1
|
Dedeo CL, Cingolani G, Teschke CM. Portal Protein: The Orchestrator of Capsid Assembly for the dsDNA Tailed Bacteriophages and Herpesviruses. Annu Rev Virol 2019; 6:141-160. [PMID: 31337287 PMCID: PMC6947915 DOI: 10.1146/annurev-virology-092818-015819] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tailed, double-stranded DNA bacteriophages provide a well-characterized model system for the study of viral assembly, especially for herpesviruses and adenoviruses. A wealth of genetic, structural, and biochemical work has allowed for the development of assembly models and an understanding of the DNA packaging process. The portal complex is an essential player in all aspects of bacteriophage and herpesvirus assembly. Despite having low sequence similarity, portal structures across bacteriophages share the portal fold and maintain a conserved function. Due to their dynamic role, portal proteins are surprisingly plastic, and their conformations change for each stage of assembly. Because the maturation process is dependent on the portal protein, researchers have been working to validate this protein as a potential antiviral drug target. Here we review recent work on the role of portal complexes in capsid assembly, including DNA packaging, as well as portal ring assembly and incorporation and analysis of portal structures.
Collapse
Affiliation(s)
- Corynne L Dedeo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA;
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA;
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
2
|
Architect of Virus Assembly: the Portal Protein Nucleates Procapsid Assembly in Bacteriophage P22. J Virol 2019; 93:JVI.00187-19. [PMID: 30787152 DOI: 10.1128/jvi.00187-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022] Open
Abstract
Tailed double-stranded DNA (dsDNA) bacteriophages, herpesviruses, and adenoviruses package their genetic material into a precursor capsid through a dodecameric ring complex called the portal protein, which is located at a unique 5-fold vertex. In several phages and viruses, including T4, Φ29, and herpes simplex virus 1 (HSV-1), the portal forms a nucleation complex with scaffolding proteins (SPs) to initiate procapsid (PC) assembly, thereby ensuring incorporation of only one portal ring per capsid. However, for bacteriophage P22, the role of its portal protein in initiation of procapsid assembly is unclear. We have developed an in vitro P22 assembly assay where portal protein is coassembled into procapsid-like particles (PLPs). Scaffolding protein also catalyzes oligomerization of monomeric portal protein into dodecameric rings, possibly forming a scaffolding protein-portal protein nucleation complex that results in one portal ring per P22 procapsid. Here, we present evidence substantiating that the P22 portal protein, similarly to those of other dsDNA viruses, can act as an assembly nucleator. The presence of the P22 portal protein is shown to increase the rate of particle assembly and contribute to proper morphology of the assembled particles. Our results highlight a key function of portal protein as an assembly initiator, a feature that is likely conserved among these classes of dsDNA viruses.IMPORTANCE The existence of a single portal ring is essential to the formation of infectious virions in the tailed double-stranded DNA (dsDNA) phages, herpesviruses, and adenoviruses and, as such, is a viable antiviral therapeutic target. How only one portal is selectively incorporated at a unique vertex is unclear. In many dsDNA viruses and phages, the portal protein acts as an assembly nucleator. However, early work on phage P22 assembly in vivo indicated that the portal protein did not function as a nucleator for procapsid (PC) assembly, leading to the suggestion that P22 uses a unique mechanism for portal incorporation. Here, we show that portal protein nucleates assembly of P22 procapsid-like particles (PLPs). Addition of portal rings to an assembly reaction increases the rate of formation and yield of particles and corrects improper particle morphology. Our data suggest that procapsid assembly may universally initiate with a nucleation complex composed minimally of portal and scaffolding proteins (SPs).
Collapse
|
3
|
Motwani T, Lokareddy RK, Dunbar CA, Cortines JR, Jarrold MF, Cingolani G, Teschke CM. A viral scaffolding protein triggers portal ring oligomerization and incorporation during procapsid assembly. SCIENCE ADVANCES 2017; 3:e1700423. [PMID: 28782023 PMCID: PMC5529062 DOI: 10.1126/sciadv.1700423] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Most double-stranded DNA viruses package genetic material into empty precursor capsids (or procapsids) through a dodecameric portal protein complex that occupies 1 of the 12 vertices of the icosahedral lattice. Inhibiting incorporation of the portal complex prevents the formation of infectious virions, making this step an excellent target for antiviral drugs. The mechanism by which a sole portal assembly is selectively incorporated at the special vertex is unclear. We recently showed that, as part of the DNA packaging process for bacteriophage P22, the dodecameric procapsid portal changes conformation to a mature virion state. We report that preformed dodecameric rings of P22 portal protein, as opposed to portal monomers, incorporate into nascent procapsids, with preference for the procapsid portal conformation. Finally, a novel role for P22 scaffolding protein in triggering portal ring formation from portal monomers is elucidated and validated by incorporating de novo assembled portal rings into procapsids.
Collapse
Affiliation(s)
- Tina Motwani
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
| | - Ravi K. Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | - Carmen A. Dunbar
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Juliana R. Cortines
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
- Institute of Biomembranes and Bioenergetics, National Research Council, Via Amendola 165/A, 70126 Bari, Italy
| | - Carolyn M. Teschke
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
4
|
Huet A, Duda RL, Hendrix RW, Boulanger P, Conway JF. Correct Assembly of the Bacteriophage T5 Procapsid Requires Both the Maturation Protease and the Portal Complex. J Mol Biol 2015; 428:165-181. [PMID: 26616586 DOI: 10.1016/j.jmb.2015.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 11/30/2022]
Abstract
The 90-nm-diameter capsid of coliphage T5 is organized with T=13 icosahedral geometry and encloses a double-stranded DNA genome that measures 121kbp. Its assembly follows a path similar to that of phage HK97 but yielding a larger structure that includes 775 subunits of the major head protein, 12 subunits of the portal protein and 120 subunits of the decoration protein. As for phage HK97, T5 encodes the scaffold function as an N-terminal extension (∆-domain) to the major head protein that is cleaved by the maturation protease after assembly of the initial prohead I form and prior to DNA packaging and capsid expansion. Although the major head protein alone is sufficient to assemble capsid-like particles, the yield is poor and includes many deformed structures. Here we explore the role of both the portal and the protease in capsid assembly by generating constructs that include the major head protein and a combination of protease (wild type or an inactive mutant) and portal proteins and overexpressing them in Escherichia coli. Our results show that the inactive protease mutant acts to trigger assembly of the major head protein, probably through binding to the ∆-domain, while the portal protein regulates assembly into the correct T=13 geometry. A cryo-electron microscopy reconstruction of prohead I including inactivated protease reveals density projecting from the prohead interior surface toward its center that is compatible with the ∆-domain, as well as additional internal density that we assign as the inactivated protease. These results reveal complexity in T5 beyond that of the HK97 system.
Collapse
Affiliation(s)
- Alexis Huet
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Robert L Duda
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Pascale Boulanger
- Department of Virology, Institute for Integrative Biology of the Cell, UMR 9198 CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, 91191 Gif-sur-Yvette Cedex, France
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
5
|
Structure and Assembly of TP901-1 Virion Unveiled by Mutagenesis. PLoS One 2015; 10:e0131676. [PMID: 26147978 PMCID: PMC4493119 DOI: 10.1371/journal.pone.0131676] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/04/2015] [Indexed: 11/29/2022] Open
Abstract
Bacteriophages of the Siphoviridae family represent the most abundant viral morphology in the biosphere, yet many molecular aspects of their virion structure, assembly and associated functions remain to be unveiled. In this study, we present a comprehensive mutational and molecular analysis of the temperate Lactococcus lactis-infecting phage TP901-1. Fourteen mutations located within the structural module of TP901-1 were created; twelve mutations were designed to prevent full length translation of putative proteins by non-sense mutations, while two additional mutations caused aberrant protein production. Electron microscopy and Western blot analysis of mutant virion preparations, as well as in vitro assembly of phage mutant combinations, revealed the essential nature of many of the corresponding gene products and provided information on their biological function(s). Based on the information obtained, we propose a functional and assembly model of the TP901-1 Siphoviridae virion.
Collapse
|
6
|
Suhanovsky MM, Teschke CM. Nature's favorite building block: Deciphering folding and capsid assembly of proteins with the HK97-fold. Virology 2015; 479-480:487-97. [PMID: 25864106 PMCID: PMC4424165 DOI: 10.1016/j.virol.2015.02.055] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 01/08/2023]
Abstract
For many (if not all) bacterial and archaeal tailed viruses and eukaryotic Herpesvirdae the HK97-fold serves as the major architectural element in icosahedral capsid formation while still enabling the conformational flexibility required during assembly and maturation. Auxiliary proteins or Δ-domains strictly control assembly of multiple, identical, HK97-like subunits into procapsids with specific icosahedral symmetries, rather than aberrant non-icosahedral structures. Procapsids are precursor structures that mature into capsids in a process involving release of auxiliary proteins (or cleavage of Δ-domains), dsDNA packaging, and conformational rearrangement of the HK97-like subunits. Some coat proteins built on the ubiquitous HK97-fold also have accessory domains or loops that impart specific functions, such as increased monomer, procapsid, or capsid stability. In this review, we analyze the numerous HK97-like coat protein structures that are emerging in the literature (over 40 at time of writing) by comparing their topology, additional domains, and their assembly and misassembly reactions.
Collapse
Affiliation(s)
- Margaret M Suhanovsky
- Department of Molecular and Cell Biology, University of Connecticut, 91N. Eagleville Rd. Storrs, CT 06269-3125, USA.
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, 91N. Eagleville Rd. Storrs, CT 06269-3125, USA; Department of Chemistry, University of Connecticut, 91N. Eagleville Rd. Storrs, CT 06269-3125, USA.
| |
Collapse
|
7
|
Serwer P. The XXIIIrd Phage/Virus Assembly Meeting. BACTERIOPHAGE 2014; 4:e27272. [PMID: 24498537 DOI: 10.4161/bact.27272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 11/19/2022]
Abstract
The XXIIIrd Phage/Virus Assembly (PVA) meeting returned to its birthplace in Lake Arrowhead, CA on September 8-13, 2013 (Fig. 1). The original meeting occurred in 1968, organized by Bob Edgar (Caltech, Pasadena, CA USA), Fred Eiserling (University of California, Los Angeles, Los Angeles, CA USA) and Bill Wood (Caltech, Pasadena, CA USA). The organizers of the 2013 meeting were Bill Gelbart (University of California, Los Angeles, Los Angeles, CA USA) and Jack Johnson (Scripps Research Institute, La Jolla, CA USA). This meeting specializes in an egalitarian format. Students are distinguished from senior faculty primarily by the signs of age. With the exception of historically based introductory talks, all talks were allotted the same time and freedom. This tradition began when the meeting was phage-only and has been continued now that all viruses are included. Many were the animated conversations about basic questions. New and international participants were present, a sign that the field has significant attraction, as it should, based on details below. The meeting was also characterized by a sense of humor and generally good times, a chance to both enjoy the science and forget the funding malaise to which many participants are exposed. I will present some of the meeting content, without attempting to be comprehensive.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry; The University of Texas Health Science Center; San Antonio, TX USA
| |
Collapse
|
8
|
Suhanovsky MM, Teschke CM. An intramolecular chaperone inserted in bacteriophage P22 coat protein mediates its chaperonin-independent folding. J Biol Chem 2013; 288:33772-33783. [PMID: 24126914 DOI: 10.1074/jbc.m113.515312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacteriophage P22 coat protein has the common HK97-like fold but with a genetically inserted domain (I-domain). The role of the I-domain, positioned at the outermost surface of the capsid, is unknown. We hypothesize that the I-domain may act as an intramolecular chaperone because the coat protein folds independently, and many folding mutants are localized to the I-domain. The function of the I-domain was investigated by generating the coat protein core without its I-domain and the isolated I-domain. The core coat protein shows a pronounced folding defect. The isolated I-domain folds autonomously and has a high thermodynamic stability and fast folding kinetics in the presence of a peptidyl prolyl isomerase. Thus, the I-domain provides thermodynamic stability to the full-length coat protein so that it can fold reasonably efficiently while still allowing the HK97-like core to retain the flexibility required for conformational switching during procapsid assembly and maturation.
Collapse
Affiliation(s)
- Margaret M Suhanovsky
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269; Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269.
| |
Collapse
|
9
|
Padilla-Meier GP, Gilcrease EB, Weigele PR, Cortines JR, Siegel M, Leavitt JC, Teschke CM, Casjens SR. Unraveling the role of the C-terminal helix turn helix of the coat-binding domain of bacteriophage P22 scaffolding protein. J Biol Chem 2012; 287:33766-80. [PMID: 22879595 DOI: 10.1074/jbc.m112.393132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many viruses encode scaffolding and coat proteins that co-assemble to form procapsids, which are transient precursor structures leading to progeny virions. In bacteriophage P22, the association of scaffolding and coat proteins is mediated mainly by ionic interactions. The coat protein-binding domain of scaffolding protein is a helix turn helix structure near the C terminus with a high number of charged surface residues. Residues Arg-293 and Lys-296 are particularly important for coat protein binding. The two helices contact each other through hydrophobic side chains. In this study, substitution of the residues of the interface between the helices, and the residues in the β-turn, by aspartic acid was used examine the importance of the conformation of the domain in coat binding. These replacements strongly affected the ability of the scaffolding protein to interact with coat protein. The severity of the defect in the association of scaffolding protein to coat protein was dependent on location, with substitutions at residues in the turn and helix 2 causing the most significant effects. Substituting aspartic acid for hydrophobic interface residues dramatically perturbs the stability of the structure, but similar substitutions in the turn had much less effect on the integrity of this domain, as determined by circular dichroism. We propose that the binding of scaffolding protein to coat protein is dependent on angle of the β-turn and the orientation of the charged surface on helix 2. Surprisingly, formation of the highly complex procapsid structure depends on a relatively simple interaction.
Collapse
Affiliation(s)
- G Pauline Padilla-Meier
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Tailed bacteriophages use nanomotors, or molecular machines that convert chemical energy into physical movement of molecules, to insert their double-stranded DNA genomes into virus particles. These viral nanomotors are powered by ATP hydrolysis and pump the DNA into a preformed protein container called a procapsid. As a result, the virions contain very highly compacted chromosomes. Here, I review recent progress in obtaining structural information for virions, procapsids and the individual motor protein components, and discuss single-molecule in vitro packaging reactions, which have yielded important new information about the mechanism by which these powerful molecular machines translocate DNA.
Collapse
|
11
|
Suhanovsky MM, Teschke CM. Bacteriophage P22 capsid size determination: roles for the coat protein telokin-like domain and the scaffolding protein amino-terminus. Virology 2011; 417:418-29. [PMID: 21784500 DOI: 10.1016/j.virol.2011.06.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/23/2011] [Accepted: 06/27/2011] [Indexed: 11/17/2022]
Abstract
Assembly of icosahedral capsids of proper size and symmetry is not understood. Residue F170 in bacteriophage P22 coat protein is critical for conformational switching during assembly. Substitutions at this site cause assembly of tubes of hexamerically arranged coat protein. Intragenic suppressors of the ts phenotype of F170A and F170K coat protein mutants were isolated. Suppressors were repeatedly found in the coat protein telokin-like domain at position 285, which caused coat protein to assemble into petite procapsids and capsids. Petite capsid assembly strongly correlated to the side chain volume of the substituted amino acid. We hypothesize that larger side chains at position 285 torque the telokin-like domain, changing flexibility of the subunit and intercapsomer contacts. Thus, a single amino acid substitution in coat protein is sufficient to change capsid size. In addition, the products of assembly of the variant coat proteins were affected by the size of the internal scaffolding protein.
Collapse
Affiliation(s)
- Margaret M Suhanovsky
- Dept. of Molecular and Cell Biology, U-125, University of Connecticut, 91 N. Eagleville Rd., Storrs, CT 06269-3125, USA.
| | | |
Collapse
|
12
|
Serwer P. Proposed ancestors of phage nucleic acid packaging motors (and cells). Viruses 2011; 3:1249-80. [PMID: 21994778 PMCID: PMC3185796 DOI: 10.3390/v3071249] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 01/08/2023] Open
Abstract
I present a hypothesis that begins with the proposal that abiotic ancestors of phage RNA and DNA packaging systems (and cells) include mobile shells with an internal, molecule-transporting cavity. The foundations of this hypothesis include the conjecture that current nucleic acid packaging systems have imprints from abiotic ancestors. The abiotic shells (1) initially imbibe and later also bind and transport organic molecules, thereby providing a means for producing molecular interactions that are links in the chain of events that produces ancestors to the first molecules that are both information carrying and enzymatically active, and (2) are subsequently scaffolds on which proteins assemble to form ancestors common to both shells of viral capsids and cell membranes. Emergence of cells occurs via aggregation and merger of shells and internal contents. The hypothesis continues by using proposed imprints of abiotic and biotic ancestors to deduce an ancestral thermal ratchet-based DNA packaging motor that subsequently evolves to integrate a DNA packaging ATPase that provides a power stroke.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
13
|
Padilla-Meier GP, Teschke CM. Conformational changes in bacteriophage P22 scaffolding protein induced by interaction with coat protein. J Mol Biol 2011; 410:226-40. [PMID: 21605566 DOI: 10.1016/j.jmb.2011.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/28/2011] [Accepted: 05/05/2011] [Indexed: 11/25/2022]
Abstract
Many prokaryotic and eukaryotic double-stranded DNA viruses use a scaffolding protein to assemble their capsid. Assembly of the double-stranded DNA bacteriophage P22 procapsids requires the interaction of 415 molecules of coat protein and 60-300 molecules of scaffolding protein. Although the 303-amino-acid scaffolding protein is essential for proper assembly of procapsids, little is known about its structure beyond an NMR structure of the extreme C-terminus, which is known to interact with coat protein. Deletion mutagenesis indicates that other regions of scaffolding protein are involved in interactions with coat protein and other capsid proteins. Single-cysteine and double-cysteine variants of scaffolding protein were generated for use in fluorescence resonance energy transfer and cross-linking experiments designed to probe the conformation of scaffolding protein in solution and within procapsids. We showed that the N-terminus and the C-terminus are proximate in solution, and that the middle of the protein is near the N-terminus but not accessible to the C-terminus. In procapsids, the N-terminus was no longer accessible to the C-terminus, indicating that there is a conformational change in scaffolding protein upon assembly. In addition, our data are consistent with a model where scaffolding protein dimers are positioned parallel with one another with the associated C-termini.
Collapse
|
14
|
Casjens SR, Thuman-Commike PA. Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology 2011; 411:393-415. [PMID: 21310457 DOI: 10.1016/j.virol.2010.12.046] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/20/2010] [Accepted: 12/23/2010] [Indexed: 01/06/2023]
Abstract
The mosaic composition of the genomes of dsDNA tailed bacteriophages (Caudovirales) is well known. Observations of this mosaicism have generally come from comparisons of small numbers of often rather distantly related phages, and little is known about the frequency or detailed nature of the processes that generate this kind of diversity. Here we review and examine the mosaicism within fifty-seven clusters of virion assembly genes from bacteriophage P22 and its "close" relatives. We compare these orthologous gene clusters, discuss their surprising diversity and document horizontal exchange of genetic information between subgroups of the P22-like phages as well as between these phages and other phage types. We also point out apparent restrictions in the locations of mosaic sequence boundaries in this gene cluster. The relatively large sample size and the fact that phage P22 virion structure and assembly are exceptionally well understood make the conclusions especially informative and convincing.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
15
|
Parent KN, Sinkovits RS, Suhanovsky MM, Teschke CM, Egelman EH, Baker TS. Cryo-reconstructions of P22 polyheads suggest that phage assembly is nucleated by trimeric interactions among coat proteins. Phys Biol 2010; 7:045004. [PMID: 21149969 PMCID: PMC3202341 DOI: 10.1088/1478-3975/7/4/045004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacteriophage P22 forms an isometric capsid during normal assembly, yet when the coat protein (CP) is altered at a single site, helical structures (polyheads) also form. The structures of three distinct polyheads obtained from F170L and F170A variants were determined by cryo-reconstruction methods. An understanding of the structures of aberrant assemblies such as polyheads helps to explain how amino acid substitutions affect the CP, and these results can now be put into the context of CP pseudo-atomic models. F170L CP forms two types of polyhead and each has the CP organized as hexons (oligomers of six CPs). These hexons have a skewed structure similar to that in procapsids (precursor capsids formed prior to dsDNA packaging), yet their organization differs completely in polyheads and procapsids. F170A CP forms only one type of polyhead, and though this has hexons organized similarly to hexons in F170L polyheads, the hexons are isometric structures like those found in mature virions. The hexon organization in all three polyheads suggests that nucleation of procapsid assembly occurs via a trimer of CP monomers, and this drives formation of a T = 7, isometric particle. These variants also form procapsids, but they mature quite differently: F170A expands spontaneously at room temperature, whereas F170L requires more energy. The P22 CP structure along with scaffolding protein interactions appear to dictate curvature and geometry in assembled structures and residue 170 significantly influences both assembly and maturation.
Collapse
Affiliation(s)
- Kristin N Parent
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Robert S Sinkovits
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, USA
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Edward H Egelman
- Department of Biochemistry and Molecular University of Genetics, University of Virginia, Charlottesville, VA, USA
| | - Timothy S Baker
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Affiliation(s)
- Adam Zlotnick
- Department of Biology, Indiana University Bloomington IN 47405 USA
| | - Bentley A. Fane
- Division of Plant Pathology and Microbiology, Department of Plant Sciences and The BIO5 Institute, University of Arizona Tucson AZ 85721 USA
| |
Collapse
|
17
|
Suhanovsky MM, Parent KN, Dunn SE, Baker TS, Teschke CM. Determinants of bacteriophage P22 polyhead formation: the role of coat protein flexibility in conformational switching. Mol Microbiol 2010; 77:1568-82. [PMID: 20659287 DOI: 10.1111/j.1365-2958.2010.07311.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have investigated determinants of polyhead formation in bacteriophage P22 in order to understand the molecular mechanism by which coat protein assembly goes astray. Polyhead assembly is caused by amino acid substitutions in coat protein at position 170, which is located in the β-hinge. In vivo scaffolding protein does not correct polyhead assembly by F170A or F170K coat proteins, but does for F170L. All F170 variants bind scaffolding protein more weakly than wild-type as observed by affinity chromatography with scaffolding protein-agarose and scaffolding protein shell re-entry experiments. Electron cryo-microscopy and three-dimensional image reconstructions of F170A and F170K empty procapsid shells showed that there is a decreased flexibility of the coat subunits relative to wild-type. This was confirmed by limited proteolysis and protein sequencing, which showed increased protection of the A-domain. Our data support the conclusion that the decrease in flexibility of the A-domain leads to crowding of the subunits at the centre of the pentons, thereby favouring the hexon configuration during assembly. Thus, correct coat protein interactions with scaffolding protein and maintenance of sufficient coat protein flexibility are crucial for proper P22 assembly. The coat protein β-hinge region is the major determinant for both features.
Collapse
Affiliation(s)
- Margaret M Suhanovsky
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | | | | | | | |
Collapse
|
18
|
Teschke CM, Parent KN. 'Let the phage do the work': using the phage P22 coat protein structures as a framework to understand its folding and assembly mutants. Virology 2010; 401:119-30. [PMID: 20236676 DOI: 10.1016/j.virol.2010.02.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/03/2010] [Accepted: 02/11/2010] [Indexed: 11/17/2022]
Abstract
The amino acid sequence of viral capsid proteins contains information about their folding, structure and self-assembly processes. While some viruses assemble from small preformed oligomers of coat proteins, other viruses such as phage P22 and herpesvirus assemble from monomeric proteins (Fuller and King, 1980; Newcomb et al., 1999). The subunit assembly process is strictly controlled through protein:protein interactions such that icosahedral structures are formed with specific symmetries, rather than aberrant structures. dsDNA viruses commonly assemble by first forming a precursor capsid that serves as a DNA packaging machine (Earnshaw, Hendrix, and King, 1980; Heymann et al., 2003). DNA packaging is accompanied by a conformational transition of the small precursor procapsid into a larger capsid for isometric viruses. Here we highlight the pseudo-atomic structures of phage P22 coat protein and rationalize several decades of data about P22 coat protein folding, assembly and maturation generated from a combination of genetics and biochemistry.
Collapse
Affiliation(s)
- Carolyn M Teschke
- Department of Molecular and Cell Biology, 91 N. Eagleville Rd., U-3125, University of Connecticut, Storrs, CT 06269-3125, USA.
| | | |
Collapse
|
19
|
Fu CY, Uetrecht C, Kang S, Morais MC, Heck AJR, Walter MR, Prevelige PE. A docking model based on mass spectrometric and biochemical data describes phage packaging motor incorporation. Mol Cell Proteomics 2010; 9:1764-73. [PMID: 20124351 DOI: 10.1074/mcp.m900625-mcp200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanism of scaffolding protein-mediated incorporation of one and only one DNA packaging motor/connector dodecamer at a unique vertex during lambdoid phage assembly has remained elusive because of the lack of structural information on how the connector and scaffolding proteins interact. We assembled and characterized a phi29 connector-scaffolding complex, which can be incorporated into procapsids during in vitro assembly. Native mass spectrometry revealed that the connector binds at most 12 scaffolding molecules, likely organized as six dimers. A data-driven docking model, using input from chemical cross-linking and mutagenesis data, suggested an interaction between the scaffolding protein and the exterior of the wide domain of the connector dodecamer. The connector binding region of the scaffolding protein lies upstream of the capsid binding region located at the C terminus. This arrangement allows the C terminus of scaffolding protein within the complex to both recruit capsid subunits and mediate the incorporation of the single connector vertex.
Collapse
Affiliation(s)
- Chi-yu Fu
- Deptartment of Microbiology, University of Alabama, Birmingham, Alabama 35294-2170, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Fu CY, Prevelige PE. In vitro incorporation of the phage Phi29 connector complex. Virology 2009; 394:149-53. [PMID: 19744688 DOI: 10.1016/j.virol.2009.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/17/2009] [Accepted: 08/07/2009] [Indexed: 10/20/2022]
Abstract
The incorporation of the DNA packaging connector complex during lambdoid phage assembly in vivo is strictly controlled-one and only one of the twelve identical icosahedral vertices is differentiated by the inclusion of a portal or connector dodecamer. Proposed control mechanisms include obligate nucleation from a connector containing complex, addition of the connector as the final step during assembly, and a connector-mediated increase in the growth rate. The inability to recapitulate connector incorporation in vitro has made it difficult to obtain direct biochemical evidence in support of one model over another. Here we report the development an in vitro assembly system for the well characterized dsDNA phage Phi29 which results in the co-assembly of connector with capsid and scaffolding proteins to form procapsid-like particles (PLPs). Immuno-electron microscopy demonstrates the specific incorporation of connector vertex in PLPs. The connector protein increases both the yield and the rate of capsid assembly suggesting that the incorporation of the connector in Phi29 likely promotes nucleation of assembly.
Collapse
Affiliation(s)
- Chi-Yu Fu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
21
|
Sun Y, Overman SA, Thomas GJ. Impact of in vitro assembly defects on in vivo function of the phage P22 portal. Virology 2007; 365:336-45. [PMID: 17490703 DOI: 10.1016/j.virol.2007.02.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 02/12/2007] [Indexed: 11/22/2022]
Abstract
The podovirus P22, which infects O-antigen strains of Salmonella, incorporates a dsDNA translocating channel (portal dodecamer) at a unique vertex of the icosahedral capsid. The portal subunit (gp1, 82.7 kDa) exhibits multiple S-Hcdots, three dots, centeredX hydrogen bonding states for cysteines 153, 173, 283 and 516 and these interactions are strongly perturbed by portal ring formation. Here, we analyze in vivo activities of wild type (wt) and Cys-->Ser mutant portals, demonstrate that in vivo activity is correlated with in vitro assembly kinetics, and suggest mechanistic bases for the observed assembly defects. The C283S portal protein, which assembles into rings at about half the rate of wt, exhibits significantly diminished infectivity ( approximately 50% of wt) and manifests its defect prior to DNA packaging, most likely at the stage of procapsid assembly. Conversely, the C516S mutant, which assembles at twice the rate of wt, is more severely deficient in vivo ( approximately 20% of wt) and manifests its defect subsequent to capsid maturation and DNA packaging. Both C153S and C173S portals function at levels close to wt. The results suggest that C283S and C516S mutations may be exploited for improved characterization of the folding and assembly pathway of P22 portal protein.
Collapse
Affiliation(s)
- Ying Sun
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
22
|
Parent KN, Suhanovsky MM, Teschke CM. Phage P22 procapsids equilibrate with free coat protein subunits. J Mol Biol 2006; 365:513-22. [PMID: 17067636 PMCID: PMC2790821 DOI: 10.1016/j.jmb.2006.09.088] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 09/25/2006] [Accepted: 09/27/2006] [Indexed: 11/18/2022]
Abstract
Assembly of bacteriophage P22 procapsids has long served as a model for assembly of spherical viruses. Historically, assembly of viruses has been viewed as a non-equilibrium process. Recently alternative models have been developed that treat spherical virus assembly as an equilibrium process. Here we have investigated whether P22 procapsid assembly reactions achieve equilibrium or are irreversibly trapped. To assemble a procapsid-like particle in vitro, pure coat protein monomers are mixed with scaffolding protein. We show that free subunits can exchange with assembled structures, indicating that assembly is a reversible, equilibrium process. When empty procapsid shells (procapsids with the scaffolding protein stripped out) were diluted so that the concentration was below the dissociation constant ( approximately 5 microM) for coat protein monomers, free monomers were detected. The released monomers were assembly-competent; when NaCl was added to metastable partial capsids that were aged for an extended period, the released coat subunits were able to rapidly re-distribute from the partial capsids and form whole procapsids. Lastly, radioactive monomeric coat subunits were able to exchange with the subunits from empty procapsid shells. The data presented illustrate that coat protein monomers are able to dissociate from procapsids in an active state, that assembly of procapsids is consistent with reactions at equilibrium and that the reaction follows the law of mass action.
Collapse
Affiliation(s)
- Kristin N Parent
- University of Connecticut, Department of Molecular and Cell Biology, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|
23
|
Baumann RG, Mullaney J, Black LW. Portal fusion protein constraints on function in DNA packaging of bacteriophage T4. Mol Microbiol 2006; 61:16-32. [PMID: 16824092 DOI: 10.1111/j.1365-2958.2006.05203.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Architecturally conserved viral portal dodecamers are central to capsid assembly and DNA packaging. To examine bacteriophage T4 portal functions, we constructed, expressed and assembled portal gene 20 fusion proteins. C-terminally fused (gp20-GFP, gp20-HOC) and N-terminally fused (GFP-gp20 and HOC-gp20) portal fusion proteins assembled in vivo into active phage. Phage assembled C-terminal fusion proteins were inaccessible to trypsin whereas assembled N-terminal fusions were accessible to trypsin, consistent with locations inside and outside the capsid respectively. Both N- and C-terminal fusions required coassembly into portals with approximately 50% wild-type (WT) or near WT-sized 20am truncated portal proteins to yield active phage. Trypsin digestion of HOC-gp20 portal fusion phage showed comparable protection of the HOC and gp20 portions of the proteolysed HOC-gp20 fusion, suggesting both proteins occupy protected capsid positions, at both the portal and the proximal HOC capsid-binding sites. The external portal location of the HOC portion of the HOC-gp20 fusion phage was confirmed by anti-HOC immuno-gold labelling studies that showed a gold 'necklace' around the phage capsid portal. Analysis of HOC-gp20-containing proheads showed increased HOC protein protection from trypsin degradation only after prohead expansion, indicating incorporation of HOC-gp20 portal fusion protein to protective proximal HOC-binding sites following this maturation. These proheads also showed no DNA packaging defect in vitro as compared with WT. Retention of function of phage and prohead portals with bulky internal (C-terminal) and external (N-terminal) fusion protein extensions, particularly of apparently capsid tethered portals, challenges the portal rotation requirement of some hypothetical DNA packaging mechanisms.
Collapse
Affiliation(s)
- Richard G Baumann
- USNA, Department of Chemistry, Mailstop 9B, 572 Holloway Road, Annapolis, MD 21402-5070, USA
| | | | | |
Collapse
|
24
|
Parent KN, Zlotnick A, Teschke CM. Quantitative Analysis of Multi-component Spherical Virus Assembly: Scaffolding Protein Contributes to the Global Stability of Phage P22 Procapsids. J Mol Biol 2006; 359:1097-106. [PMID: 16697406 DOI: 10.1016/j.jmb.2006.03.068] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 03/10/2006] [Accepted: 03/31/2006] [Indexed: 02/02/2023]
Abstract
Assembly of the hundreds of subunits required to form an icosahedral virus must proceed with exquisite fidelity, and is a paradigm for the self-organization of complex macromolecular structures. However, the mechanism for capsid assembly is not completely understood for any virus. Here we have investigated the in vitro assembly of phage P22 procapsids using a quantitative model specifically developed to analyze assembly of spherical viruses. Phage P22 procapsids are the product of the co-assembly of 420 molecules of coat protein and approximately 100-300 molecules of scaffolding protein. Scaffolding protein serves as an assembly chaperone and is not part of the final mature capsid, but is essential for proper procapsid assembly. Here we show that scaffolding protein also affects the thermodynamics of assembly, and for the first time this quantitative analysis has been performed on a virus composed of more than one type of protein subunit. Purified coat and scaffolding proteins were mixed in varying ratios in vitro to form procapsids. The reactions were allowed to reach equilibrium and the proportion of the input protein assembled into procapsids or remaining as free subunits was determined by size exclusion chromatography and SDS-PAGE. The results were used to calculate the free energy contributions for individual coat and scaffolding proteins. Each coat protein subunit was found to contribute -7.2(+/-0.1)kcal/mol and each scaffolding protein -6.1(+/-0.2)kcal/mol to the stability of the procapsid. Because each protein interacts with two or more neighbors, the pair-wise energies are even less. The weak protein interactions observed in the assembly of procapsids are likely important in the control of nucleation, since an increase in affinity between coat and scaffolding proteins can lead to kinetic traps caused by the formation of too many nuclei. In addition, we find that adjusting the molar ratio of scaffolding to coat protein can alter the assembly product. When the scaffolding protein concentration is low relative to coat protein, there is a correspondingly low yield of proper procapsids. When the relative concentration is very high, too many nuclei form, leading to kinetically trapped assembly intermediates.
Collapse
Affiliation(s)
- Kristin N Parent
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|
25
|
Chang J, Weigele P, King J, Chiu W, Jiang W. Cryo-EM asymmetric reconstruction of bacteriophage P22 reveals organization of its DNA packaging and infecting machinery. Structure 2006; 14:1073-82. [PMID: 16730179 DOI: 10.1016/j.str.2006.05.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
The mechanisms by which most double-stranded DNA viruses package and release their genomic DNA are not fully understood. Single particle cryo-electron microscopy and asymmetric 3D reconstruction reveal the organization of the complete bacteriophage P22 virion, including the protein channel through which DNA is first packaged and later ejected. This channel is formed by a dodecamer of portal proteins and sealed by a tail hub consisting of two stacked barrels capped by a protein needle. Six trimeric tailspikes attached around this tail hub are kinked, suggesting a functional hinge that may be used to trigger DNA release. Inside the capsid, the portal's central channel is plugged by densities interpreted as pilot/injection proteins. A short rod-like density near these proteins may be the terminal segment of the dsDNA genome. The coaxially packed DNA genome is encapsidated by the icosahedral shell. This complete structure unifies various biochemical, genetic, and crystallographic data of its components from the past several decades.
Collapse
Affiliation(s)
- Juan Chang
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
26
|
Lo TC, Shih TC, Lin CF, Chen HW, Lin TH. Complete genomic sequence of the temperate bacteriophage PhiAT3 isolated from Lactobacillus casei ATCC 393. Virology 2005; 339:42-55. [PMID: 15975621 DOI: 10.1016/j.virol.2005.05.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Revised: 05/06/2005] [Accepted: 05/16/2005] [Indexed: 11/20/2022]
Abstract
The complete genomic sequence of a temperate bacteriophage PhiAT3 isolated from Lactobacillus (Lb.) casei ATCC 393 is reported. The phage consists of a linear DNA genome of 39,166 bp, an isometric head of 53 nm in diameter, and a flexible, noncontractile tail of approximately 200 nm in length. The number of potential open reading frames on the phage genome is 53. There are 15 unpaired nucleotides at both 5' ends of the PhiAT3 genome, indicating that the phage uses a cos-site for DNA packaging. The PhiAT3 genome was grouped into five distinct functional clusters: DNA packaging, morphogenesis, lysis, lysogenic/lytic switch, and replication. The amino acid sequences at the NH2-termini of some major proteins were determined. An in vivo integration assay for the PhiAT3 integrase (Int) protein in several lactobacilli was conducted by constructing an integration vector including PhiAT3 int and the attP (int-attP) region. It was found that PhiAT3 integrated at the tRNAArg gene locus of Lactobacillus rhamnosus HN 001, similar to that observed in its native host, Lb. casei ATCC 393.
Collapse
Affiliation(s)
- Ta-Chun Lo
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu 30043, Taiwan, ROC
| | | | | | | | | |
Collapse
|
27
|
Newcomb WW, Homa FL, Brown JC. Involvement of the portal at an early step in herpes simplex virus capsid assembly. J Virol 2005; 79:10540-6. [PMID: 16051846 PMCID: PMC1182615 DOI: 10.1128/jvi.79.16.10540-10546.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA enters the herpes simplex virus capsid by way of a ring-shaped structure called the portal. Each capsid contains a single portal, located at a unique capsid vertex, that is composed of 12 UL6 protein molecules. The position of the portal requires that capsid formation take place in such a way that a portal is incorporated into one of the 12 capsid vertices and excluded from all other locations, including the remaining 11 vertices. Since initiation or nucleation of capsid formation is a unique step in the overall assembly process, involvement of the portal in initiation has the potential to cause its incorporation into a unique vertex. In such a mode of assembly, the portal would need to be involved in initiation but not able to be inserted in subsequent assembly steps. We have used an in vitro capsid assembly system to test whether the portal is involved selectively in initiation. Portal incorporation was compared in capsids assembled from reactions in which (i) portals were present at the beginning of the assembly process and (ii) portals were added after assembly was under way. The results showed that portal-containing capsids were formed only if portals were present at the outset of assembly. A delay caused formation of capsids lacking portals. The findings indicate that if portals are present in reaction mixtures, a portal is incorporated during initiation or another early step in assembly. If no portals are present, assembly is initiated in another, possibly related, way that does not involve a portal.
Collapse
Affiliation(s)
- William W Newcomb
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
28
|
Weigele PR, Sampson L, Winn-Stapley D, Casjens SR. Molecular genetics of bacteriophage P22 scaffolding protein's functional domains. J Mol Biol 2005; 348:831-44. [PMID: 15843016 DOI: 10.1016/j.jmb.2005.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 02/18/2005] [Accepted: 03/01/2005] [Indexed: 11/24/2022]
Abstract
The assembly intermediates of the Salmonella bacteriophage P22 are well defined but the molecular interactions between the subunits that participate in its assembly are not. The first stable intermediate in the assembly of the P22 virion is the procapsid, a preformed protein shell into which the viral genome is packaged. The procapsid consists of an icosahedrally symmetric shell of 415 molecules of coat protein, a dodecameric ring of portal protein at one of the icosahedral vertices through which the DNA enters, and approximately 250 molecules of scaffolding protein in the interior. Scaffolding protein is required for assembly of the procapsid but is not present in the mature virion. In order to define regions of scaffolding protein that contribute to the different aspects of its function, truncation mutants of the scaffolding protein were expressed during infection with scaffolding deficient phage P22, and the products of assembly were analyzed. Scaffolding protein amino acids 1-20 are not essential, since a mutant missing them is able to fully complement scaffolding deficient phage. Mutants lacking 57 N-terminal amino acids support the assembly of DNA containing virion-like particles; however, these particles have at least three differences from wild-type virions: (i) a less than normal complement of the gene 16 protein, which is required for DNA injection from the virion, (ii) a fraction of the truncated scaffolding protein was retained within the virions, and (iii) the encapsidated DNA molecule is shorter than the wild-type genome. Procapsids assembled in the presence of a scaffolding protein mutant consisting of only the C-terminal 75 amino acids contained the portal protein, but procapsids assembled with the C-terminal 66 did not, suggesting portal recruitment function for the region about 75 amino acids from the C terminus. Finally, scaffolding protein amino acids 280 through 294 constitute its minimal coat protein binding site.
Collapse
Affiliation(s)
- Peter R Weigele
- Department of Pathology, University of Utah School of Medicine, 50 North 1900 East, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
29
|
Badasso MO, Anderson DL. Crystallization and initial X-ray diffraction studies of scaffolding protein (gp7) of bacteriophage phi29. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:424-6. [PMID: 16511059 PMCID: PMC1952437 DOI: 10.1107/s1744309105008511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 03/16/2005] [Indexed: 05/06/2023]
Abstract
The Bacillus subtilis bacteriophage phi29 scaffolding protein (gp7) has been crystallized by the hanging-drop vapour-diffusion method at 293 K. Two new distinct crystal forms that both differed from a previously crystallized and solved scaffolding protein were grown under the same conditions. Form I belongs to the primitive tetragonal space group P4(1)2(1)2, with unit-cell parameters a = b = 77.13, c = 37.12 A. Form II crystals exhibit an orthorhombic crystal form, with space group C222 and unit-cell parameters a = 107.50, b = 107. 80, c = 37.34 A. Complete data sets have been collected to 1.78 and 1.80 A for forms I and II, respectively, at 100 K using Cu Kalpha X-rays from a rotating-anode generator. Calculation of a VM value of 2.46 A3 Da(-1) for form I suggests the presence of one molecule in the asymmetric unit, corresponding to a solvent content of 50.90%, whereas form II has a VM of 4.80 A3 Da(-1) with a solvent content of 48.76% and two molecules in the asymmetric unit. The structures of both crystal forms are being determined by the molecular-replacement method using the coordinates of the published crystal structure of gp7.
Collapse
Affiliation(s)
- Mohammed O Badasso
- Department of Oral Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
30
|
Singer GP, Newcomb WW, Thomsen DR, Homa FL, Brown JC. Identification of a region in the herpes simplex virus scaffolding protein required for interaction with the portal. J Virol 2005; 79:132-9. [PMID: 15596809 PMCID: PMC538710 DOI: 10.1128/jvi.79.1.132-139.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus type 1 capsid is a protective shell that acts as a container for the genetic material of the virus. After assembly of the capsid, the viral DNA is translocated into the capsid interior through a channel formed by the portal. The portal is composed of a dodecamer of UL6 molecules which form a ring-like structure found at a single vertex within the icosahedron. Formation of portal-containing capsids minimally requires the four structural proteins (VP5, VP19C, VP23, and UL6) and a scaffolding protein (UL26.5). Recently, an interaction between UL26.5 and the portal has been identified, suggesting the scaffold functions by delivering the portal to the growing capsid shell. The aim of this study was to identify regions within UL26.5 required for its interaction with the portal. A specific region was identified by mutational analysis. Deletion of scaffold amino acids (aa) 143 to 151 was found to be sufficient to inhibit formation of the scaffold-portal complex as assayed in vitro. The aa 143 to 151 contain the sequence YYPGE, which is highly conserved among alpha herpesviruses. Although it did not bind to the portal, the Delta143-151 mutant was found to retain the ability to support assembly of morphologically normal capsids in vitro. Such capsids, however, did not contain the portal. The results suggest assembly of portal-containing capsids requires formation of a scaffold-portal complex in which intermolecular contact is dependent on scaffold aa 143 to 151.
Collapse
Affiliation(s)
- Gregory P Singer
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Murein hydrolases appear to be widespread in the virions of bacteriophages infecting Gram-positive or Gram-negative bacteria. Muralytic activity has been found in virions of the majority of a diverse collection of phages. Where known, the enzyme is either part of a large protein or found associated with other structural components of the virion that limit enzyme activity. In most cases, the lack of genetic and structural characterization of the phage precludes making a definitive identification of the enzymatic protein species. However, three proteins with muralytic activity have been unequivocally identified. T7gp16 is a 144 kDa internal head protein that is ejected into the cell at the initiation of infection; its enzyme activity is required only when the cell wall is more highly cross-linked. P22gp4 is part of the neck of the particle and is essential for infectivity. The activity associated with virions of Bacillus subtilis phage ø29 and its relatives lies in the terminal protein gp3. These studies lead to a general mechanism describing how phage genomes are transported across the bacterial cell wall.
Collapse
Affiliation(s)
- Michael Moak
- Molecular Genetics and Microbiology, and Institute for Cell and Molecular Biology, University of Texas, Austin, TX 78712-1095, USA
| | | |
Collapse
|
32
|
Newcomb WW, Thomsen DR, Homa FL, Brown JC. Assembly of the herpes simplex virus capsid: identification of soluble scaffold-portal complexes and their role in formation of portal-containing capsids. J Virol 2003; 77:9862-71. [PMID: 12941896 PMCID: PMC224603 DOI: 10.1128/jvi.77.18.9862-9871.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) portal complex is a ring-shaped structure located at a single vertex in the viral capsid. Composed of 12 U(L)6 protein molecules, the portal functions as a channel through which DNA passes as it enters the capsid. The studies described here were undertaken to clarify how the portal becomes incorporated as the capsid is assembled. We tested the idea that an intact portal may be donated to the growing capsid by way of a complex with the major scaffolding protein, U(L)26.5. Soluble U(L)26.5-portal complexes were found to assemble when purified portals were mixed in vitro with U(L)26.5. The complexes, called scaffold-portal particles, were stable during purification by agarose gel electrophoresis or sucrose density gradient ultracentrifugation. Examination of the scaffold-portal particles by electron microscopy showed that they resemble the 50- to 60-nm-diameter "scaffold particles" formed from purified U(L)26.5. They differed, however, in that intact portals were observed on the surface. Analysis of the protein composition by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that portals and U(L)26.5 combine in various proportions, with the highest observed U(L)6 content corresponding to two or three portals per scaffold particle. Association between the portal and U(L)26.5 was antagonized by WAY-150138, a small-molecule inhibitor of HSV-1 replication. Soluble scaffold-portal particles were found to function in an in vitro capsid assembly system that also contained the major capsid (VP5) and triplex (VP19C and VP23) proteins. Capsids that formed in this system had the structure and protein composition expected of mature HSV-1 capsids, including U(L)6, at a level corresponding to approximately 1 portal complex per capsid. The results support the view that U(L)6 becomes incorporated into nascent HSV-1 capsids by way of a complex with U(L)26.5 and suggest further that U(L)6 may be introduced into the growing capsid as an intact portal.
Collapse
Affiliation(s)
- William W Newcomb
- Department of Microbiology and Cancer Center, University of Virginia Health System, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
33
|
Moore SD, Prevelige PE. A P22 scaffold protein mutation increases the robustness of head assembly in the presence of excess portal protein. J Virol 2002; 76:10245-55. [PMID: 12239300 PMCID: PMC136566 DOI: 10.1128/jvi.76.20.10245-10255.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage with linear, double-stranded DNA genomes package DNA into preassembled protein shells called procapsids. Located at one vertex in the procapsid is a portal complex composed of a ring of 12 subunits of portal protein. The portal complex serves as a docking site for the DNA packaging enzymes, a conduit for the passage of DNA, and a binding site for the phage tail. An excess of the P22 portal protein alters the assembly pathway of the procapsid, giving rise to defective procapsid-like particles and aberrant heads. In the present study, we report the isolation of escape mutant phage that are able to replicate more efficiently than wild-type phage in the presence of excess portal protein. The escape mutations all mapped to the same phage genome segment spanning the portal, scaffold, coat, and open reading frame 69 genes. The mutations present in five of the escape mutants were determined by DNA sequencing. Interestingly, each mutant contained the same mutation in the scaffold gene, which changes the glycine at position 287 to glutamate. This mutation alone conferred an escape phenotype, and the heads assembled by phage harboring only this mutation had reduced levels of portal protein and exhibited increased head assembly fidelity in the presence of excess portal protein. Because this mutation resides in a region of scaffold protein necessary for coat protein binding, these findings suggest that the P22 scaffold protein may define the portal vertices in an indirect manner, possibly by regulating the fidelity of coat protein polymerization.
Collapse
Affiliation(s)
- Sean D Moore
- Department of Microbiology, University of Alabama at Birmingham, 845 South 19th Street, Birmingham, AL 35295, USA
| | | |
Collapse
|
34
|
Abstract
Bacteriophage with double-stranded, linear DNA genomes package DNA into pre-assembled icosahedral procapsids through a unique vertex. The packaging vertex contains an oligomeric ring of a portal protein that serves as a recognition site for the packaging enzymes, a conduit for DNA translocation, and the site of tail attachment. Previous studies have suggested that the portal protein of bacteriophage P22 is not essential for shell assembly; however, when assembled in the absence of functional portal protein, the assembled heads are not active in vitro packaging assays. In terms of head assembly, this raises an interesting question: how are portal vertices defined during morphogenesis if their incorporation is not a requirement for head assembly? To address this, the P22 portal gene was cloned into an inducible expression vector and transformed into the P22 host Salmonella typhimurium to allow control of the dosage of portal protein during infections. Using pulse-chase radiolabeling, it was determined that the portal protein is recruited into virion during head assembly. Surprisingly, over-expression of the portal protein during wild-type P22 infection caused a dramatic reduction in the yield of infectious virus. The cause of this reduction was traced to two potentially related phenomena. First, excess portal protein caused aberrant head assembly resulting in the formation of T=7 procapsid-like particles (PLPs) with twice the normal amount of portal protein. Second, maturation of the PLPs was blocked during DNA packaging resulting in the accumulation of empty PLPs within the host. In addition to PLPs with normal morphology, smaller heads (apparently T=4) and aberrant spirals were also produced. Interestingly, maturation of the small heads was relatively efficient resulting in the formation of small mature particles that were tailed and contained a head full of DNA. These data suggest that incorporation of portal vertices into heads occurs during growth of the coat lattice at decision points that dictate head assembly fidelity.
Collapse
Affiliation(s)
- Sean D Moore
- Department of Microbiology BBRB 416/6, University of Alabama at Birmingham, 845 19th St. South, Birmingham, AL 35294, USA
| | | |
Collapse
|
35
|
Ogasawara M, Suzutani T, Yoshida I, Azuma M. Role of the UL25 gene product in packaging DNA into the herpes simplex virus capsid: location of UL25 product in the capsid and demonstration that it binds DNA. J Virol 2001; 75:1427-36. [PMID: 11152516 PMCID: PMC114049 DOI: 10.1128/jvi.75.3.1427-1436.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2000] [Accepted: 11/06/2000] [Indexed: 11/20/2022] Open
Abstract
Recent studies have suggested that the herpes simplex type 1 (HSV-1) UL25 gene product, a minor capsid protein, is required for encapsidation but not cleavage of replicated viral DNA. This study set out to investigate the potential interactions of UL25 protein with other virus proteins and determine what properties it has for playing a role in DNA encapsidation. The UL25 protein is found in 42 +/- 17 copies per B capsid and is present in both pentons and hexons. We introduced green fluorescent protein (GFP) as a fluorescent tag into the N terminus of UL25 protein to identify its location in HSV-1-infected cells and demonstrated the relocation of UL25 protein from the cytoplasm into the nucleus at the late stage of HSV-1 infection. To clarify the cause of this relocation, we analyzed the interactions of UL25 protein with other virus proteins. The UL25 protein associates with VP5 and VP19C of virus capsids, especially of the penton structures, and the association with VP19C causes its relocation into the nucleus. Gel mobility shift analysis shows that UL25 protein has the potential to bind DNA. Moreover, the amino-terminal one-third of the UL25 protein is particularly important in DNA binding and forms a homo-oligomer. In conclusion, the UL25 gene product forms a tight connection with the capsid being linked with VP5 and VP19C, and it may play a role in anchoring the genomic DNA.
Collapse
Affiliation(s)
- M Ogasawara
- Department of Microbiology, Asahikawa Medical College, 2-1-1-1, Midorigaoka-Higashi, Asahikawa 078-8510, Japan.
| | | | | | | |
Collapse
|
36
|
Burch AD, Fane BA. Efficient complementation by chimeric Microviridae internal scaffolding proteins is a function of the COOH-terminus of the encoded protein. Virology 2000; 270:286-90. [PMID: 10792987 DOI: 10.1006/viro.2000.0306] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microviridae morphogenesis is dependent on two scaffolding proteins, an internal and external species. Both structural and genetic analyses suggest that the COOH-terminus of the internal protein is critical for coat protein recognition and specificity. To test this hypothesis, chimeric internal scaffolding genes between Microviridae members phiX174, G4, and alpha3 were constructed and the proteins expressed in vivo. All of the chimeric proteins were functional in complementation assays. However, the efficient complementation was observed only when the viral coat protein and COOH-terminus of internal scaffolding were of the same origin. Genes with 5' deletions of the phiX174 internal scaffolding gene were also constructed and expressed in vivo. Proteins lacking the first 10 amino acids, which self-associate across the twofold axes of symmetry in the atomic structure, efficiently complement phiX174 am(B) mutants at temperatures above 24 degrees C. These results suggest that internal scaffolding protein self-associations across the twofold axes of symmetry are required only at lower temperatures.
Collapse
Affiliation(s)
- A D Burch
- Department of Veterinary Sciences and Microbiology, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
37
|
Sun Y, Parker MH, Weigele P, Casjens S, Prevelige PE, Krishna NR. Structure of the coat protein-binding domain of the scaffolding protein from a double-stranded DNA virus. J Mol Biol 2000; 297:1195-202. [PMID: 10764583 DOI: 10.1006/jmbi.2000.3620] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Scaffolding proteins are required for high fidelity assembly of most high T number dsDNA viruses such as the large bacteriophages, and the herpesvirus family. They function by transiently binding and positioning the coat protein subunits during capsid assembly. In both bacteriophage P22 and the herpesviruses the extreme scaffold C terminus is highly charged, is predicted to be an amphipathic alpha-helix, and is sufficient to bind the coat protein, suggesting a common mode of action. NMR studies show that the coat protein-binding domain of P22 scaffolding protein exhibits a helix-loop-helix motif stabilized by a hydrophobic core. One face of the motif is characterized by a high density of positive charges that could interact with the coat protein through electrostatic interactions. Results from previous studies with a truncation fragment and the observed salt sensitivity of the assembly process are explained by the NMR structure.
Collapse
Affiliation(s)
- Y Sun
- Comprehensive Cancer Center, Birmingham, AL, 35294, USA
| | | | | | | | | | | |
Collapse
|
38
|
Dröge A, Santos MA, Stiege AC, Alonso JC, Lurz R, Trautner TA, Tavares P. Shape and DNA packaging activity of bacteriophage SPP1 procapsid: protein components and interactions during assembly. J Mol Biol 2000; 296:117-32. [PMID: 10656821 DOI: 10.1006/jmbi.1999.3450] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The procapsid of the Bacillus subtilis bacteriophage SPP1 is formed by the major capsid protein gp13, the scaffolding protein gp11, the portal protein gp6, and the accessory protein gp7. The protein stoichiometry suggests a T=7 symmetry for the SPP1 procapsid. Overexpression of SPP1 procapsid proteins in Escherichia coli leads to formation of biologically active procapsids, procapsid-like, and aberrant structures. Co-production of gp11, gp13 and gp6 is essential for assembly of procapsids competent for DNA packaging in vitro. Presence of gp7 in the procapsid increases the yield of viable phages assembled during the reaction in vitro five- to tenfold. Formation of closed procapsid-like structures requires uniquely the presence of the major head protein and the scaffolding protein. The two proteins interact only when co-produced but not when mixed in vitro after separate synthesis. Gp11 controls the polymerization of gp13 into normal (T=7) and small sized (T=4?) procapsids. Predominant formation of T=7 procapsids requires presence of the portal protein. This implies that the portal protein has to be integrated at an initial stage of the capsid assembly process. Its presence, however, does not have a detectable effect on the rate of procapsid assembly during SPP1 infection. A stable interaction between gp6 and the two major procapsid proteins was only detected when the three proteins are co-produced. Efficient incorporation of a single portal protein in the procapsid appears to require a structural context created by gp11 and gp13 early during assembly, rather than strong interactions with any of those proteins. Gp7, which binds directly to gp6 both in vivo and in vitro, is not necessary for incorporation of the portal protein in the procapsid structure.
Collapse
Affiliation(s)
- A Dröge
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, Berlin, D-14195, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The process of phage capsid assembly is reviewed, with particular attention to the probable role of curvature in helping to determine head size and shape. Both measures of curvature (mean curvature and Gaussian curvature, explained in Appendix I), should act best when the assembling shell is spherical, which could account for procapsids having this shape. Procapsids are also relatively thick, which should help head size determination by the mean curvature. The accessory role of inner and outer scaffolds in size determination and head nucleation is also reviewed. Nucleation failure generates various malformations, including non-closure, but the most common is the tube or polyhead, where the subunits' inherent curvature is expressed as a constant mean curvature. This induces lattice distortions that only partly understood. An extra tubular section in normal heads leads to the prolate shape, with a more complex and variable geometry. Newly assembled procapsids are both enlarged and toughened by the head transformation. In the procapsid the Gaussian curvature is uniformly distributed. But toughening tends to equalize bond lengths, so all the Gaussian curvature gets concentrated in the vertices, being zero elsewhere. This explains head angularization. Because of this change in Gaussian curvature, the regular subunit packing in the polyhedral head cannot be mapped onto the procapsid. This explains part of the hexon distortions found in this region. The implications of translocase-induced DNA twist, end rotation and the coiling of packaged DNA, are discussed. The symmetry mismatches between the head, connector and tail are discussed in relation to the possible alpha-helical structures of their DNA channels.
Collapse
Affiliation(s)
- M F Moody
- School of Pharmacy, University of London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| |
Collapse
|
40
|
Greene B, King J. Folding and stability of mutant scaffolding proteins defective in P22 capsid assembly. J Biol Chem 1999; 274:16141-6. [PMID: 10347166 DOI: 10.1074/jbc.274.23.16141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage P22 scaffolding subunits are elongated molecules that interact through their C termini with coat subunits to direct icosahedral capsid assembly. The soluble state of the subunit exhibits a partially folded intermediate during equilibrium unfolding experiments, whose C-terminal domain is unfolded (Greene, B., and King, J. (1999) J. Biol. Chem. 274, 16135-16140). Four mutant scaffolding proteins exhibiting temperature-sensitive defects in different stages of particle assembly were purified. The purified mutant proteins adopted a similar conformation to wild type, but all were destabilized with respect to wild type. Analysis of the thermal melting transitions showed that the mutants S242F and Y214W further destabilized the C-terminal domain, whereas substitutions near the N terminus either destabilized a different domain or affected interactions between domains. Two mutant proteins carried an additional cysteine residue, which formed disulfide cross-links but did not affect the denaturation transition. These mutants differed both from temperature-sensitive folding mutants found in other P22 structural proteins and from the thermolabile temperature-sensitive mutants described for T4 lysozyme. The results suggest that the defects in these mutants are due to destabilization of domains affecting the weak subunit-subunit interactions important in the assembly and function of the virus precursor shell.
Collapse
Affiliation(s)
- B Greene
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
41
|
Greene B, King J. In vitro unfolding/refolding of wild type phage P22 scaffolding protein reveals capsid-binding domain. J Biol Chem 1999; 274:16135-40. [PMID: 10347165 DOI: 10.1074/jbc.274.23.16135] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The scaffolding proteins of double-stranded DNA viruses are required for the polymerization of capsid subunits into properly sized closed shells but are absent from the mature virions. Phage P22 scaffolding subunits are elongated 33-kDa molecules that copolymerize with coat subunits into icosahedral precursor shells and subsequently exit from the precursor shell through channels in the procapsid lattice to participate in further rounds of polymerization and dissociation. Purified scaffolding subunits could be refolded in vitro after denaturation by high temperature or guanidine hydrochloride solutions. The lack of coincidence of fluorescence and circular dichroism signals indicated the presence of at least one partially folded intermediate, suggesting that the protein consisted of multiple domains. Proteolytic fragments containing the C terminus were competent for copolymerization with capsid subunits into procapsid shells in vitro, whereas the N terminus was not needed for this function. Proteolysis of partially denatured scaffolding subunits indicated that it was the capsid-binding C-terminal domain that unfolded at low temperatures and guanidinium concentrations. The minimal stability of the coat-binding domain may reflect its role in the conformational switching needed for icosahedral shell assembly.
Collapse
Affiliation(s)
- B Greene
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
42
|
Nakonechny WS, Teschke CM. GroEL and GroES control of substrate flux in the in vivo folding pathway of phage P22 coat protein. J Biol Chem 1998; 273:27236-44. [PMID: 9765246 DOI: 10.1074/jbc.273.42.27236] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our present understanding of the action of the chaperonins GroEL/S on protein folding is based primarily on in vitro studies, whereas the folding of proteins in the cellular milieu has not been as thoroughly investigated. We have developed a means of examining in vivo protein folding and assembly that utilizes the coat protein of bacteriophage P22, a naturally occurring substrate of GroEL/S. Here we show that amino acid substitutions in coat protein that cause a temperature-sensitive-folding (tsf) phenotype slowed assembly rates upon increasing the temperature of cell growth. Raising cellular concentrations of GroEL/S increased the rate of assembly of the tsf mutant coat proteins to nearly that of wild-type (WT) coat protein by protecting a thermolabile folding intermediate from aggregation, thereby increasing the concentration of assembly-competent coat protein. The rate of release of the tsf coat proteins from the GroEL/S-coat protein ternary complex was approximately 2-fold slower at non-permissive temperatures when compared with the release of WT coat protein. However, the rate of release of WT or tsf coat proteins at each temperature remained constant regardless of GroEL/S levels. Thus, raising the cellular concentration of GroEL/S increased the amount of assembly-competent tsf coat proteins not by altering the rates of folding but by increasing the probability of GroEL/S-coat protein complex formation.
Collapse
Affiliation(s)
- W S Nakonechny
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | |
Collapse
|
43
|
Affiliation(s)
- R W Hendrix
- Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
44
|
Thuman-Commike PA, Greene B, Malinski JA, King J, Chiu W. Role of the scaffolding protein in P22 procapsid size determination suggested by T = 4 and T = 7 procapsid structures. Biophys J 1998; 74:559-68. [PMID: 9449356 PMCID: PMC1299408 DOI: 10.1016/s0006-3495(98)77814-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Assembly of bacteriophage P22 procapsids requires the participation of approximately 300 molecules of scaffolding protein in addition to the 420 coat protein subunits. In the absence of the scaffolding, the P22 coat protein can assemble both wild-type-size and smaller size closed capsids. Both sizes of procapsid assembled in the absence of the scaffolding protein have been studied by electron cryomicroscopy. These structural studies show that the larger capsids have T = 7 icosahedral lattices and appear the same as wild-type procapsids. The smaller capsids possess T = 4 icosahedral symmetry. The two procapsids consist of very similar penton and hexon clusters, except for an increased curvature present in the T = 4 hexon. In particular, the pronounced skewing of the hexons is conserved in both sizes of capsid. The T = 7 procapsid has a local non-icosahedral twofold axis in the center of the hexon and thus contains four unique quasi-equivalent coat protein conformations that are the same as those in the T = 4 procapsid. Models of how the scaffolding protein may direct these four coat subunit types into a T = 7 rather than a T = 4 procapsid are presented.
Collapse
Affiliation(s)
- P A Thuman-Commike
- Department of Computational and Applied Mathematics, W. M. Keck Center for Computational Biology, Rice University, Houston, Texas 77005-1892, USA.
| | | | | | | | | |
Collapse
|
45
|
Becker B, de la Fuente N, Gassel M, Günther D, Tavares P, Lurz R, Trautner TA, Alonso JC. Head morphogenesis genes of the Bacillus subtilis bacteriophage SPP1. J Mol Biol 1997; 268:822-39. [PMID: 9180375 DOI: 10.1006/jmbi.1997.0997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have identified and characterized the phage cistrons required for assembly of SPP1 heads. A DNA fragment containing most of the head morphogenesis genes was cloned and sequenced. The 3'-end of a previously identified gene (gene 6) and eight complete open reading frames (7 to 15) were predicted. We have assigned genes 7, 8, 9, 11, 12, 13, 14 and 15 to these orfs by correlating genetic and immunological data with DNA and protein sequence information. G7P was identified as a minor structural component of proheads and heads, G11P as the scaffold protein, G12P and G15P as head minor proteins and G13P as the coat protein. Characterization of intermediates in head assembly, which accumulate during infection with mutants deficient in DNA packaging or in morphogenetic genes, allowed the definition of the head assembly pathway. No proteolytic processing of any of the head components was detected. Removal of G11P by mutation leads to the accumulation of prohead-related structures and aberrant particles which are similar to the assemblies formed by purified G13P in the absence of other phage-encoded proteins. The native molecular masses of G11P and G13P are about 350 kDa and larger than 5000 kDa, respectively (predicted molecular masses 23.4 kDa and 35.3 kDa, respectively). G13P, upon denaturation and renaturation, assembles from protomers into some prohead-related structures. The organization of the DNA packaging and head genes of SPP1 resembles the organization of genes in the analogous regions of phage lambda and P22.
Collapse
Affiliation(s)
- B Becker
- Max-Planck-Institut für molekulare Genetik, Berlin, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Fong DG, Doyle SM, Teschke CM. The folded conformation of phage P22 coat protein is affected by amino acid substitutions that lead to a cold-sensitive phenotype. Biochemistry 1997; 36:3971-80. [PMID: 9092827 DOI: 10.1021/bi962188y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Three cold-sensitive mutants in phage P22 coat protein have been characterized to determine the effects of the amino acid substitutions that cause cold sensitivity on the folding pathway and the conformation of refolded coat protein. Here we find that the three cold-sensitive mutants which have the threonine residue at position 10 changed to isoleucine (T10I), the arginine residue at position 101 changed to cysteine (R101C), or the asparagine residue at position 414 changed to serine (N414S) were capable of folding from a denatured state into a soluble monomeric species, but in each case, the folded conformation was altered. Changes in the kinetics of folding were observed by both tryptophan and bisANS fluorescence. In contrast to the temperature-sensitive for folding coat protein mutants which can be rescued at nonpermissive temperatures in vivo by the overproduction of molecular chaperones GroEL and GroES [Gordon, C. L., Sather, S. K., Casjens, S., & King, J. (1994) J. Biol. Chem. 269, 27941-27951], the folding defects associated with the cold-sensitive amino acid substitutions were not recognized by GroEL and GroES.
Collapse
Affiliation(s)
- D G Fong
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269, USA
| | | | | |
Collapse
|
47
|
Haase-Pettingell C, King J. Prevalence of temperature sensitive folding mutations in the parallel beta coil domain of the phage P22 tailspike endorhamnosidase. J Mol Biol 1997; 267:88-102. [PMID: 9096209 DOI: 10.1006/jmbi.1996.0841] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Temperature sensitive mutations fall into two general classes: tl mutations, which render the mature protein thermolabile, and tsf (temperature sensitive folding) mutations, which destabilize an intermediate in the folding pathway without altering the functions of the folded state. The molecular defects caused by tsf mutations have been intensively studied for the elongated tailspike endorhamnosidase of Salmonella phage P22. The tailspike, responsible for host cell recognition and attachment, contains a 13 strand parallel beta coil domain. A set of tsf mutants located in the beta coil domain have been shown to cause folding defects in the in vivo folding pathway for the tailspike. We report here additional data on 17 other temperature sensitive mutants which are in the beta coil domain. Using mutant proteins formed at low temperature, the essential functions of assembling on the phage head, and binding to the O-antigen lipopolysaccharide (LPS) receptor of Salmonella were examined at high temperatures. All of the mutant proteins once folded at permissive temperature, were functional at restrictive temperatures. When synthesized at restrictive temperature the mutant chains formed an early folding intermediate, but failed to reach the mature conformation, accumulating instead in the aggregated inclusion body state. Thus this set of mutants all have the temperature sensitive folding phenotype. The prevalence of tsf mutants in the parallel beta coil domain presumably reflects properties of its folding intermediates. The key property may be the tendency of the intermediate to associate off pathway to the kinetically trapped inclusion body state.
Collapse
|
48
|
Teschke CM, Fong DG. Interactions between coat and scaffolding proteins of phage P22 are altered in vitro by amino acid substitutions in coat protein that cause a cold-sensitive phenotype. Biochemistry 1996; 35:14831-40. [PMID: 8942646 DOI: 10.1021/bi960860l] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cold-sensitive mutations in phage P22 coat protein cause the accumulation of precursor capsids in cells growing at the nonpermissive temperature (16 degrees C). The assembly of coat proteins which carry the substitutions threonine at position 10 to isoluecine (T10I), arginine at position 101 to cysteine (R101C), or asparagine at position 414 to serine (N414S) which cause cold-sensitivity has been investigated. All three proteins were found to fold into a monomeric species. Coat proteins carrying the amino acid substitutions T10I and R101C were not able to interact with scaffolding protein appropriately to initiate assembly in vitro while coat protein carrying the substitution N414S was able to assemble; however, capsids formed of this protein had an increased affinity for scaffolding protein. These amino acid substitutions define two regions in coat protein that are essential for the interaction of coat protein with scaffolding protein at different stages in capsid maturation.
Collapse
Affiliation(s)
- C M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3125, USA
| | | |
Collapse
|
49
|
Abstract
The mechanism of viral capsid assembly is an intriguing problem because of its fundamental importance to research on synthetic viral particle vaccines, gene delivery systems, antiviral drugs, chimeric viruses displaying antigens or ligands, and the study of macromolecular interactions. The genes coding for the scaffolding (gp7), capsid (gp8), and portal vertex (gp10) proteins of the procapsid of bacteriophage phi 29 of Bacillus subtilis were expressed in Escherichia coli individually or in combination to study the mechanism of phi 29 procapsid assembly. When expressed alone, gp7 existed as a soluble monomer, gp8 aggregated into inclusion bodies, and gp10 formed the portal vertex. Circular dichroisin spectrum analysis indicated that gp7 is mainly composed of alpha helices. When two of the proteins were coexpressed, gp7 and gp8 assembled into procapsid-like particles with variable sizes and shapes, gp7 and gp10 formed unstable complexes, and gp8 and gp10 did not interact. These results suggested that gp7 served as a bridge for gp8 and gp10. When gp7, gp8, and gp10 were coexpressed, active procapsids were produced. Complementation of extracts containing one or two structural components could not produce active procapsids, indicating that no stable intermediates were formed. A dimeric gp7 concatemer promoted the solubility of gp8 but was inactive in the assembly of procapsid or procapsid-like particles. Mutation at the C terminus of gp7 prevented it from interacting with gp8, indicating that this part of gp7 may be important for interaction with gp8. Coexpression of the portal protein (gp20) of phage T4 with phi 29 gp7 and gp8 revealed the lack of interaction between T4 gp20 and phi 29 gp7 and/or gp8. Perturbing the ratio of the three structural proteins by duplicating one or another gene did not reduce the yield of potentially infectious particles. Changing of the order of gene arrangement in plasmids did not affect the formation of active procapsids significantly. These results indicate that phi 29 procapsid assembly deviated from the single-assembly pathway and that coexistence of all three components with a threshold concentration was required for procapsid assembly. The trimolecular interaction was so rapid that no true intermediates could be isolated. This finding is in accord with the result of capsid assembly obtained by the equilibrium model proposed by A. Zlotnick (J. Mol. Biol. 241:59-67, 1994).
Collapse
Affiliation(s)
- C S Lee
- Department of Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
50
|
Kellenberger E, Wunderli-Allenspach H. Electron microscopic studies on intracellular phage development--history and perspectives. Micron 1995; 26:213-45. [PMID: 7788280 DOI: 10.1016/0968-4328(94)00051-q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review is centered on the applications of thin sections to the study of intracellular precursors of bacteriophage heads. Results obtained with other preparation methods are included in so far as they are essential for the comprehension of the biological problems. This type of work was pioneered with phage T4, which contributed much to today's understanding of morphogenesis and form determination. The T4 story is rich in successes, but also in many fallacies. Due to its large size, T4 is obviously prone to preparation artefacts such as emptying, flattening and others. Many of these artefacts were first encountered in T4. Artefacts are mostly found in lysates, however, experience shows that they are not completely absent from thin sections. This can be explained by the fact that permeability changes induced by fixatives occur. The information gained from T4 was profitably used for the study of other phages. They are included in this review as far as electron microscopic studies played a major role in the elucidation of their morphogenetic pathways. Research on phage assembly pathways and form determination is a beautiful illustration for the power of the integrated approach which combines electron microscopy with biochemistry, genetics and biophysics. As a consequence, we did not restrict ourselves to the review of electron microscopic work but tried to integrate pertinent data which contribute to the understanding of the molecular mechanisms acting in determining the form of supramolecular structures.
Collapse
Affiliation(s)
- E Kellenberger
- Department of Microbiology, Biocenter of the University, Basel, Switzerland
| | | |
Collapse
|