH3 to reside at the cross-linking span of dibromobimane, preexists in the protein. At 4 degrees C, however, negligible amounts of cross-linking are observed whether or not a nucleotide is present, despite indications that SH1 is labeled rapidly by the reagent at this temperature. The inability to form this cross-link is not due to an alternate cross-link between monofunctionally labeled SH1 and another thiol in the 21-kDa segment. These results indicate that this loop exists at 25 degrees C and does not exist (or exists only transiently) at the lower temperature.
Collapse
Affiliation(s)
- R Agarwal
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
24
|
Bivin DB, Stone DB, Schneider DK, Mendelson RA. Cross-helix separation of tropomyosin molecules in acto-tropomyosin as determined by neutron scattering. Biophys J 1991; 59:880-8. [PMID: 1829644 PMCID: PMC1281253 DOI: 10.1016/s0006-3495(91)82300-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cross-helix separation of Tm molecules in acto-tropomyosin has been determined using neutron scattering. Deuterated Dictyostelium discoideum actin was density matched in a 93% D2O buffer so that effectively only the protonated tropomyosin was "visible" to neutrons. Analysis of the solution scattering pattern in the region of the first oscillation yielded a value for the cross-helix separation of 7.9 +/- 0.3 nm. The implications of this value for the mechanism of the regulation of muscle contraction are discussed in light of recent results by others.
Collapse
Affiliation(s)
- D B Bivin
- Cardiovascular Research Institute, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
25
|
|
26
|
Geeves MA. The dynamics of actin and myosin association and the crossbridge model of muscle contraction. Biochem J 1991; 274 ( Pt 1):1-14. [PMID: 1825780 PMCID: PMC1150189 DOI: 10.1042/bj2740001] [Citation(s) in RCA: 163] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- M A Geeves
- Department of Biochemistry, School of Medical Sciences, University of Bristol, U.K
| |
Collapse
|
27
|
Abstract
The F-actin filament has been constructed from the atomic structure of the actin monomer to fit the observed X-ray fibre diagram from oriented gels of F-actin. A unique orientation of the monomer with respect to the actin helix has been found. The main interactions are along the two-start helix with a contribution from a loop extending across the filament axis provided by the molecule in the adjacent strand. There are also contacts along the left-handed genetic helix.
Collapse
Affiliation(s)
- K C Holmes
- Max-Planck-Institut für Medizinische Forschung, Abteilung Biophysik, Heidelberg, FRG
| | | | | | | |
Collapse
|
28
|
Rajasekharan KN, Mayadevi M, Agarwal R, Burke M. MgADP-induced changes in the structure of myosin S1 near the ATPase-related thiol SH1 probed by cross-linking. Biochemistry 1990; 29:3006-13. [PMID: 2140048 DOI: 10.1021/bi00464a017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The structural consequences of MgADP binding at the vicinity of the ATPase-related thiol SH1 (Cys-707) have been examined by subjecting myosin subfragment 1, premodified at SH2 (Cys-697) with N-ethylmaleimide (NEM), to reaction with the bifunctional reagent p-phenylenedimaleimide (pPDM) in the presence and absence of MgADP. By monitoring the changes in the Ca2(+)-ATPase activity as a function of reaction time, it appears that the reagent rapidly modifies SH1 irrespective of whether MgADP is present or not. In the absence of nucleotide, only extremely low levels of cross-linking to the 50-kDa middle segment of S1 can be detected, while in the presence of MgADP substantial cross-linking to this segment is observed. A similar cross-link is also formed if MgADP is added subsequent to the reaction of the SH2-NEM-pre-modified S1 with pPDM in the absence of nucleotide. Isolation of the labeled tryptic peptide from the cross-linked adduct formed with [14C]pPDM, and subsequent partial sequence analyses, indicates that the cross-link is made from SH1 to Cys-522. Moreover, it appears that this cross-link results in the trapping of MgADP in this S1 species. These data suggest that the binding of MgADP results in a change in the structure of S1 in the vicinity of the SH1 thiol relative to the 50-kDa "domain" which enables Cys-522 to adopt the appropriate configuration to enable it to be cross-linked to SH1 by pPDM.
Collapse
Affiliation(s)
- K N Rajasekharan
- Department of Biology, Case Institute of Technology, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | | | |
Collapse
|
29
|
Tesi C, Travers F, Barman T. Cryoenzymic studies on actomyosin ATPase. Evidence that the degree of saturation of actin with myosin subfragment 1 affects the kinetics of the binding of ATP. Biochemistry 1990; 29:1846-52. [PMID: 2139580 DOI: 10.1021/bi00459a026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The initial steps of actomyosin subfragment 1 (acto-S1) ATPase (dissociation and binding of ATP) were studied at -15 degrees C with 40% ethylene glycol as antifreeze. The dissociation kinetics were followed by light scattering in a stopped-flow apparatus, and the binding of ATP was followed by the ATP chase method in a rapid-flow quench apparatus. The data from the chase experiments were fitted to E + ATP in equilibrium (K1) E.ATP----(k2) E*ATP, where E is acto-S1 or S1. The kinetics of the binding of ATP to acto-S1 were sensitive to the degree of saturation of the actin with S1. There was a sharp transition with actin nearly saturated with S1: when the S1 to actin ratio was low, the kinetics were fast (K1 greater than 300 microM, k2 greater than 40 s-1); when it was high, they were slow (K1 = 14 microM, k2 = 2 s-1). With S1 alone K1 = 12 microM and k2 = 0.07 S-1. With acto heavy meromyosin (acto-HMM) the binding kinetics were the same as with saturated acto-S1, regardless of the HMM to actin ratio. The dissociation kinetics were independent of the S1 to actin ratio. Saturation kinetics were obtained with Kd = 460 microM and kd = 75 S-1. The data for the saturated acto-S1 could be fitted to a reaction scheme, but for lack of structural information the abrupt dependence of the ATP binding kinetics upon the S1 to actin ratio is difficult to explain.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Tesi
- INSERM U128, CNRS, BP 5051, Montpellier, France
| | | | | |
Collapse
|
30
|
Affiliation(s)
- R Cooke
- Department of Biochemistry and Biophysics, University of California, San Francisco
| |
Collapse
|
31
|
Burghardt TP, Ajtai K. Effect of negative mechanical stress on the orientation of myosin cross-bridges in muscle fibers. Proc Natl Acad Sci U S A 1989; 86:5366-70. [PMID: 2526336 PMCID: PMC297623 DOI: 10.1073/pnas.86.14.5366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The effect of positive and negative stress on myosin cross-bridge orientation in glycerinated muscle fibers was investigated by using fluorescence polarization spectroscopy of the emission from the covalent label tetramethyl-rhodamine-5-(and -6)-iodoacetamide (IATR) specifically modifying sulfhydryl one (SH1) on the myosin heavy chain. Positive tension was applied by stretching the fiber in rigor. Negative tension was applied in two steps by using a protocol introduced by Goldman et al. [Goldman, Y. E., McCray, J. A. & Vallette, D. P. (1988) J. Physiol. (London) 398, 75P]: relaxing a fiber at resting length and stretching it until the relaxed tension is appreciable and then placing the fiber in rigor and releasing the tension onto the rigor cross-bridges. We found, as have others, that positive tension has no effect on the fluorescence polarization spectrum from the SH1-bound probe, indicating that the cross-bridge does not rotate under these conditions. Negative tension, however, causes a change in the fluorescence polarization spectrum that indicates a probe rotation. The changes in the polarization spectrum from negative stress are partially reversed by the subsequent application of positive stress. It appears that negative tension strains the cross-bridge, or the cross-bridge domain containing SH1, and causes it to rotate.
Collapse
Affiliation(s)
- T P Burghardt
- Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, MN 55905
| | | |
Collapse
|
32
|
Affiliation(s)
- R Cooke
- Department of Biochemistry and Biophysics and CVRI, University of California, San Francisco 94143-0524
| |
Collapse
|
33
|
|
34
|
|