1
|
Sanbonmatsu KY. Large-scale simulations of nucleoprotein complexes: ribosomes, nucleosomes, chromatin, chromosomes and CRISPR. Curr Opin Struct Biol 2019; 55:104-113. [PMID: 31125796 DOI: 10.1016/j.sbi.2019.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Recent advances in biotechnology such as Hi-C, CRISPR/Cas9 and ribosome display have placed nucleoprotein complexes at center stage. Understanding the structural dynamics of these complexes aids in optimizing protocols and interpreting data for these new technologies. The integration of simulation and experiment has helped advance mechanistic understanding of these systems. Coarse-grained simulations, reduced-description models, and explicit solvent molecular dynamics simulations yield useful complementary perspectives on nucleoprotein complex structural dynamics. When combined with Hi-C, cryo-EM, and single molecule measurements, these simulations integrate disparate forms of experimental data into a coherent mechanism.
Collapse
|
2
|
Identification of lncRNA MEG3 Binding Protein Using MS2-Tagged RNA Affinity Purification and Mass Spectrometry. Appl Biochem Biotechnol 2015; 176:1834-45. [PMID: 26155902 DOI: 10.1007/s12010-015-1680-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/25/2015] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) are nonprotein coding transcripts longer than 200 nucleotides. Recently in mammals, thousands of long noncoding RNAs have been identified and studied as key molecular players in different biological processes with protein complexes. As a long noncoding RNA, maternally expressed gene 3 (MEG3) plays an important role in many cellular processes. However, the mechanism underlying MEG3 regulatory effects remains enigmatic. By using the specific interaction between MS2 coat protein and MS2 RNA hairpin, we developed a method (MS2-tagged RNA affinity purification and mass spectrometry (MTRAP-MS)) to identify proteins that interact with MEG3. Mass spectrometry and gene ontology (GO) analysis showed that MEG3 binding proteins possess nucleotide binding properties and take part in transport, translation, and other biological processes. In addition, interleukin enhancer binding factor 3 (ILF3) and poly(A) binding protein, cytoplasmic 3 (PABPC3) were validated for their interaction with MEG3. These findings indicate that the newly developed method can effectively enrich lncRNA binding proteins and provides a strong basis for studying MEG3 functions.
Collapse
|
3
|
Kielpinski LJ, Vinther J. Massive parallel-sequencing-based hydroxyl radical probing of RNA accessibility. Nucleic Acids Res 2014; 42:e70. [PMID: 24569351 PMCID: PMC4005689 DOI: 10.1093/nar/gku167] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hydroxyl Radical Footprinting (HRF) is a tried-and-tested method for analysis of the tertiary structure of RNA and for identification of protein footprints on RNA. The hydroxyl radical reaction breaks accessible parts of the RNA backbone, thereby allowing ribose accessibility to be determined by detection of reverse transcriptase termination sites. Current methods for HRF rely on reverse transcription of a single primer and detection by fluorescent fragments by capillary electrophoresis. Here, we describe an accurate and efficient massive parallel-sequencing-based method for probing RNA accessibility with hydroxyl radicals, called HRF-Seq. Using random priming and a novel barcoding scheme, we show that HRF-Seq dramatically increases the throughput of HRF experiments and facilitates the parallel analysis of multiple RNAs or experimental conditions. Moreover, we demonstrate that HRF-Seq data for the Escherichia coli 16S rRNA correlates well with the ribose accessible surface area as determined by X-ray crystallography and have a resolution that readily allows the difference in accessibility caused by exposure of one side of RNA helices to be observed.
Collapse
Affiliation(s)
- Lukasz Jan Kielpinski
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | | |
Collapse
|
4
|
Sanbonmatsu KY. Computational studies of molecular machines: the ribosome. Curr Opin Struct Biol 2012; 22:168-74. [PMID: 22336622 DOI: 10.1016/j.sbi.2012.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/19/2012] [Accepted: 01/19/2012] [Indexed: 01/22/2023]
Abstract
The past decade has produced an avalanche of experimental data on the structure and dynamics of the ribosome. Groundbreaking studies in structural biology and kinetics have placed important constraints on ribosome structural dynamics. However, a gulf remains between static structures and time dependent data. In particular, X-ray crystallography and cryo-EM studies produce static models of the ribosome in various states, but lack dynamic information. Single molecule studies produce information on the rates of transitions between these states but do not have high-resolution spatial information. Computational studies have aided in bridging this gap by providing atomic resolution simulations of structural fluctuations and transitions between configurations.
Collapse
|
5
|
Malygin AA, Karpova GG. Site-specific cleavage of the 40S ribosomal subunit reveals eukaryote-specific ribosomal protein S28 in the subunit head. FEBS Lett 2010; 584:4396-400. [DOI: 10.1016/j.febslet.2010.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 01/24/2023]
|
6
|
Knorre DG, Kudryashova NV, Lavrik OI. Chemical approaches to the study of template biosynthesis: general problems and the study of transcription. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1997v066n04abeh000331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Klomparens KL, Heckman JW. Transmission electron microscopy and scanning probe microscopy. METHODS OF BIOCHEMICAL ANALYSIS 2006; 37:73-115. [PMID: 7508542 DOI: 10.1002/9780470110584.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- K L Klomparens
- Center for Electron Optics, Michigan State University, East Lansing
| | | |
Collapse
|
8
|
Majumdar ZK, Hickerson R, Noller HF, Clegg RM. Measurements of internal distance changes of the 30S ribosome using FRET with multiple donor-acceptor pairs: quantitative spectroscopic methods. J Mol Biol 2005; 351:1123-45. [PMID: 16055154 DOI: 10.1016/j.jmb.2005.06.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 06/10/2005] [Indexed: 11/26/2022]
Abstract
We present analytical and experimental procedures for determining distance changes within the 30 S subunit of the Escherichia coli ribosome using Förster resonance energy transfer (FRET). We discuss ways to contend with complexities when using FRET to measure distance changes within large multi-subunit macromolecular complexes, such as the ribosome. Complications can arise due to non-stoichiometric labeling of donor and acceptor probes, as well as environmental effects that are specific to each conjugation site. We show how to account for changes in extinction coefficients, quenching, labeling stoichiometry and other variations in the spectroscopic properties of the dye to enable more accurate calculation of distances from FRET data. We also discuss approximations that concern the orientation of the transition moments of the two dye molecules, as well as the impact of other errors in the measurement of absolute distances. Thirteen dye-pair locations with different distances using 18 independent FRET pairs conjugated to specific 30 S protein residues have been used to determine distance changes within the 30 S subunit upon association with the 50 S subunit, forming the 70 S ribosome. Here, we explain the spectroscopic methods we have used, which should be of general interest in studies that aim at obtaining quantitative distance information from FRET.
Collapse
Affiliation(s)
- Zigurts K Majumdar
- Laboratory for Fluorescence Dynamics, Department of Physics, University of Illinois at Urbana-Champaign, IL 61801, USA
| | | | | | | |
Collapse
|
9
|
Engel AS, Porter ML, Stern LA, Quinlan S, Bennett PC. Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic âEpsilonproteobacteriaâ. FEMS Microbiol Ecol 2004; 51:31-53. [PMID: 16329854 DOI: 10.1016/j.femsec.2004.07.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 06/09/2004] [Accepted: 07/12/2004] [Indexed: 11/23/2022] Open
Abstract
Filamentous microbial mats from three aphotic sulfidic springs in Lower Kane Cave, Wyoming, were assessed with regard to bacterial diversity, community structure, and ecosystem function using a 16S rDNA-based phylogenetic approach combined with elemental content and stable carbon isotope ratio analyses. The most prevalent mat morphotype consisted of white filament bundles, with low C:N ratios (3.5-5.4) and high sulfur content (16.1-51.2%). White filament bundles and two other mat morphotypes had organic carbon isotope values (mean delta13C=-34.7 per thousand, 1sigma=3.6) consistent with chemolithoautotrophic carbon fixation from a dissolved inorganic carbon reservoir (cave water, mean delta13C=-7.4 per thousand for two springs, n=8). Bacterial diversity was low overall in the clone libraries, and the most abundant taxonomic group was affiliated with the "Epsilonproteobacteria" (68%), with other bacterial sequences affiliated with Gammaproteobacteria (12.2%), Betaproteobacteria (11.7%), Deltaproteobacteria (0.8%), and the Acidobacterium (5.6%) and Bacteriodetes/Chlorobi (1.7%) divisions. Six distinct epsilonproteobacterial taxonomic groups were identified from the microbial mats. Epsilonproteobacterial and bacterial group abundances and community structure shifted from the spring orifices downstream, corresponding to changes in dissolved sulfide and oxygen concentrations and metabolic requirements of certain bacterial groups. Most of the clone sequences for epsilonproteobacterial groups were retrieved from areas with high sulfide and low oxygen concentrations, whereas Thiothrix spp. and Thiobacillus spp. had higher retrieved clone abundances where conditions of low sulfide and high oxygen concentrations were measured. Genetic and metabolic diversity among the "Epsilonproteobacteria" maximizes overall cave ecosystem function, and these organisms play a significant role in providing chemolithoautotrophic energy to the otherwise nutrient-poor cave habitat. Our results demonstrate that sulfur cycling supports subsurface ecosystems through chemolithoautotrophy and expand the evolutionary and ecological views of "Epsilonproteobacteria" in terrestrial habitats.
Collapse
Affiliation(s)
- Annette Summers Engel
- Department of Geological Sciences, Research Group for Microbial Geochemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | |
Collapse
|
10
|
Ganoza MC, Kiel MC, Aoki H. Evolutionary conservation of reactions in translation. Microbiol Mol Biol Rev 2002; 66:460-85, table of contents. [PMID: 12209000 PMCID: PMC120792 DOI: 10.1128/mmbr.66.3.460-485.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current X-ray diffraction and cryoelectron microscopic data of ribosomes of eubacteria have shed considerable light on the molecular mechanisms of translation. Structural studies of the protein factors that activate ribosomes also point to many common features in the primary sequence and tertiary structure of these proteins. The reconstitution of the complex apparatus of translation has also revealed new information important to the mechanisms. Surprisingly, the latter approach has uncovered a number of proteins whose sequence and/or structure and function are conserved in all cells, indicating that the mechanisms are indeed conserved. The possible mechanisms of a new initiation factor and two elongation factors are discussed in this context.
Collapse
Affiliation(s)
- M Clelia Ganoza
- C. H. Best Institute, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6.
| | | | | |
Collapse
|
11
|
Ganoza MC, Kiel MC. A ribosomal ATPase is a target for hygromycin B inhibition on Escherichia coli ribosomes. Antimicrob Agents Chemother 2001; 45:2813-9. [PMID: 11557474 PMCID: PMC90736 DOI: 10.1128/aac.45.10.2813-2819.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrate that the transfer of fully charged aminoacyl-tRNAs into peptides directed by the MS2 RNA template requires both ATP and GTP, initiation factors (IF1, IF2, and IF3), elongation factors (EF-Tu, EF-Ts, and EF-G), and the ribosomal ATPase (RbbA). The nonhydrolyzable analogue AMPPCP inhibits the reactions, suggesting that hydrolysis of ATP is required for synthesis. The RbbA protein occurs bound to ribosomes and stimulates the ATPase activity of Escherichia coli 70S and 30S particles. The gene encoding RbbA harbors four ATP binding domains; the C-terminal half of the protein bears extensive sequence similarity to EF-3, a ribosome-dependent ATPase. Here, we show that the antibiotic hygromycin B selectively inhibits the ATPase activity of RbbA. Other antibiotics with similar effects on miscoding, streptomycin and neomycin, as well as antibiotics that impair peptide bond synthesis and translocation, had little effect on the ATPase activity of RbbA on 70S ribosomes. Immunoblot analysis indicates that at physiological concentrations, hygromycin B selectively releases RbbA from 70S ribosomes. Hygromycin B protects G1494 and A1408 in the decoding region, and RbbA enhances the reactivity of A889 and G890 of the 16S rRNA switch helix region. Cross-linking and X-ray diffraction data have revealed that this helix switch and the decoding region are in close proximity. Mutations in the switch helix (889-890) region affect translational fidelity and translocation. The binding site of hygromycin B and its known dual effect on the fidelity of decoding and translocation suggest a model for the action of this drug on ribosomes.
Collapse
Affiliation(s)
- M C Ganoza
- Banting and Best Department of Medical Research, University of Toronto, 112 College St., Toronto, Ontario M5G 1L6, Canada.
| | | |
Collapse
|
12
|
Schäferkordt J, Wagner R. Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation. Nucleic Acids Res 2001; 29:3394-403. [PMID: 11504877 PMCID: PMC55841 DOI: 10.1093/nar/29.16.3394] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effects of base change mutations in a highly conserved sequence (boxC) within the leader of bacterial ribosomal RNAs (rRNAs) was studied. The boxC sequence preceding the 16S rRNA structural gene constitutes part of the RNase III processing site, one of the first cleavage sites on the pathway to mature 16S rRNA. Moreover, rRNA leader sequences facilitate correct 16S rRNA folding, thereby assisting ribosomal subunit formation. Mutations in boxC cause cold sensitivity and result in 16S rRNA and 30S subunit deficiency. Strains in which all rRNA operons are replaced by mutant transcription units are viable. Thermodynamic studies by temperature gradient gel electrophoresis reveal that mutant transcripts have a different, less ordered structure. In addition, RNA secondary structure differences between mutant and wild-type transcripts were determined by chemical and enzymatic probing. Differences are found in the leader RNA sequence itself but also in structurally important regions of the mature 16S rRNA. A minor fraction of the rRNA transcripts from mutant operons is not processed by RNase III, resulting in a significantly extended precursor half-life compared to the wild-type. The boxC mutations also give rise to a new aberrant degradation product of 16S rRNA. This intermediate cannot be detected in strains lacking RNase III. Together the results indicate that the boxC sequence, although important for RNase III processing, is likely to serve additional functions by facilitating correct formation of the mature 16S rRNA structure. They also suggest that quality control steps are acting during ribosome biogenesis.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Cold Temperature
- Conserved Sequence/genetics
- Endoribonucleases/metabolism
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Proteins
- Half-Life
- Molecular Sequence Data
- Mutation/genetics
- Nuclease Protection Assays
- Nucleic Acid Conformation
- Operon/genetics
- Phenotype
- Protein Subunits
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribonuclease III
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Sequence Deletion/genetics
- Temperature
- Thermodynamics
Collapse
Affiliation(s)
- J Schäferkordt
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
13
|
Willumeit R, Diedrich G, Forthmann S, Beckmann J, May RP, Stuhrmann HB, Nierhaus KH. Mapping proteins of the 50S subunit from Escherichia coli ribosomes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1520:7-20. [PMID: 11470155 DOI: 10.1016/s0167-4781(01)00245-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mapping of protein positions in the ribosomal subunits was first achieved for the 30S subunit by means of neutron scattering about 15 years ago. Since the 50S subunit is almost twice as large as the 30S subunit and consists of more proteins, it was difficult to apply classical contrast variation techniques for the localisation of the proteins. Polarisation dependent neutron scattering (spin-contrast variation) helped to overcome this restriction. Here a map of 14 proteins within the 50S subunit from Escherichia coli ribosomes is presented including the proteins L17 and L20 that are not present in archeal ribosomes. The results are compared with the recent crystallographic map of the 50S subunit from the archea Haloarcula marismortui.
Collapse
Affiliation(s)
- R Willumeit
- GKSS Forschungszentrum Geesthacht GmbH, Institut für Werkstoffforschung, WFS, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Swisher J, Duarte CM, Su LJ, Pyle AM. Visualizing the solvent-inaccessible core of a group II intron ribozyme. EMBO J 2001; 20:2051-61. [PMID: 11296237 PMCID: PMC125427 DOI: 10.1093/emboj/20.8.2051] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2001] [Revised: 02/26/2001] [Accepted: 02/27/2001] [Indexed: 11/12/2022] Open
Abstract
Group II introns are well recognized for their remarkable catalytic capabilities, but little is known about their three-dimensional structures. In order to obtain a global view of an active enzyme, hydroxyl radical cleavage was used to define the solvent accessibility along the backbone of a ribozyme derived from group II intron ai5gamma. These studies show that a highly homogeneous ribozyme population folds into a catalytically compact structure with an extensively internalized catalytic core. In parallel, a model of the intron core was built based on known tertiary contacts. Although constructed independently of the footprinting data, the model implicates the same elements for involvement in the catalytic core of the intron.
Collapse
Affiliation(s)
| | - Carlos M. Duarte
- Integrated Program in Cellular, Molecular, and Biophysical Studies,
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY and Howard Hughes Medical Institute, USA Corresponding author at: Department of Biochemistry and Molecular Biophysics, Columbia University, 630 W. 168th Street, Box 36, New York, NY, USA e-mail:
| | - Linhui Julie Su
- Integrated Program in Cellular, Molecular, and Biophysical Studies,
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY and Howard Hughes Medical Institute, USA Corresponding author at: Department of Biochemistry and Molecular Biophysics, Columbia University, 630 W. 168th Street, Box 36, New York, NY, USA e-mail:
| | - Anna Marie Pyle
- Integrated Program in Cellular, Molecular, and Biophysical Studies,
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY and Howard Hughes Medical Institute, USA Corresponding author at: Department of Biochemistry and Molecular Biophysics, Columbia University, 630 W. 168th Street, Box 36, New York, NY, USA e-mail:
| |
Collapse
|
15
|
Metzler DE, Metzler CM, Sauke DJ. The Nucleic Acids. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Metzler DE, Metzler CM, Sauke DJ. Ribosomes and the Synthesis of Proteins. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Sommer I, Brimacombe R. Methods for refining interactively established models of ribosomal RNA towards a physico-chemically plausible structure. J Comput Chem 2001. [DOI: 10.1002/1096-987x(200103)22:4<407::aid-jcc1011>3.0.co;2-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Abstract
X-ray crystallographic structures have just been published for the 30S ribosomal subunit of Thermus thermophilus at 3.4 A resolution and for the 50S subunit of Haloarcula marismortui at 2.4 A. These eagerly awaited structures will provide an enormous boost to research into the mechanisms involved in protein biosynthesis.
Collapse
Affiliation(s)
- R Brimacombe
- Max-Planck-Institut für Molekulare Genetik Ihnestrasse 73 14195, Berlin, Germany.
| |
Collapse
|
19
|
Galimand M, Gerbaud G, Courvalin P. Spectinomycin resistance in Neisseria spp. due to mutations in 16S rRNA. Antimicrob Agents Chemother 2000; 44:1365-6. [PMID: 10770780 PMCID: PMC89873 DOI: 10.1128/aac.44.5.1365-1366.2000] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spectinomycin resistance in clinical isolates of Neisseria meningitidis and Neisseria gonorrhoeae was found to be due to mutations G1064C and C1192U (Escherichia coli numbering) in 16S rRNA genes, respectively.
Collapse
Affiliation(s)
- M Galimand
- Unité des Agents Antibactériens, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
20
|
Mueller F, Sommer I, Baranov P, Matadeen R, Stoldt M, Wöhnert J, Görlach M, van Heel M, Brimacombe R. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution. J Mol Biol 2000; 298:35-59. [PMID: 10756104 DOI: 10.1006/jmbi.2000.3635] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Escherichia coli 23 S and 5 S rRNA molecules have been fitted helix by helix to a cryo-electron microscopic (EM) reconstruction of the 50 S ribosomal subunit, using an unfiltered version of the recently published 50 S reconstruction at 7.5 A resolution. At this resolution, the EM density shows a well-defined network of fine structural elements, in which the major and minor grooves of the rRNA helices can be discerned at many locations. The 3D folding of the rRNA molecules within this EM density is constrained by their well-established secondary structures, and further constraints are provided by intra and inter-rRNA crosslinking data, as well as by tertiary interactions and pseudoknots. RNA-protein cross-link and foot-print sites on the 23 S and 5 S rRNA were used to position the rRNA elements concerned in relation to the known arrangement of the ribosomal proteins as determined by immuno-electron microscopy. The published X-ray or NMR structures of seven 50 S ribosomal proteins or RNA-protein complexes were incorporated into the EM density. The 3D locations of cross-link and foot-print sites to the 23 S rRNA from tRNA bound to the ribosomal A, P or E sites were correlated with the positions of the tRNA molecules directly observed in earlier reconstructions of the 70 S ribosome at 13 A or 20 A. Similarly, the positions of cross-link sites within the peptidyl transferase ring of the 23 S rRNA from the aminoacyl residue of tRNA were correlated with the locations of the CCA ends of the A and P site tRNA. Sites on the 23 S rRNA that are cross-linked to the N termini of peptides of different lengths were all found to lie within or close to the internal tunnel connecting the peptidyl transferase region with the presumed peptide exit site on the solvent side of the 50 S subunit. The post-transcriptionally modified bases in the 23 S rRNA form a cluster close to the peptidyl transferase area. The minimum conserved core elements of the secondary structure of the 23 S rRNA form a compact block within the 3D structure and, conversely, the points corresponding to the locations of expansion segments in 28 S rRNA all lie on the outside of the structure.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Computer Simulation
- Conserved Sequence/genetics
- Cross-Linking Reagents
- Cryoelectron Microscopy
- Crystallography, X-Ray
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Fungal Proteins/metabolism
- Microscopy, Immunoelectron
- Models, Molecular
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular
- Nucleic Acid Conformation
- Peptide Elongation Factor Tu/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Bacterial/ultrastructure
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/ultrastructure
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA, Ribosomal, 5S/ultrastructure
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer/ultrastructure
- Ribonucleases/metabolism
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Ricin/metabolism
- Thermodynamics
Collapse
Affiliation(s)
- F Mueller
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, Berlin, 14195, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Miyamoto A, Usui M, Yamasaki N, Yamada N, Kuwano E, Tanaka I, Kimura M. Role of the N-terminal region of ribosomal protein S7 in its interaction with 16S rRNA which binds to the concavity formed by the beta-ribbon arm and the alpha-helix. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:591-8. [PMID: 10561602 DOI: 10.1046/j.1432-1327.1999.00901.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ribosomal protein S7, a primary 16S rRNA-binding protein, plays an essential role in stabilizing the 3' major domain of 16S rRNA and also in feedback regulation of the str operon, as a translational repressor. We examined amino acid residues in ribosomal protein S7 from Bacillus stearothermophilus (BstS7) that are essential for 16S rRNA binding. Truncation of the N-terminal 10 residues of BstS7 abolished its binding to 16S rRNA, whereas removal of the C-terminal eight residues had no effect on the binding activity. Subsequently, we used site-directed mutagenesis to identify essential basic residues in the N-terminal region for 16S rRNA binding. Mutation of Arg3 and Lys8 significantly weakened the binding activity, and a smaller decrease in binding activity was observed with Arg2 and Arg9 mutations. These observations indicate that N-terminal basic residues, especially Arg3 and Lys8, play a crucial role as positively charged recognition groups for the negatively charged phosphate backbone of 16S rRNA. In addition, the mutagenesis study showed that Arg75, Arg78, Arg94, and Arg101, which are located in a concavity formed by the beta-ribbon arm and the alpha-helix (alpha4), individually make only a small contribution to 16S rRNA binding, but together probably form a positively charged binding site for 16S rRNA. With regard to aromatic residues, Tyr84 on the tip of the beta-ribbon arm was found to be involved in 16S rRNA binding, whereas the conserved aromatic residues Trp102 and Tyr106 in the concavity had little effect. We then probed the 16S rRNA-binding site(s) for the N-terminal region of S7 with iron tethered to the mutant of BstS7 containing a single cysteine residue at position 4. The N-terminal region of S7 is placed in close proximity to helix 43 in the 16S rRNA. Probing also revealed additional cleavages between nucleotides 1397 and 1438, near the P-site region in 16S rRNA. This finding is consistent with a three-dimensional model of 16S rRNA that shows close proximity of helix 43 to the P-site during three-dimensional folding.
Collapse
MESH Headings
- Arginine/chemistry
- Circular Dichroism
- Dose-Response Relationship, Drug
- Geobacillus stearothermophilus/metabolism
- Hydroxyl Radical
- Kinetics
- Lysine/chemistry
- Models, Genetic
- Mutagenesis, Site-Directed
- Mutation
- Nucleic Acid Conformation
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- Ribosomal Proteins/chemistry
- Spectrometry, Fluorescence
- Tryptophan/chemistry
- Tyrosine/chemistry
Collapse
Affiliation(s)
- A Miyamoto
- Laboratory of Biochemistry, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Besançon W, Wagner R. Characterization of transient RNA-RNA interactions important for the facilitated structure formation of bacterial ribosomal 16S RNA. Nucleic Acids Res 1999; 27:4353-62. [PMID: 10536142 PMCID: PMC148716 DOI: 10.1093/nar/27.22.4353] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The co-transcribed leader sequences of bacterial rRNA are known to affect the structure and function of the small ribosomal subunits. Base changes in the leader nut -like sequence elements have been shown to cause misfolded but correctly processed 16S rRNA structures at low growth temperature. Transient interactions of leader sequences with the nascent 16S rRNA are considered to guide rRNA folding and to facilitate correct structure formation. In order to understand this chaperone-like activity of the leader RNA we have analyzed the thermodynamic stabilities of wild-type and mutant leader transcripts. We show here that base changes cause subtle differences in the melting profiles of the corresponding leader transcripts. Furthermore, we show that direct interaction between leader transcripts and the 16S rRNA is limited to the 5'-domain of the 16S rRNA for both wild-type and mutant leaders. Binding studies of mutant and wild-type leader transcripts to 16S rRNA revealed small changes in the affinities and the thermal stabilities as a consequence of the base changes. Different complex stabilities as a function of the Mg(2+) ion concentration indicated that mutant and wild-type leader transcripts interact differently with the 16S rRNA, consistent with a less stable and tightly folded structure of the mutant leader. Employing time-resolved oligonucleotide hybridization assays we could show different folding kinetics for 16S rRNA molecules when linked to wild-type leader, mutant leader or in the absence of leader RNA. The studies help to understand how bacterial rRNA leader transcripts may affect the folding of the small subunit rRNA.
Collapse
Affiliation(s)
- W Besançon
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
23
|
Serdyuk I, Ulitin A, Kolesnikov I, Vasiliev V, Aksenov V, Zaccai G, Svergun D, Kozin M, Willumeit R. Structure of a beheaded 30 S ribosomal subunit from Thermus thermophilus. J Mol Biol 1999; 292:633-9. [PMID: 10497027 DOI: 10.1006/jmbi.1999.3109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 22 S ribonucleoproten particles containing the 5' (body) and the central (platform) domains of the Thermus thermophilus 30 S subunit has been studied by sedimentation, neutron scattering and electron microscopy. The RNP particles have been obtained by oligonucleotide-directed cleavage of 16 S RNA with ribonulease H in the region of the 900th nucleotide of the protein-deficient derivatives of the 30 S subunits. It is shown that these RNP particles are very compact, though their form and dimensions differ slightly from those expected from the electron microscopy model of the 30 S subunit beheaded by computer simulation. The particles are subdivided into two structural domains whose mutual arrangement differs from that of the corresponding morphological parts of the native 30 S subunit. Electron microscopy demonstrates that the mutual arrangement of domains in the RNP particles is not strictly fixed suggesting that interaction with the third domain of the 30 S subunit is a requisite for their correct fitting.
Collapse
Affiliation(s)
- I Serdyuk
- Institute of Protein Research, Pushchino, Moscow Region, 142292, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Knorre DG, Godovikova TS. Chemical approaches to the study of nucleoprotein structures. Russ Chem Bull 1999. [DOI: 10.1007/bf02495279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Gabashvili IS, Agrawal RK, Grassucci R, Frank J. Structure and structural variations of the Escherichia coli 30 S ribosomal subunit as revealed by three-dimensional cryo-electron microscopy. J Mol Biol 1999; 286:1285-91. [PMID: 10064696 DOI: 10.1006/jmbi.1999.2538] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A three-dimensional reconstruction of the 30 S subunit of the Escherichia coli ribosome was obtained at 23 A resolution. Because of the improved resolution, many more structural details are seen as compared to those obtained in earlier studies. Thus, the new structure is more suitable for comparison with the 30 S subunit part of the 70 S ribosome, whose structure is already known at a better resolution. In addition, we observe relative and, to some extent, independent movements of three main structural domains of the 30 S subunit, namely head, platform and the main body, which lead to partial blurring of the reconstructed volume. An attempt to subdivide the data set into conformationally defined subsets reveals the existence of conformers in which these domains have different orientations with respect to one another. This result suggests the existence of dynamic properties of the 30 S subunit that might be required for facilitating its interactions with mRNA, tRNA and other ligands during protein biosynthesis.
Collapse
Affiliation(s)
- I S Gabashvili
- Wadsworth Center, Howard Hughes Medical Institute, Department of Biomedical Sciences, State University of New York at Albany NY 12201-0509, USA.
| | | | | | | |
Collapse
|
26
|
Agrawal RK, Lata RK, Frank J. Conformational variability in Escherichia coli 70S ribosome as revealed by 3D cryo-electron microscopy. Int J Biochem Cell Biol 1999; 31:243-54. [PMID: 10216957 DOI: 10.1016/s1357-2725(98)00149-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
During protein biosynthesis, ribosomes are believed to go through a cycle of conformational transitions. We have identified some of the most variable regions of the E. coli 70S ribosome and its subunits, by means of cryo-electron microscopy and three-dimensional (3D) reconstruction. Conformational changes in the smaller 30S subunit are mainly associated with the functionally important domains of the subunit, such as the neck and the platform, as seen by comparison of heat-activated, non-activated and 50S-bound states. In the larger 50S subunit the most variable regions are the L7/L12 stalk, central protuberance and the L1-protein, as observed in various tRNA-70S ribosome complexes. Difference maps calculated between 3D maps of ribosomes help pinpoint the location of ribosomal regions that are most strongly affected by conformational transitions. These results throw direct light on the dynamic behavior of the ribosome and help in understanding the role of these flexible domains in the translation process.
Collapse
Affiliation(s)
- R K Agrawal
- Wadsworth Center, New York State Department of Health, Albany 12201-0509, USA
| | | | | |
Collapse
|
27
|
VanLoock MS, Harris BA, Harvey SC. To knot or not to knot? Examination of 16S ribosomal RNA models. J Biomol Struct Dyn 1998; 16:709-13. [PMID: 10052626 DOI: 10.1080/07391102.1998.10508282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The presence of topological knots in large RNA structures is highly unlikely given that 1) no RNA structures determined thus far contain topological knots, 2) secondary structure maps for most RNA molecules are knot free, 3) there are no known RNA topoisomerases, and 4) it is difficult to imagine how knots could be formed specifically and uniquely during transcription. Since native RNA structures probably lack topological knots, models of these RNA molecules should be free of knots as well. Therefore, we have examined four existing models for the 30S ribosomal subunit to determine if any of the three domains of the 16S rRNA molecule is knotted. We found that all but one model had at least one knotted domain. We conclude that models of large RNA molecules should be examined for knotting before publication.
Collapse
Affiliation(s)
- M S VanLoock
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 35294-0005, USA
| | | | | |
Collapse
|
28
|
Gonzalez P, Labarère J. Sequence and secondary structure of the mitochondrial small-subunit rRNA V4, V6, and V9 domains reveal highly species-specific variations within the genus Agrocybe. Appl Environ Microbiol 1998; 64:4149-60. [PMID: 9797259 PMCID: PMC106621 DOI: 10.1128/aem.64.11.4149-4160.1998] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/1998] [Accepted: 08/08/1998] [Indexed: 11/20/2022] Open
Abstract
A comparative study of variable domains V4, V6, and V9 of the mitochondrial small-subunit (SSU) rRNA was carried out with the genus Agrocybe by PCR amplification of 42 wild isolates belonging to 10 species, Agrocybe aegerita, Agrocybe dura, Agrocybe chaxingu, Agrocybe erebia, Agrocybe firma, Agrocybe praecox, Agrocybe paludosa, Agrocybe pediades, Agrocybe alnetorum, and Agrocybe vervacti. Sequencing of the PCR products showed that the three domains in the isolates belonging to the same species were the same length and had the same sequence, while variations were found among the 10 species. Alignment of the sequences showed that nucleotide motifs encountered in the smallest sequence of each variable domain were also found in the largest sequence, indicating that the sequences evolved by insertion-deletion events. Determination of the secondary structure of each domain revealed that the insertion-deletion events commonly occurred in regions not directly involved in the secondary structure (i.e., the loops). Moreover, conserved sequences ranging from 4 to 25 nucleotides long were found at the beginning and end of each domain and could constitute genus-specific sequences. Comparisons of the V4, V6, and V9 secondary structures resulted in identification of the following four groups: (i) group I, which was characterized by the presence of additional P23-1 and P23-3 helices in the V4 domain and the lack of the P49-1 helix in V9 and included A. aegerita, A. chaxingu, and A. erebia; (ii) group II, which had the P23-3 helix in V4 and the P49-1 helix in V9 and included A. pediades; (iii) group III, which did not have additional helices in V4, had the P49-1 helix in V9 and included A. paludosa, A. firma, A. alnetorum, and A. praecox; and (iv) group IV, which lacked both the V4 additional helices and the P49-1 helix in V9 and included A. vervacti and A. dura. This grouping of species was supported by the structure of a consensus tree based on the variable domain sequences. The conservation of the sequences of the V4, V6, and V9 domains of the mitochondrial SSU rRNA within species and the high degree of interspecific variation found in the Agrocybe species studied open the way for these sequences to be used as specific molecular markers of the Basidiomycota.
Collapse
Affiliation(s)
- P Gonzalez
- Laboratory of Molecular Genetics and Breeding of Cultivated Mushrooms, INRA-University Victor Segalen Bordeaux 2, 33883 Villenave d'Ornon Cédex, France
| | | |
Collapse
|
29
|
Jünemann R, Burkhardt N, Wadzack J, Schmitt M, Willumeit R, Stuhrmann HB, Nierhaus KH. Small angle scattering in ribosomal structure research: localization of the messenger RNA within ribosomal elongation states. Biol Chem 1998; 379:807-18. [PMID: 9705144 DOI: 10.1515/bchm.1998.379.7.807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Besides EM and biochemical studies small angle scattering (SAS) examinations have contributed significantly to our current knowledge about the ribosomal structure. SAS does not only allow the validation of competing models but permits independent model building. However, the major contribution of SAS to ribosomal structure research derived from its ability to reveal the spatial distribution of the individual ribosomal components (57 in the E. coli ribosome) within the ribosomal structure. More recently, an improved scattering method (proton-spin contrast variation) made it possible also to address the question of mapping functional ligands in defined ribosomal elongation states. Here, we review the contributions of SAS to the current understanding of the ribosome. Furthermore we present the direct localization of a small mRNA fragment within 70S elongation complexes and describe its movement upon the translocation reaction. The successful mapping of this fragment comprising only about 0.6% of the total mass of the complex proves that proton-spin contrast-variation is a powerful tool in modern ribosome research.
Collapse
Affiliation(s)
- R Jünemann
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Davies C, Bussiere DE, Golden BL, Porter SJ, Ramakrishnan V, White SW. Ribosomal proteins S5 and L6: high-resolution crystal structures and roles in protein synthesis and antibiotic resistance. J Mol Biol 1998; 279:873-88. [PMID: 9642068 DOI: 10.1006/jmbi.1998.1780] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antibiotic resistance is rapidly becoming a major medical problem. Many antibiotics are directed against bacterial ribosomes, and mutations within both the RNA and protein components can render them ineffective. It is well known that the majority of these antibiotics act by binding to the ribosomal RNA, and it is of interest to understand how mutations in the ribosomal proteins can produce resistance. Translational accuracy is one important target of antibiotics, and a number of ribosomal protein mutations in Escherichia coli are known to modulate the proofreading mechanism of the ribosome. Here we describe the high-resolution structures of two such ribosomal proteins and characterize these mutations. The S5 protein, from the small ribosomal unit, is associated with two types of mutations: those that reduce translational fidelity and others that produce resistance to the antibiotic spectinomycin. The L6 protein, from the large subunit, has mutations that cause resistance to several aminoglycoside antibiotics, notably gentamicin. In both proteins, the mutations occur within their putative RNA-binding sites. The L6 mutations are particularly drastic because they result in large deletions of an RNA-binding region. These results support the hypothesis that the mutations create local distortions of the catalytic RNA component.When combined with a variety of structural and biochemical data, these mutations also become important probes of the architecture and function of the translational machinery. We propose that the C-terminal half of S5, which contains the accuracy mutations, organizes RNA structures associated with the decoding region, and the N-terminal half, which contains the spectinomycin-resistance mutations, directly interacts with an RNA helix that binds this antibiotic. As regards L6, we suggest that the mutations indirectly affect proofreading by locally distorting the EF-Tu.GTP.aminoacyl tRNA binding site on the large subunit.
Collapse
Affiliation(s)
- C Davies
- Department of Structural Biology, St. Jude Children's Research Hospital, 332 North Lauderdale St., Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
31
|
Burkhardt N, Jünemann R, Spahn CM, Nierhaus KH. Ribosomal tRNA binding sites: three-site models of translation. Crit Rev Biochem Mol Biol 1998; 33:95-149. [PMID: 9598294 DOI: 10.1080/10409239891204189] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first models of translation described protein synthesis in terms of two operationally defined tRNA binding sites, the P-site for the donor substrate, the peptidyl-tRNA, and the A-site for the acceptor substrates, the aminoacyl-tRNAs. The discovery and analysis of the third tRNA binding site, the E-site specific for deacylated tRNAs, resulted in the allosteric three-site model, the two major features of which are (1) the reciprocal relationship of A-site and E-site occupation, and (2) simultaneous codon-anticodon interactions of both tRNAs present at the elongating ribosome. However, structural studies do not support the three operationally defined sites in a simple fashion as three topographically fixed entities, thus leading to new concepts of tRNA binding and movement: (1) the hybrid-site model describes the tRNAs' movement through the ribosome in terms of changing binding sites on the 30S and 50S subunits in an alternating fashion. The tRNAs thereby pass through hybrid binding states. (2) The alpha-epsilon model introduces the concept of a movable tRNA-binding domain comprising two binding sites, termed alpha and epsilon. The translocation movement is seen as a result of a conformational change of the ribosome rather than as a diffusion process between fixed binding sites. The alpha-epsilon model reconciles most of the experimental data currently available.
Collapse
MESH Headings
- Allosteric Site/genetics
- Animals
- Base Sequence
- Escherichia coli
- Humans
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Peptide Chain Elongation, Translational/genetics
- Protein Biosynthesis
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- N Burkhardt
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | | | |
Collapse
|
32
|
Balzer M, Wagner R. Mutations in the leader region of ribosomal RNA operons cause structurally defective 30 S ribosomes as revealed by in vivo structural probing. J Mol Biol 1998; 276:547-57. [PMID: 9551096 DOI: 10.1006/jmbi.1997.1556] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biogenesis of functional ribosomes is regulated in a very complex manner, involving different proteins and RNA molecules. RNAs are not only essential components of both ribosomal subunits but also transiently interacting factors during particle formation. In eukaryotes snoRNAs act as molecular chaperones to assist maturation, modification and assembly. In a very similar way highly conserved leader sequences of bacterial rRNA operons are involved in the correct formation of 30 S ribosomal subunits. Certain mutations in the rRNA leader region cause severe growth defects due to malfunction of ribosomes which are assembled from such transcription units. To understand how the leader sequences act to facilitate the formation of the correct 30 S subunits we performed in vivo chemical probing to assess structural differences between ribosomes assembled either from rRNA transcribed from wild-type operons or from operons which contain mutations in the rRNA leader region. Cells transformed with plasmids containing the respective rRNA operons were reacted with dimethylsulphate (DMS). Ribosomes were isolated by sucrose gradient centrifugation and modified nucleotides within the 16 S rRNA were identified by primer extension reaction. Structural differences between ribosomes from wild-type and mutant rRNA operons occur in several clusters within the 16 S rRNA secondary structure. The most prominent differences are located in the central domain including the universally conserved pseudoknot structure which connects the 5', the central and the 3' domain of 16 S rRNA. Two other clusters with structural differences fall in the 5' domain where the leader had been shown to interact with mature 16 S rRNA and within the ribosomal protein S4 binding site. The other differences in structure are located in sites which are also known as sites for the action of several antibiotics. The data explain the functional defects of ribosomes from rRNA operons with leader mutations and help to understand the altered biogenesis pathway from mutations in an rRNA leader region to the formation of functionally defective ribosomes.
Collapse
Affiliation(s)
- M Balzer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | |
Collapse
|
33
|
Affiliation(s)
- K S Wilson
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
34
|
Agalarov SC, Zheleznyakova EN, Selivanova OM, Zheleznaya LA, Matvienko NI, Vasiliev VD, Spirin AS. In vitro assembly of a ribonucleoprotein particle corresponding to the platform domain of the 30S ribosomal subunit. Proc Natl Acad Sci U S A 1998; 95:999-1003. [PMID: 9448274 PMCID: PMC18650 DOI: 10.1073/pnas.95.3.999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A fragment of the 16S RNA of Thermus thermophilus corresponding to the central domain (nucleotides 547-895) has been prepared by transcription in vitro. Incubation of this fragment with the total 30S ribosomal proteins has resulted in the formation of a compact 12S ribonucleoprotein particle. This particle contained five T. thermophilus proteins corresponding to Escherichia coli ribosomal proteins S6, S8, S11, S15, and possibly S18, all of which were previously shown to interact with the central domain of the 16S RNA and to be localized in the platform (side bulge) of the 30S ribosomal subunit. When examined by electron microscopy, isolated particles have an appearance that is similar in size and shape to the corresponding morphological features of the 30S subunit. We conclude that the central domain of the 16S RNA can independently and specifically assemble with a defined subset of ribosomal proteins into a compact ribonucleoprotein particle corresponding to the platform (side bulge) of the 30S subunit.
Collapse
MESH Headings
- Base Sequence
- Escherichia coli
- Microscopy, Electron
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Folding
- RNA, Bacterial/chemistry
- RNA, Bacterial/ultrastructure
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/ultrastructure
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/ultrastructure
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/ultrastructure
- Thermus thermophilus/genetics
- Thermus thermophilus/ultrastructure
- Transcription, Genetic
Collapse
Affiliation(s)
- S C Agalarov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142292 Russia
| | | | | | | | | | | | | |
Collapse
|
35
|
Bullard JM, van Waes MA, Bucklin DJ, Rice MJ, Hill WE. Regions of 16S ribosomal RNA proximal to transfer RNA bound at the P-site of Escherichia coli ribosomes. Biochemistry 1998; 37:1350-6. [PMID: 9477963 DOI: 10.1021/bi9720540] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unmodified uridines have been randomly replaced by 4-thiouridines in transfer RNAPhe (tRNAPhe) transcribed in a T7 RNA polymerase system. These 4-thiouridines serve as conjugation sites for attachment of the cleavage reagent 5-iodoacetamido-1,10-o-phenanthroline (IoP). In a reducing environment, when complexed with Cu2+, 1,10-o-phenanthroline causes cleavage of nearby nucleic acids. We show here that tRNA-phenanthroline (tRNA-oP) conjugates, when bound at the P-site of 70S ribosomes and 30S ribosomal subunits, caused cleavage of ribosomal RNA (rRNA) mainly in domains I and II of 16S rRNA. Some positions were cleaved only when tRNA-oP was bound to 70S ribosomes or to 30S ribosomal subunits. In domain I, most cleavage sites occurred in or near the 530 pseudoknot region. In domain II, most nucleotides cleaved were near the 690 region and the 790 region. The only positions cleaved in domain III were near the 1050 region. There were no discernible nucleotides cleaved near the 1400 (decoding) region. Our results corroborated results of others, which have shown these sites to be protected from chemical modification by tRNA binding or to be cross-linked to P-site-bound tRNA. Use of cleavage reagents tethered to tRNA provides evidence for additional regions of rRNA that may be proximal to bound tRNA.
Collapse
Affiliation(s)
- J M Bullard
- Division of Biological Science, University of Montana, Missoula 59812, USA
| | | | | | | | | |
Collapse
|
36
|
Orr JW, Hagerman PJ, Williamson JR. Protein and Mg(2+)-induced conformational changes in the S15 binding site of 16 S ribosomal RNA. J Mol Biol 1998; 275:453-64. [PMID: 9466923 DOI: 10.1006/jmbi.1997.1489] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Bacillus stearothermophilus ribosomal protein S15 binds to the central domain of the 16 S rRNA inducing a conformational change in a three-way helical junction. To understand the nature of this conformational change, extended-helical junctions were prepared to examine the effects of S15 or Mg2+ binding on the relative helical orientation using native gel electrophoretic mobility and transient electric birefringence. The free junction is planar with approximately 120 degrees interhelical angles, whereas S15 and Mg2+ yield a junction conformation that remains planar in which two helices, 21 and 22, become colinear and the third, helix 20, forms a 60 degrees angle with respect to helix 22. This conformational change is thought to be important for directing the assembly of the central domain of the 30 S ribosomal subunit.
Collapse
Affiliation(s)
- J W Orr
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
37
|
Poot RA, van den Worm SH, Pleij CW, van Duin J. Base complementarity in helix 2 of the central pseudoknot in 16S rRNA is essential for ribosome functioning. Nucleic Acids Res 1998; 26:549-53. [PMID: 9421514 PMCID: PMC147307 DOI: 10.1093/nar/26.2.549] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Helix 2 of the central pseudoknot structure in Escherichia coli 16S rRNA is formed by a long-distance interaction between nt 17-19 and 918-916, resulting in three base pairs: U17-A918, C18-G917and A19-U916. Previous work has shown that disruption of the central base pair abolishes ribosomal activity. We have mutated the first and last base pairs and tested the mutants for their translational activity in vivo , using a specialized ribosome system. Mutations that disrupt Watson-Crick base pairing result in strongly impaired translational activity. An exception is the mutation U916-->G, creating an A.G pair, which shows almost no decrease in activity. Mutations that maintain base complementarity have little or no impact on translational efficiency. Some of the introduced base pair substitutions substantially alter the stability of helix 2, but this does not influence ribosome functioning, neither at 42 nor at 28 degrees C. Therefore, our results do not support models in which the pseudoknot is periodically disrupted. Rather, the central pseudoknot structure is suggested to function as a permanent structural element necessary for proper organization in the center of the 30S subunit.
Collapse
Affiliation(s)
- R A Poot
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
38
|
Wilson KS, Noller HF. Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell 1998; 92:131-9. [PMID: 9489706 DOI: 10.1016/s0092-8674(00)80905-8] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interaction of translational elongation factor EF-G with the ribosome in the posttranslocational state has been mapped by directed hydroxyl radical probing. Localized hydroxyl radicals were generated from Fe(II) tethered to 18 different sites on the surface of EF-G bound to the ribosome. Cleavages in ribosomal RNA were mapped, providing proximity relationships between specific sites of EF-G and rRNA elements of the ribosome. Collectively, these data provide a set of constraints by which EF-G can be positioned unambiguously in the ribosome at low resolution. The proximities of different domains of EF-G to well-characterized elements of rRNA have additional implications for the mechanism of protein synthesis.
Collapse
Affiliation(s)
- K S Wilson
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
39
|
Abstract
Mutants of an archaeon Halobacterium halobium, resistant to the universal inhibitor of translation, pactamycin, were isolated. Pactamycin resistance correlated with the presence of mutations in the 16 S rRNA gene of H. halobium single rRNA operon. Three types of mutations were found in pactamycin resistant cells, A694G, C795U and C796U (Escherichia coli 16 S rRNA numeration) located distantly in rRNA primary structure but probably neighboring each other in the three-dimensional structure. Pactamycin resistance mutations either overlapped (C795U) or were located in the immediate vicinity of nucleotides protected by the drug in E. coli and H. halobium 16 S rRNA indicating that corresponding rRNA sites might be directly involved in pactamycin binding. Ribosomal functions were not affected significantly either by mutation of C795 (one of the positions protected by the P-site-bound tRNA), or by mutations of A694 and C796 (which neighbor nucleotides protected by tRNA) suggesting that tRNA-dependent protections of C795 and G693 are explained by a conformational change in the ribosome induced by the P-site-bound tRNA. A novel mode of pactamycin action is proposed suggesting that pactamycin restricts structural transitions in 16 S rRNA preventing the ribosome from adopting a functional conformation induced by tRNA binding.
Collapse
Affiliation(s)
- A S Mankin
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago 60607-7173, USA
| |
Collapse
|
40
|
Harada N, Sano K, Kimura M, Hosaka H, Nakagawa A, Tanaka I. Crystallization and preliminary X-ray crystallographic study of the ribosomal protein S7 from Bacillus stearothermophilus. J Struct Biol 1997; 120:112-4. [PMID: 9356300 DOI: 10.1006/jsbi.1997.3907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Overproduction and crystallization of Bacillus stearothermophilus ribosomal protein S7 (BstS7), a primary 16S rRNA binding protein and also a translational repressor protein, have been performed to analyze its three-dimensional structure by X-ray crystallography. Ribosomal protein BstS7 was expressed in the cytoplasmic fraction of the E. coli cells and purified to homogeneity. This recombinant BstS7 was used to produce crystals with P2(1) symmetry that diffracted to 2.5 A resolution which are suitable for high-resolution X-ray crystallographic analysis.
Collapse
Affiliation(s)
- N Harada
- Laboratory of Biochemistry, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Hosaka H, Nakagawa A, Tanaka I, Harada N, Sano K, Kimura M, Yao M, Wakatsuki S. Ribosomal protein S7: a new RNA-binding motif with structural similarities to a DNA architectural factor. Structure 1997; 5:1199-208. [PMID: 9331423 DOI: 10.1016/s0969-2126(97)00270-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The ribosome is a ribonucleoprotein complex which performs the crucial function of protein biosynthesis. Its role is to decode mRNAs within the cell and to synthesize the corresponding proteins. Ribosomal protein S7 is located at the head of the small (30S) subunit of the ribosome and faces into the decoding centre. S7 is one of the primary 16S rRNA-binding proteins responsible for initiating the assembly of the head of the 30S subunit. In addition, S7 has been shown to be the major protein component to cross-link with tRNA molecules bound at both the aminoacyl-tRNA (A) and peptidyl-tRNA (P) sites of the ribosome. The ribosomal protein S7 clearly plays an important role in ribosome function. It was hoped that an atomic-resolution structure of this protein would aid our understanding of ribosomal mechanisms. RESULTS The structure of ribosomal protein S7 from Bacillus stearothermophilus has been solved at 2.5 A resolution using multiwavelength anomalous diffraction and selenomethionyl-substituted proteins. The molecule consists of a helical hydrophobic core domain and a beta-ribbon arm extending from the hydrophobic core. The helical core domain is composed of a pair of entangled helix-turn-helix motifs; the fold of the core is similar to that of a DNA architectural factor. Highly conserved basic and aromatic residues are clustered on one face of the S7 molecule and create a 16S rRNA contact surface. CONCLUSIONS The molecular structure of S7, together with the results of previous cross-linking experiments, suggest how this ribosomal protein binds to the 3' major domain of 16S rRNA and mediates the folding of 16S rRNA to create the ribosome decoding centre.
Collapse
Affiliation(s)
- H Hosaka
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ulitin AB, Agalarov SC, Serdyuk IN. Preparation of a 'beheaded' derivative of the 30S ribosomal subunit. Biochimie 1997; 79:523-6. [PMID: 9451454 DOI: 10.1016/s0300-9084(97)82745-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oligodesoxyribonucleotide-directed cleavage of protein-deficient Thermus thermophilus derivatives of the 30S ribosomal subunits with RNase H is described. A homogeneous RNP fragment has been isolated as a result of the cleavage and subsequent purification in the sucrose gradient. It corresponds to the central and 5' domains of the 30S ribosomal subunit. The high compactness of the fragment in solution suggests that it can be considered as a 'beheaded' derivative of the 30S ribosomal subunit. The absence of a reconstitution stage in isolation of the 22S RNP fragment provides for its preparation in large amounts.
Collapse
Affiliation(s)
- A B Ulitin
- Institute of Protein Research, Russian Academy of Sciences, Moscow Region, Russia
| | | | | |
Collapse
|
43
|
Svergun DI, Burkhardt N, Pedersen JS, Koch MH, Volkov VV, Kozin MB, Meerwink W, Stuhrmann HB, Diedrich G, Nierhaus KH. Solution scattering structural analysis of the 70 S Escherichia coli ribosome by contrast variation. II. A model of the ribosome and its RNA at 3.5 nm resolution. J Mol Biol 1997; 271:602-18. [PMID: 9281428 DOI: 10.1006/jmbi.1997.1191] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Selectively deuterated 70 S E. coli ribosomes and isolated 30 S and 50 S subunits were analyzed by X-ray and neutron solution scattering. The resulting contrast variation data set (42 curves in total) was proven to be consistent in describing the ribosome as a four-phase system composed of the protein and rRNA moieties of both subunits. This data set thus provides ten times more information than a single scattering curve. A solid body four-phase model of the 70 S ribosome at low resolution was built from the envelope functions of the 30 S and 50 S subunits and of those of the corresponding RNA moieties. The four envelopes were parameterized at a resolution of 3.5 nm using spherical harmonics and taking into account interface layers between the phases. The initial approximation for the envelopes of the subunits was taken from electron microscopic data presented recently by J. Frank and co-workers (Albany); the rRNA envelopes were initially approximated by spheres. The optimization and the refinement of the model proceeded by non-linear least squares minimization fitting the available experimental data. The refined envelopes of the subunits differ by about 10% from the starting approximation and the shape of the final 70 S model lies between the outer envelopes of the models by Frank and by M. von Heel & R. Brimacombe (Berlin). The rRNA moiety in the 30 S subunit is more anisometric than the subunit itself, whereas the rRNA of the 50 S subunit forms a compact core. The rRNAs protrude to the surfaces of the subunits and occupy approximately 30 to 40% of the corresponding surface areas. X-ray scattering curves of the two main functional elongation 70 S complexes (pre- and post-translocational) differ only marginally from those of the non-programmed ribosomes, suggesting that the low resolution four-phase model is also valid for the elongating 70 S ribosome.
Collapse
Affiliation(s)
- D I Svergun
- Hamburg Outstation, Notkestrasse 85, Hamburg, D-22603, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mueller F, Brimacombe R. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. II. The RNA-protein interaction data. J Mol Biol 1997; 271:545-65. [PMID: 9281425 DOI: 10.1006/jmbi.1997.1211] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The map of the mass centres of the 21 proteins from the Escherichia coli 30 S ribosomal subunit, as determined by neutron scattering, was fitted to a cryoelectron microscopic (cryo-EM) model at a resolution of 20 A of 70 S ribosomes in the pre-translocational state, carrying tRNA molecules at the A and P sites. The fit to the 30 S moiety of the 70 S particles was accomplished with the help of the well-known distribution of the ribosomal proteins in the head, body and side lobe regions of the 30 S subunit, as determined by immuno electron microscopy (IEM). Most of the protein mass centres were found to lie close to the surface (or even outside) of the cryo-EM contour of the 30 S subunit, supporting the idea that the ribosomal proteins are arranged peripherally around the rRNA. The ribosomal protein distribution was then compared with the corresponding model for the 16 S rRNA, fitted to the same EM contour (described in an accompanying paper), in order to analyse the mutual compatibility of the arrangement of proteins and rRNA in terms of the available RNA-protein interaction data. The information taken into account included the hydroxyl radical and base foot-printing data from Noller's laboratory, and our own in situ cross-linking results. Proteins S1 and S14 were not considered, due to the lack of RNA-protein data. Among the 19 proteins analysed, 12 (namely S2, S4, S5, S7, S8, S9, S10, S11, S12, S15, S17 and S21) showed a fit to the rRNA model that varied from being excellent to at least acceptable. Of the remaining 7, S3 and S13 showed a rather poor fit, as did S18 (which is considered in combination with S6 in the foot-printing experiments). S16 was difficult to evaluate, as the foot-print data for this protein cover a large area of the rRNA. S19 and S20 showed a bad fit in terms of the neutron map, but their foot-print and cross-link sites were clustered into compact groups in the rRNA model in those regions of the 30 S subunit where these proteins have respectively been located by IEM studies.
Collapse
Affiliation(s)
- F Mueller
- AG-Ribosomen, Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, Berlin, 14195, Germany
| | | |
Collapse
|
45
|
Mueller F, Stark H, van Heel M, Rinke-Appel J, Brimacombe R. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. III. The topography of the functional centre. J Mol Biol 1997; 271:566-87. [PMID: 9281426 DOI: 10.1006/jmbi.1997.1212] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We describe the locations of sites within the 3D model for the 16 S rRNA (described in two accompanying papers) that are implicated in ribosomal function. The relevant experimental data originate from many laboratories and include sites of foot-printing, cross-linking or mutagenesis for various functional ligands. A number of the sites were themselves used as constraints in building the 16 S model. (1) The foot-print sites for A site tRNA are all clustered around the anticodon stem-loop of the tRNA; there is no "allosteric" site. (2) The foot-print sites for P site tRNA that are essential for P site binding are similarly clustered around the P site anticodon stem-loop. The foot-print sites in 16 S rRNA helices 23 and 24 are, however, remote from the P site tRNA. (3) Cross-link sites from specific nucleotides within the anticodon loops of A or P site-bound tRNA are mostly in agreement with the model, whereas those from nucleotides in the elbow region of the tRNA (which also exhibit extensive cross-linking to the 50 S subunit) are more widely spread. Again, cross-links to helix 23 are remote from the tRNAs. (4) The corresponding cross-links from E site tRNA are predominantly in helix 23, and these agree with the model. Electron microscopy data are presented, suggestive of substantial conformational changes in this region of the ribosome. (5) Foot-prints for IF-3 in helices 23 and 24 are at a position with close contact to the 50 S subunit. (6) Foot-prints from IF-1 form a cluster around the anticodon stem-loop of A site tRNA, as do also the sites on 16 S rRNA that have been implicated in termination. (7) Foot-print sites and mutations relating to streptomycin form a compact group on one side of the A site anticodon loop, with the corresponding sites for spectinomycin on the other side. (8) Site-specific cross-links from mRNA (which were instrumental in constructing the 16 S model) fit well both in the upstream and downstream regions of the mRNA, and indicate that the incoming mRNA passes through the well-defined "hole" at the head-body junction of the 30 S subunit.
Collapse
Affiliation(s)
- F Mueller
- AG-Ribosomen, Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, Berlin, 14195, Germany
| | | | | | | | | |
Collapse
|
46
|
Mueller F, Brimacombe R. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. I. Fitting the RNA to a 3D electron microscopic map at 20 A. J Mol Biol 1997; 271:524-44. [PMID: 9281424 DOI: 10.1006/jmbi.1997.1210] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently published models of the Escherichia coli 70 S ribosome at 20 A resolution, obtained by cryo-electron microscopy (cryo-EM) combined with computerized image processing techniques, exhibit two features that are directly relevant to the in situ three-dimensional folding of the rRNA molecules. First, at this level of resolution many fine structural details are visible, a number of them having dimensions comparable to those of nucleic acid helices. Second, in reconstructions of ribosomes in the pre- and post-translocational states, density can be seen that corresponds directly to the A and P site tRNAs, and to the P and E site tRNAs, respectively, thus enabling the decoding region on the 30 S subunit to be located rather precisely. Accordingly, we have refined our previous model for the 16 S rRNA, based on biochemical evidence, by fitting it to the cryo-EM contour of ribosomes carrying A and P site tRNAs. For this purpose, the most immediately relevant evidence consists of new site-directed cross-linking data in the decoding region, which define sets of contacts between the 16 S rRNA and mRNA, or between 16 S rRNA and tRNA at the A, P and E sites; these contact sites can be correlated directly with the tRNA positions in the EM structure. The model is extended to other parts of the 16 S molecule by fitting individual elements of the well-established secondary structure of the 16 S rRNA into the appropriate fine structural elements of the EM contour, at the same time taking into account other data used in the previous model, such as intra-RNA cross-links within the 16 S rRNA itself. The large body of available RNA-protein cross-linking and foot-printing data is also considered in the model, in order to correlate the rRNA folding with the known distribution of the 30 S ribosomal proteins as determined by neutron scattering and immuno-electron microscopy. The great majority of the biochemical data points involve single-stranded regions of the rRNA, and therefore, in contrast to most previous models, the single-stranded regions are included in our structure, with the help of a specially developed modelling programme, ERNA-3D. This allows the various biochemical data sets to be displayed directly, in this and in the accompanying papers, on diagrams of appropriate parts of the rRNA structure within the cryo-EM contour.
Collapse
Affiliation(s)
- F Mueller
- AG-Ribosomen, Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, Berlin, 14195, Germany
| | | |
Collapse
|
47
|
Lodmell JS, Dahlberg AE. A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. Science 1997; 277:1262-7. [PMID: 9271564 DOI: 10.1126/science.277.5330.1262] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Direct evidence is presented for a conformational switch in 16S ribosomal RNA (rRNA) that affects tRNA binding to the ribosome and decoding of messenger RNA (mRNA). These data support the hypothesis that dynamic changes in rRNA structure occur during translation. The switch involves two alternating base-paired arrangements apparently facilitated by ribosomal proteins S5 and S12, and produces significant changes in the rRNA structure. Chemical probing shows reciprocal enhancements or protections at sites in 16S rRNA that are at or very near sites that were previously crosslinked to mRNA. These data indicate that the switch affects codon-anticodon arrangement and proper selection of tRNA at the ribosomal A site, and that the switch is a fundamental mechanism in all ribosomes.
Collapse
MESH Headings
- Anticodon
- Base Composition
- Codon
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Mutation
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- J S Lodmell
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
48
|
Kaloyanova D, Xu J, Ivanov IG, Abouhaidar MG. Gene expression evidence indicates that nucleotides 507-513 and 1434-1440 in 16S rRNA are organized in close proximity on the Escherichia coli 30S ribosomal subunit. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:10-4. [PMID: 9310353 DOI: 10.1111/j.1432-1033.1997.00010.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A non-Shine-Dalgamo translational initiator is identified in Escherichia coli. The nucleotide sequence ACCUACUCGAGUUAG, designated as PL, is capable of initiating translation of pokeweed antiviral protein (PAP) and human calcitonin (hCT) mRNAs in E. coli cells. The yield of recombinant protein was double that obtained with the consensus Shine-Dalgarno-sequence-(SD)-driven translation. The PL sequence is composed of two heptanucleotides (ACCUACU, box I and GAGUUAG, box II) which are complementary to nucleotides 1434-1440 and 507-513, respectively, in 16S rRNA. Mutational analysis shows that the translation initiation efficiency with either box alone is much lower than that obtained with the entire PL sequence, indicating that the boxes interact simultaneously with both complementary regions in 16S rRNA during the translation initiation step. Based on these results, we propose that the two widely separated regions 507-513 (part of helical domain 18) and 1434-1440 (belonging to helical domain 44) are organized in close proximity to each other and to the ribosome decoding center on the surface of the E. coli 30S ribosomal subunit.
Collapse
MESH Headings
- Base Sequence
- Calcitonin/biosynthesis
- Calcitonin/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genes, Reporter
- Genetic Vectors
- Humans
- Molecular Sequence Data
- N-Glycosyl Hydrolases
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/genetics
- Ribosome Inactivating Proteins, Type 1
- Ribosomes/chemistry
- Ribosomes/genetics
Collapse
Affiliation(s)
- D Kaloyanova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia
| | | | | | | |
Collapse
|
49
|
Holmberg L, Nygård O. Mapping of nuclease-sensitive sites in native reticulocyte ribosomes--an analysis of the accessibility of ribosomal RNA to enzymatic cleavage. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:160-8. [PMID: 9249022 DOI: 10.1111/j.1432-1033.1997.00160.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Treatment of ribosomes in reticulocyte lysates with low concentrations of the calcium-dependent nuclease from Staphylococcus aureus resulted in cleavage of rRNA. The positions of the cleaved phosphodiester bonds were localised by primer extension and polyacrylamide gel electrophoresis. S. aureus nuclease-induced strand scissions were found in the 5'-domain of 18S rRNA and in domains II, IV and VI of 28S rRNA. The majority of the cleavage sites were located in eukaryote-specific expansion segments and only one cleavage site was found in a region suggested to be directly involved in ribosomal function. Treatment of the reticulocyte lysate with increasing amounts of S. aureus nuclease resulted in the introduction of new cleavage sites. However, even at the highest nuclease concentration used, large parts of the rRNAs were protected from nuclease digestion. Removal of translational components, by salt wash of isolated reticulocyte polysomes, exposed additional rRNA sequences to S. aureus nuclease cleavage. These sequences were found in the 3'-major domain of 18S rRNA and in domains II, IV, and V of 28S rRNA. These sites are located at the putative translational surface of the ribosome. The translational activity of the S. aureus nuclease-treated ribosomes, determined after addition of exogenous mRNA, was directly correlated to the extent of nuclease digestion of the ribosomes. However, the decrease in translational activity observed in lysates treated with low amounts of S. aureus nuclease was not due to a preferential exclusion of damaged ribosomes from polysome formation. This suggests that the induced cleavages were not detrimental to ribosomal function but could influence the rate of ribosomal movement along the mRNA.
Collapse
Affiliation(s)
- L Holmberg
- Department of Zoological Cell Biology, The Wenner-Gren Institute, Stockholm University, Sweden
| | | |
Collapse
|
50
|
Bucklin DJ, van Waes MA, Bullard JM, Hill WE. Cleavage of 16S rRNA within the ribosome by mRNA modified in the A-site codon with phenanthroline-Cu(II). Biochemistry 1997; 36:7951-7. [PMID: 9201941 DOI: 10.1021/bi9624954] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cleavage of 16S rRNA was obtained through mRNA modified at position +5 with the chemical cleavage agent 1,10-o-phenanthroline. In the presence of Cu2+, and after addition of reducing agent to the modified mRNA-70S complex, cleavage of proximal nucleotides within the 16S rRNA occurred. Primer extension analysis of 16S rRNA fragments revealed that nucleotides 528-532, 1196, and 1396-1397 were cleaved. Nucleotides 1053-1055 were also cleaved but did not show the same level of specificity as the former. These results provide evidence that at some point in the translation process these regions are all within 15 A of position +5, the A-site codon, on the mRNA.
Collapse
Affiliation(s)
- D J Bucklin
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | | | | | | |
Collapse
|