1
|
Theodorou EC, Theodorou MC, Kyriakidis DA. Regulation of poly-(R)-(3-hydroxybutyrate-co-3-hydroxyvalerate) biosynthesis by the AtoSCDAEB regulon in phaCAB+ Escherichia coli. Appl Microbiol Biotechnol 2013; 97:5259-74. [PMID: 23546423 DOI: 10.1007/s00253-013-4843-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 11/28/2022]
Abstract
AtoSC two-component system (TCS) upregulates the high-molecular weight poly-(R)-3-hydroxybutyrate (PHB) biosynthesis in recombinant phaCAB (+) Escherichia coli strains, with the Cupriavidus necator phaCAB operon. We report here that AtoSC upregulates also the copolymer P(3HB-co-3HV) biosynthesis in phaCAB (+) E. coli. Acetoacetate-induced AtoSC maximized P(3HB-co-3HV) to 1.27 g/l with a 3HV fraction of 25.5 % wt. and biopolymer content of 75 % w/w in a time-dependent process. The atoSC locus deletion in the ∆atoSC strains resulted in 4.5-fold P(3HB-co-3HV) reduction, while the 3HV fraction of the copolymer was restricted to only 6.4 % wt. The ∆atoSC phenotype was restored by extrachromosomal introduction of AtoSC. Deletion of the atoDAEB operon triggered a significant decrease in P(3HB-co-3HV) synthesis and 3HV content in ∆atoDAEB strains. However, the acetoacetate-induced AtoSC in those strains increased P(3HB-co-3HV) to 0.8 g/l with 21 % 3HV, while AtoC or AtoS expression increased P(3HB-co-3HV) synthesis 3.6- or 2.4-fold, respectively, upon acetoacetate. Complementation of the ∆atoDAEB phenotype was achieved by the extrachromosomal introduction of the atoSCDAEB regulon. Individual inhibition of β-oxidation and mainly fatty acid biosynthesis pathways by acrylic acid or cerulenin, respectively, reduced P(3HB-co-3HV) biosynthesis. Under those conditions, introduction of atoSC or atoSCDAEB regulon was capable of upregulating biopolymer accumulation. Concurrent inhibition of both the fatty acid metabolic pathways eliminated P(3HB-co-3HV) production. P(3HB-co-3HV) upregulation in phaCAB (+) E. coli by AtoSC signaling through atoDAEB operon and its participation in the fatty acids metabolism interplay provide additional perceptions of AtoSC critical involvement in E. coli regulatory processes towards biotechnologically improved polyhydroxyalkanoates biosynthesis.
Collapse
Affiliation(s)
- Evangelos C Theodorou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece.
| | | | | |
Collapse
|
2
|
Theodorou EC, Theodorou MC, Kyriakidis DA. Involvement of the AtoSCDAEB regulon in the high molecular weight poly-(R)-3-hydroxybutyrate biosynthesis in phaCAB+ Escherichia coli. Metab Eng 2012; 14:354-65. [DOI: 10.1016/j.ymben.2012.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/14/2012] [Accepted: 03/19/2012] [Indexed: 11/16/2022]
|
3
|
Theodorou EC, Theodorou MC, Kyriakidis DA. AtoSC two-component system is involved in cPHB biosynthesis through fatty acid metabolism in E. coli. Biochim Biophys Acta Gen Subj 2011; 1810:561-8. [DOI: 10.1016/j.bbagen.2011.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/18/2011] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
|
4
|
Theodorou EC, Theodorou MC, Samali MN, Kyriakidis DA. Activation of the AtoSC two-component system in the absence of the AtoC N-terminal receiver domain in E. coli. Amino Acids 2010; 40:421-30. [DOI: 10.1007/s00726-010-0652-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022]
|
5
|
Role of the bacteriophage λ exo-xis region in the virus development. Folia Microbiol (Praha) 2008; 53:443-50. [DOI: 10.1007/s12223-008-0068-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 04/17/2008] [Indexed: 11/26/2022]
|
6
|
Functional characterization of the histidine kinase of the E. coli two-component signal transduction system AtoS-AtoC. Biochim Biophys Acta Gen Subj 2008; 1780:1023-31. [PMID: 18534200 DOI: 10.1016/j.bbagen.2008.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 05/05/2008] [Accepted: 05/05/2008] [Indexed: 11/22/2022]
Abstract
The Escherichia coli AtoS-AtoC two-component signal transduction system regulates the expression of the atoDAEB operon genes, whose products are required for short-chain fatty acid catabolism. In this study purified his-tagged wild-type and mutant AtoS proteins were used to prove that these proteins are true sensor kinases. The phosphorylated residue was identified as the histidine-398, which was located in a conserved Eta-box since AtoS carrying a mutation at this site failed to phosphorylate. This inability to phosphorylate was not due to gross structural alterations of AtoS since the H398L mutant retained its capability to bind ATP. Furthermore, the H398L mutant AtoS was competent to catalyze the trans-phosphorylation of an AtoS G-box (G565A) mutant protein which otherwise failed to autophosphorylate due to its inability to bind ATP. The formation of homodimers between the various AtoS proteins was also shown by cross-linking experiments both in vitro and in vivo.
Collapse
|
7
|
Matta MK, Lioliou EE, Panagiotidis CH, Kyriakidis DA, Panagiotidis CA. Interactions of the antizyme AtoC with regulatory elements of the Escherichia coli atoDAEB operon. J Bacteriol 2007; 189:6324-32. [PMID: 17616594 PMCID: PMC1951910 DOI: 10.1128/jb.00214-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AtoC has a dual function as both an antizyme, the posttranslational inhibitor of polyamine biosynthetic enzymes, and the transcriptional regulator of genes involved in short-chain fatty acid catabolism (the atoDAEB operon). We have previously shown that AtoC is the response regulator of the AtoS-AtoC two-component signal transduction system that activates atoDAEB when Escherichia coli is exposed to acetoacetate. Here, we show that the same cis elements control both promoter inducibility and AtoC binding. Chromatin immunoprecipitation experiments confirmed the acetoacetate-inducible binding of AtoC to the predicted DNA region in vivo. DNase I protection footprinting analysis revealed that AtoC binds two 20-bp stretches, constituting an inverted palindrome, that are located at -146 to -107 relative to the transcription initiation site. Analyses of promoter mutants obtained by in vitro chemical mutagenesis of the atoDAEB promoter verified both the importance of AtoC binding for the inducibility of the promoter by acetoacetate and the sigma54 dependence of atoDAEB expression. The integration host factor was also identified as a critical component of the AtoC-mediated induction of atoDAEB.
Collapse
Affiliation(s)
- Meropi K Matta
- Department of Pharmaceutical Sciences, Laboratory of Biochemistry, Aristotle University, Thessaloniki 54124, Greece
| | | | | | | | | |
Collapse
|
8
|
Lee EH, Hill SA, Napier R, Shafer WM. Integration Host Factor is required for FarR repression of the farAB-encoded efflux pump of Neisseria gonorrhoeae. Mol Microbiol 2006; 60:1381-400. [PMID: 16796676 DOI: 10.1111/j.1365-2958.2006.05185.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The farAB operon encodes an efflux pump system that mediates the resistance of Neisseria gonorrhoeae to antimicrobial long-chain fatty acids. We previously observed that expression of farAB is negatively regulated by the FarR repressor. In this study, we examined the molecular mechanism by which FarR represses expression of farAB. DNase I footprinting analysis, coupled with a deletion analysis of the farAB promoter region, indicated that FarR binds to three sites (termed sites A, B and C) within the DNA sequence upstream of farA; genetic analysis revealed, however, that site B is not required for FarR repression of farAB. This repression also required the presence of Integration Host Factor (IHF), which was found to bind to sequences located between FarR binding sites A and C. We determined that IHF binding to the farAB promoter region could inhibit transcription in vitro and that such binding induced a bending of the target DNA, which we propose to be important in regulating this operon. IHF binding to the promoter region was found to stabilize the binding of FarR to its binding sites A and C and as a consequence, enhanced repression of farAB expression mediated by FarR. We propose a model in which expression of the farAB-encoded efflux pump in N. gonorrhoeae is modulated by the DNA binding activities of FarR and IHF.
Collapse
Affiliation(s)
- Eun-Hee Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
9
|
Słomińska M, Konopa G, Ostrowska J, Kedzierska B, Wegrzyn G, Wegrzyn A. SeqA-mediated stimulation of a promoter activity by facilitating functions of a transcription activator. Mol Microbiol 2003; 47:1669-79. [PMID: 12622820 DOI: 10.1046/j.1365-2958.2003.03392.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It was demonstrated recently that the SeqA protein, a main negative regulator of Escherichia coli chromosome replication initiation, is also a specific transcription factor. SeqA specifically activates the bacteriophage lambda pR promoter while revealing no significant effect on the activity of another lambda promoter, pL. Here, we demonstrate that lysogenization by bacteriophage lambda is impaired in E. coli seqA mutants. Genetic analysis demonstrated that CII-mediated activation of the phage pI and paQ promoters, which are required for efficient lysogenization, is less efficient in the absence of seqA function. This was confirmed in in vitro transcription assays. Interestingly, SeqA stimulated CII-dependent transcription from pI and paQ when it was added to the reaction mixture before CII, although having little effect if added after a preincubation of CII with the DNA template. This SeqA-mediated stimulation was absolutely dependent on DNA methylation, as no effects of this protein were observed when using unmethylated DNA templates. Also, no effects of SeqA on transcription from pI and paQ were observed in the absence of CII. Binding of SeqA to templates containing the tested promoters occurs at GATC sequences located downstream of promoters, as revealed by electron microscopic studies. In contrast to pI and paQ, the activity of the third CII-dependent promoter, pE, devoid of neighbouring downstream GATC sequences, was not affected by SeqA both in vivo and in vitro. We conclude that SeqA stimulates transcription from pI and paQ promoters in co-operation with CII by facilitating functions of this transcription activator, most probably by allowing more efficient binding of CII to the promoter region.
Collapse
Affiliation(s)
- Monika Słomińska
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | | | | | | | | | | |
Collapse
|
10
|
Nasser W, Rochman M, Muskhelishvili G. Transcriptional regulation of fis operon involves a module of multiple coupled promoters. EMBO J 2002; 21:715-24. [PMID: 11847119 PMCID: PMC125868 DOI: 10.1093/emboj/21.4.715] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The transcription of the Escherichia coli fis gene is strongly activated during the outgrowth of cells from stationary phase. The high activity of the promoter of the fis operon requires the transcription factor IHF. Previously, we identified a divergent promoter, div, located upstream of the fis promoter. In this study we demonstrate that at least two additional promoters, designated fis P2 and fis P3, are located in the control region of the fis operon. The fis P2 and div promoters overlap completely, whereas fis P3 and div P are arranged as face-to-face divergent promoters. We show that the div and the tandem fis promoters counterbalance each other, such that their activity is kept on a lower than potentially attainable level. Furthermore, we demonstrate an unusual activation mechanism by IHF, involving a coordinated shift in the balance of promoter activities. We infer that these coupled promoters represent a regulatory module and propose a novel "dynamic balance" mechanism involved in the transcriptional control of the fis operon.
Collapse
Affiliation(s)
- William Nasser
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
Present address: UMG, UMR-CNRS5122, INSA bât Louis Pasteur, 11 Av. Jean Cappelle, F-69621 Villeurbanne Cedex, France Present address: Department of Cellular Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem 90101, Israel Corresponding author e-mail:
| | - Mark Rochman
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
Present address: UMG, UMR-CNRS5122, INSA bât Louis Pasteur, 11 Av. Jean Cappelle, F-69621 Villeurbanne Cedex, France Present address: Department of Cellular Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem 90101, Israel Corresponding author e-mail:
| | - Georgi Muskhelishvili
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
Present address: UMG, UMR-CNRS5122, INSA bât Louis Pasteur, 11 Av. Jean Cappelle, F-69621 Villeurbanne Cedex, France Present address: Department of Cellular Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem 90101, Israel Corresponding author e-mail:
| |
Collapse
|
11
|
Hiszczyńska-Sawicka E, Kur J. Effect of integration host factor of RNA II synthesis in replication of plasmid containing orip 15A. Plasmid 1998; 40:150-7. [PMID: 9735316 DOI: 10.1006/plas.1998.1361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synthesis rates of the replication control RNAs of plasmid orip15A. RNA I, an inhibitor of replication, and RNA II, the primer, have been determined using lacZ fusion plasmids, hybridization assay, and reverse transcription polymerase chain reaction (RT-PCR) in Escherichia coli integration host factor-positive (IHF+) and -negative (IHF-) strains containing pACYC184 plasmid (orip15A). In the absence of IHF (E. coli IHF-), expression of the lacZ gene from the PRNAII promoter increased by a factor of 4 compared with the E. coli wild type (IHF+). Also, the increase in expression was more pronounced when the IHF protein was mutated in the ihfB gene than in the ihfA gene. For the PRNAII promoter of oripMB1 (pBR322), no significant differences were found in expression of the lacZ gene in he E. coli strains examined. The level of beta-galactosidase expression from the PRNA promoter of orip 15A shows that the absence of functional IHF in the transformed strains has no effect on expression of the lacZ gene. The synthesis RNA II:RNA I ratio obtained in hybridization assays was 2.4 for E. coli IHF+ and 4.4 for E. coli IHF-. Densitometric analysis of RT-PCR products indicates that the relative levels of RNA I in E. coli IHF+ and IHF-, are equal, but the relative level of RNA II in E. coli IHF is about four times higher than in E. coli IHF+. These results indicate that the IHF protein inhibits transcription from the PRNAII promoter of orip15A plasmid.
Collapse
|
12
|
Wróbel B, Herman-Antosiewicz A, Szalewska-Pałasz S, Wegrzyn G. Polyadenylation of oop RNA in the regulation of bacteriophage lambda development. Gene X 1998; 212:57-65. [PMID: 9661664 DOI: 10.1016/s0378-1119(98)00127-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We have shown that Escherichia coli pcnB mutants are lysogenized by bacteriophage lambda with lower efficiency as compared to the pcnB+ strains. Our genetic analysis revealed that expression of the lambda cII gene is decreased in the pcnB mutants. However, using various lacZ fusions we demonstrated that neither activities of pL and pR promoters nor transcription termination at tR1 were significantly impaired in the pcnB- host. On the other hand, we found that oop RNA, an antisense RNA for cII expression, is involved in this regulation. Primer protection experiments revealed that oop RNA was polyadenylated and that this polyadenylation was impaired in the pcnB mutant. We found that the oop RNA was more abundant in the pcnB mutant than in the pcnB+ strain. Furthermore, we showed that activity of the pO promoter was not stimulated in the pcnB mutant. Such findings indicated that degradation of oop RNA in the pcnB strain was slower because of inefficient polyadenylation, which could lead to more effective inhibition of cII expression by the antisense oop RNA, resulting in less efficient lysogenization of the host. The oop RNA was found previously to play a role in phage lambda development only under conditions of overproduction of this transcript. Here we demonstrate for the first time, the physiological function of oop RNA in lambda development, confirming that this short transcript plays an important role in the negative regulation of cII gene expression during lambda infection. Moreover, polyadenylation of oop RNA is one of very few known examples of specific RNA polyadenylation by PAP I in prokaryotic cells and its role in gene expression regulation.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Bacteriophage lambda/genetics
- Bacteriophage lambda/growth & development
- Base Sequence
- DNA Primers/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli/virology
- Escherichia coli Proteins
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Viral
- Genes, Bacterial
- Lysogeny/genetics
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Polymerase Chain Reaction
- Polynucleotide Adenylyltransferase
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
Collapse
Affiliation(s)
- B Wróbel
- Department of Molecular Biology, University of Gdańsk, Poland
| | | | | | | |
Collapse
|
13
|
Clerget M, Boccard F. Phage HK022 Roi protein inhibits phage lytic growth in Escherichia coli integration host factor mutants. J Bacteriol 1996; 178:4077-83. [PMID: 8763934 PMCID: PMC178163 DOI: 10.1128/jb.178.14.4077-4083.1996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Temperate coliphage HK022 requires integration host factor (IHF) for lytic growth. The determinant responsible for this requirement was identified as a new gene (roi) located between genes P and Q. This gene encodes a DNA-binding protein (Roi) containing a helix-turn-helix motif. We have shown that Roi binds a site within its own gene that is closely linked to an IHF binding site. By gel retardation experiments, we have found that IHF binding stabilizes the interaction of Roi with its gene. We have isolated three independent phage mutants that are able to grow on an IHF- host. They carry different mutations scattered in the roi gene and specifying single amino-acid changes. The interactions of all three Roi mutant proteins with the Roi binding site differed from that of the wild type. Roi displays strong similarities, in its C-terminal half, to two putative DNA-binding proteins of bacteriophage P1: Ant1 and KilA. The mode of action of the Roi protein and the possibility that IHF is modulating the expression and/or the action of Roi are discussed.
Collapse
Affiliation(s)
- M Clerget
- Département de Biologie Moléculaire, Université de Genève, Switzerland
| | | |
Collapse
|
14
|
Abstract
Integration host factor (IHF) of Escherichia coli is an asymmetric histone-like protein that binds and bends the DNA at specific sequences. IHF functions as an accessory factor in a wide variety of processes including replication, site-specific recombination and transcription. In many of these processes IHF was shown to act as an architectural element which helps the formation of nucleo-protein complexes by bending of the DNA at specific sites. This MicroReview shows how such a structural role of IHF can influence the initiation of transcription. In addition, it summarizes the evidence indicating that IHF can stimulate transcription via a direct interaction with RNA polymerase and explores the possibility that the asymmetry of the IHF protein might reflect such an interaction.
Collapse
Affiliation(s)
- N Goosen
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | |
Collapse
|
15
|
Aviv M, Giladi H, Schreiber G, Oppenheim AB, Glaser G. Expression of the genes coding for the Escherichia coli integration host factor are controlled by growth phase, rpoS, ppGpp and by autoregulation. Mol Microbiol 1994; 14:1021-31. [PMID: 7715442 DOI: 10.1111/j.1365-2958.1994.tb01336.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transcriptional control of the himA and the himD/hip genes coding for the two subunits of the integration host factor (IHF) was investigated. The promoters for the two genes were identified by the use of primer extension and S1 analysis. Expression from both promoters was found to increase as the cells enter stationary phase. Mutation in rpoS, known to be induced upon entry to stationary phase, dramatically reduced the growth-phase response of the himA P4 promoter but had only a small effect on the induction of the himD/hip promoter. The increased activity of both promoters required the presence of the relA and spoT genes, suggesting that ppGpp plays a major role in the response to stationary phase. An artificial increase in ppGpp in exponentially growing cells induced a rapid increase in himA P4 and himD/hip mRNA levels. Experiments with a mutant defective in rpoS showed that the response of the himA P4 promoter to high ppGpp levels was greatly reduced while that of himD/hip was only slightly affected. Therefore, it seems that different mechanisms involving RpoS and ppGpp regulate the growth-phase response of the two promoters. We propose that the effect of ppGpp on himA P4 is mediated via RpoS whereas the himD/hip promoter is affected by ppGpp independently of RpoS. Expression of the himD/hip and himA genes was found to be subject to negative autoregulation. IHF-binding sites, implicated in autoregulation, were found to overlap both the himD/hip and himA P4 promoters. An additional IHF-binding site was found upstream of the himD/hip promoter. All three sites show low binding affinity to IHF suggesting that autoregulation can take place only after sufficiently high levels of IHF accumulate in the cell.
Collapse
Affiliation(s)
- M Aviv
- Department of Cellular Biochemistry, Hebrew University--Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
16
|
Pérez-Martín J, Rojo F, de Lorenzo V. Promoters responsive to DNA bending: a common theme in prokaryotic gene expression. Microbiol Rev 1994; 58:268-90. [PMID: 8078436 PMCID: PMC372964 DOI: 10.1128/mr.58.2.268-290.1994] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The early notion of DNA as a passive target for regulatory proteins has given way to the realization that higher-order DNA structures and DNA-protein complexes are at the basis of many molecular processes, including control of promoter activity. Protein binding may direct the bending of an otherwise linear DNA, exacerbate the angle of an intrinsic bend, or assist the directional flexibility of certain sequences within prokaryotic promoters. The important, sometimes essential role of intrinsic or protein-induced DNA bending in transcriptional regulation has become evident in virtually every system examined. As discussed throughout this article, not every function of DNA bends is understood, but their presence has been detected in a wide variety of bacterial promoters subjected to positive or negative control. Nonlinear DNA structures facilitate and even determine proximal and distal DNA-protein and protein-protein contacts involved in the various steps leading to transcription initiation.
Collapse
Affiliation(s)
- J Pérez-Martín
- Centro de Investigaciones Biológicas, (CSIC), Madrid, Spain
| | | | | |
Collapse
|
17
|
Ditto MD, Roberts D, Weisberg RA. Growth phase variation of integration host factor level in Escherichia coli. J Bacteriol 1994; 176:3738-48. [PMID: 8206852 PMCID: PMC205563 DOI: 10.1128/jb.176.12.3738-3748.1994] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have measured the intracellular abundance of integration host factor (IHF), a site-specific, heterodimeric DNA-binding protein, in exponential- and stationary-phase cultures of Escherichia coli K-12. Western immunoblot analysis showed that cultures that had been growing exponentially for several generations contained 0.5 to 1.0 ng of IHF subunits per microgram of total protein and that this increased to 5 to 6 ng/microgram in late-stationary-phase cultures. IHF is about one-third to one-half as abundant in exponentially growing cells as HU, a structurally related protein that binds DNA with little or no site specificity. Wild-type IHF is metabolically stable, but deletion mutations that eliminated one subunit reduced the abundance of the other when cells enter stationary phase. We attribute this reduction to the loss of stabilizing interactions between subunits. A mutation that inactivates IHF function but not subunit interaction increased IHF abundance, consistent with results of previous work showing that IHF synthesis is negatively autoregulated. We estimate that steady-state exponential-phase cultures contain about 8,500 to 17,000 IHF dimers per cell, a surprisingly large number for a site-specific DNA-binding protein with a limited number of specific sites. Nevertheless, small reductions in IHF abundance had significant effects on several IHF-dependent functions, suggesting that the wild-type exponential phase level is not in large excess of the minimum required for occupancy of physiologically important IHF-binding sites.
Collapse
Affiliation(s)
- M D Ditto
- Section on Microbial Genetics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | |
Collapse
|
18
|
Charlier D, Huysveld N, Roovers M, Glansdorff N. On the role of the Escherichia coli integration host factor (IHF) in repression at a distance of the pyrimidine specific promoter P1 of the carAB operon. Biochimie 1994; 76:1041-51. [PMID: 7748925 DOI: 10.1016/0300-9084(94)90028-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Binding of integration host factor to its target site, centered around nucleotide -305 upstream of the transcription startpoint, exerts antagonistic effects on the expression of P1, the upstream pyrimidine specific promoter of the E coli and S typhimurium carAB operons. IHF stimulates P1 promoter activity in minimal medium, but also increases the repressibility of this promoter by pyrimidines. We present evidence strongly suggesting that IHF exerts these effects by modulating the binding of another pyrimidine specific regulatory molecule, probably the product of gene carP. The carAB control region contains a GATC Dam methylation site, 106 bp upstream of the P1 transcription startpoint, which can be protected in vivo against methylation. This protection requires at least the regulatory carP gene product and a high pyrimidine nucleotide pool and, as shown here, the integration host factor. Whether CarP directly binds to this site or exerts its protective effect indirectly is not yet known. In the absence of IHF (himA) or in mutants affected in the IHF target site this protection is strongly impaired, suggesting that IHF positively influences the formation or the stability of the protective protein-DNA complex some 200 bp downstream. Furthermore, we have demonstrated that the distance separating the IHF and GATC Dam methylase target sites is crucial for the in vivo protection and for pyrimidine mediated regulation of P1 promoter expression. Indeed, shortening this distance by 6 bp, and more surprisingly also by 11 bp, results in a severe reduction of the degree of in vivo protection of the GATC site against methylation and concomitantly of the repressibility by pyrimidines of P1 promoter activity. The absence of both these effects in a double, deletion-duplication, mutant resulting in a net increase of the intervening sequence by 1 bp, clearly demonstrates that these effects are not due to the disruption of an important regulatory site, but must be attributed to variations in the distance separating different protein binding sites.
Collapse
Affiliation(s)
- D Charlier
- Research Institute of the CERIA-COOVI, Brussels, Belgium
| | | | | | | |
Collapse
|
19
|
Charlier D, Roovers M, Gigot D, Huysveld N, Piérard A, Glansdorff N. Integration host factor (IHF) modulates the expression of the pyrimidine-specific promoter of the carAB operons of Escherichia coli K12 and Salmonella typhimurium LT2. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:273-86. [PMID: 8455562 DOI: 10.1007/bf00282809] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We report the identification of Integration Host Factor (IHF) as a new element involved in modulation of P1, the upstream pyrimidine-specific promoter of the Escherichia coli K12 and Salmonella typhimurium carAB operons. Band-shift assays, performed with S-30 extracts of the wild type and a himA, hip double mutant or with purified IHF demonstrate that, in vitro, this factor binds to a region 300 bp upstream of the transcription initiation site of P1 in both organisms. This was confirmed by deletion analysis of the target site. DNase I, hydroxyl radical and dimethylsulphate footprinting experiments allowed us to allocate the IHF binding site to a 38 bp, highly A+T-rich stretch, centred around nucleotide -305 upstream of the transcription initiation site. Protein-DNA contacts are apparently spread over a large number of bases and are mainly located in the minor groove of the helix. Measurements of carbamoyl-phosphate synthetase (CPSase) and beta-galactosidase specific activities from car-lacZ fusion constructs of wild type or IHF target site mutants introduced into several genetic backgrounds affected in the himA gene or in the pyrimidine-mediated control of P1 (carP6 or pyrH+/-), or in both, indicate that, in vivo, IHF influences P1 activity as well as its control by pyrimidines. IHF stimulates P1 promoter activity in minimal medium, but increases the repressibility of this promoter by pyrimidines. These antagonistic effects result in a two- to threefold reduction in the repressibility of promoter P1 by pyrimidines in the absence of IHF binding. IHF thus appears to be required for maximal expression as well as for establishment of full repression. IHF could exert this function by modulating the binding of a pyrimidine-specific regulatory molecule.
Collapse
Affiliation(s)
- D Charlier
- Research Institute, CERIA-COOVI, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
20
|
Tomka M, Catalano C. Physical and kinetic characterization of the DNA packaging enzyme from bacteriophage lambda. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53659-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Oppenheim AB, Kornitzer D, Altuvia S, Court DL. Posttranscriptional control of the lysogenic pathway in bacteriophage lambda. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 46:37-49. [PMID: 8234786 DOI: 10.1016/s0079-6603(08)61017-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- A B Oppenheim
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
22
|
Claverie-Martin F, Magasanik B. Positive and negative effects of DNA bending on activation of transcription from a distant site. J Mol Biol 1992; 227:996-1008. [PMID: 1433305 DOI: 10.1016/0022-2836(92)90516-m] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription of the Escherichia coli glnHPQ operon, which encodes components of the high-affinity glutamine transport system, is activated by nitrogen regulator I (NRI)-phosphate in response to nitrogen limitation. NRI-phosphate binds to sites upstream from the sigma 54-dependent glnHp2 promoter and activates transcription by catalyzing the isomerization of the closed sigma 54-RNA polymerase promoter complex to an open complex. On linear DNA, the initiation of glnHp2 transcription requires in addition to NRI-phosphate the presence of integration host factor (IHF), which binds to a site located between the NRI-binding sites and the promoter. On supercoiled DNA, IHF does not play an essential role, but enhances the activation of transcription by NRI-phosphate. We found that at a mutant glnHp2 promoter with increased affinity for sigma 54-RNA polymerase, the initiation of transcription can be activated equally well by NRI-phosphate in the presence or absence of IHF. Binding of IHF to its site does not increase the binding of sigma 54-RNA polymerase to the glnHp2 promoter; instead, our data suggest that IHF bends the DNA to align the activator with the closed sigma 54-RNA polymerase promoter complex to facilitate the interactions that result in open complex formation. In the absence of IHF, NRI-phosphate can activate transcription whether its binding sites are on the same face of the DNA helix as the sigma 54-RNA polymerase or on the opposite face. IHF enhances transcription when the three proteins are located on the same face of the helix, but strongly inhibits transcription when any one of the proteins is located on the opposite face.
Collapse
Affiliation(s)
- F Claverie-Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
23
|
Giladi H, Igarashi K, Ishihama A, Oppenheim AB. Stimulation of the phage lambda pL promoter by integration host factor requires the carboxy terminus of the alpha-subunit of RNA polymerase. J Mol Biol 1992; 227:985-90. [PMID: 1433303 DOI: 10.1016/0022-2836(92)90514-k] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Escherichia coli integration host factor (IHF) binds with high affinity to two tandem IHF consensus sequences located upstream from the pL promoter of bacteriophage lambda. IHF was shown to stimulate transcription initiation from the pL promoter by increasing close complex formation (KB). We show here, by the use of reconstituted mutant RNA polymerases, that the C-terminal portion of the alpha subunit of RNA polymerase plays an essential role in the stimulation of transcription by IHF. Our results are in agreement with the hypothesis that IHF, like the cAMP-CRP activator, increases the affinity of RNA polymerase to the promoter by protein-protein interaction.
Collapse
Affiliation(s)
- H Giladi
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
24
|
Santero E, Hoover TR, North AK, Berger DK, Porter SC, Kustu S. Role of integration host factor in stimulating transcription from the sigma 54-dependent nifH promoter. J Mol Biol 1992; 227:602-20. [PMID: 1404379 DOI: 10.1016/0022-2836(92)90211-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In a wide variety of nitrogen-fixing organisms among the Purple Bacteria (large division of Gram-negative bacteria) the nitrogen fixation (nif) operons are transcribed by an alternative holoenzyme form of RNA polymerase, sigma 54-holoenzyme. Transcription depends on the activator protein NIFA (nitrogen fixation protein A), which catalyzes isomerization of closed complexes between this polymerase and a promoter to transcriptionally productive open complexes. NIFA-mediated activation of transcription from the nifH promoter of Klebsiella pneumoniae is greatly stimulated by the integration host factor IHF, which binds to a site between the upstream binding site for NIFA and the promoter, and bends the DNA. IHF fails to stimulate activation of transcription from this promoter by another activator of sigma 54-holoenzyme, NTRC (nitrogen regulatory protein C), which lacks a specific binding site in the nifH promoter region. As predicted, if the IHF-induced bend facilitates interaction between NIFA and sigma 54-holoenzyme, substitution of an NTRC-binding site for the NIFA-binding site allowed IHF to stimulate NTRC-mediated activation of transcription from the nifH promoter. The stimulation was of the same order of magnitude as that for NIFA in the native configuration of the promoter-regulatory region (up to 20-fold). With purified NTRC and the substitution construct we could demonstrate that stimulation by IHF in a purified transcription system was comparable to that in a crude coupled transcription-translation system, indicating that the stimulation in the crude system could be accounted for by IHF. The IHF stimulation was observed on linear as well as supercoiled templates, indicating that the geometric requirements are relatively simple. We have attempted to visualize the arrangement of proteins on DNA fragments carrying the nifH promoter-regulatory region of K. pneumoniae by electron microscopy. IHF stimulated NIFA-mediated activation of transcription from the nifH and nifD promoters of Bradyrhizobium japonicum and less so from the nifH promoters of Rhizobium meliloti and Thiobacillus ferrooxidans, consistent with previous observations that stimulation is greatest at promoters that are weak binding sites for sigma 54-holoenzyme in closed complexes.
Collapse
Affiliation(s)
- E Santero
- Department of Plant Pathology, University of California, Berkeley 94720
| | | | | | | | | | | |
Collapse
|
25
|
Kukolj G, DuBow M. Integration host factor activates the Ner-repressed early promoter of transposable Mu-like phage D108. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)37118-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Pagel JM, Winkelman JW, Adams CW, Hatfield GW. DNA topology-mediated regulation of transcription initiation from the tandem promoters of the ilvGMEDA operon of Escherichia coli. J Mol Biol 1992; 224:919-35. [PMID: 1569580 DOI: 10.1016/0022-2836(92)90460-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is becoming increasingly clear that the intrinsic and protein-induced topological properties of the DNA helix influence transcriptional efficiency. In this report we describe the properties of two upstream activating regions that influence transcription from the non-overlapping tandem promoters of the ilvGMEDA operon of Escherichia coli. One 20 base-pair region between the promoter sites contains an intrinsic DNA bend that activates transcription from the downstream promoter. The other region contains an integration host factor (IHF) binding site that overlaps the upstream promoter site. IHF binding at this site represses transcription from the upstream promoter and enhances transcription from the downstream promoter. IHF also induces a severe bend in the DNA at its target binding site in the upstream promoter region. The activating property of the 20 base-pair DNA sequence located between the promoters is dependent upon the helical phasing of the sequence-directed DNA bend that it encodes. However, the IHF-mediated activation of transcription is not dependent upon the helical phasing (spatial orientation) of the upstream IHF and downstream promoter sites. The IHF-mediated activation of transcription is also uninfluenced by the presence or absence of the intrinsic DNA bend between its binding site and the downstream promoter site. These results suggest the interesting possibility that IHF activates transcription from the nearby downstream promoter simply by bending the DNA helix in the absence of specific IHF-RNA polymerase or upstream DNA-RNA polymerase interactions.
Collapse
Affiliation(s)
- J M Pagel
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine 92717
| | | | | | | |
Collapse
|
27
|
Giladi H, Koby S, Gottesman ME, Oppenheim AB. Supercoiling, integration host factor, and a dual promoter system, participate in the control of the bacteriophage lambda pL promoter. J Mol Biol 1992; 224:937-48. [PMID: 1533252 DOI: 10.1016/0022-2836(92)90461-r] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The high level of efficiency of the bacteriophage lambda pL promoter is dependent upon the topological state of the promoter DNA and the binding of a DNA-bending protein, IHF, to a site centered -86 base-pairs upstream from the pL transcription start site. Abortive initiation assays indicate that DNA supercoiling stimulates open complex formation, whereas IHF enhances promoter recognition. IHF stimulates promoter recognition to the same extent on linear and supercoiled templates. We found that the pL region contains a second promoter, pL2, that initiates transcription 42 base-pairs upstream from pL. Although competitive with pL and inhibited by IHF, mutations in pL2 do not affect the regulation of pL. Stimulation by IHF is helix-face-dependent. IHF inhibits pL when the IHF binding site is displaced a helical half-turn upstream. The pL sequences protected against DNase I digestion by bound IHF and RNA polymerase do not overlap. However, DNase I-hypersensitive sites appear in the region between the two bound proteins. In addition, IHF enhances RNA polymerase binding to pL. These data suggest that stimulation of pL by IHF involves the interaction of IHF and RNA polymerase to form a loop or otherwise distort the DNA between their binding sites.
Collapse
Affiliation(s)
- H Giladi
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
28
|
Ramani N, Huang L, Freundlich M. In vitro interactions of integration host factor with the ompF promoter-regulatory region of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1992; 231:248-55. [PMID: 1736095 DOI: 10.1007/bf00279798] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previous work has shown that integration host factor (IHF) mutants have increased expression and altered osmoregulation of OmpF, a major Escherichia coli outer membrane protein. By in vitro analysis the possibility was investigated that IHF interacts directly with the ompF promoter region. Gel retardation assays and DNase I protection experiments showed that IHF binds to two sites in the ompF promoter region centered at positions -180 and -60 relative to the start of transcription. Gel electrophoresis studies with circularly permuted ompF promoter fragments indicated that IHF binding strongly increased a small intrinsic bend in the ompF promoter region. The addition of IHF to a purified in vitro transcription system strongly and specifically inhibited ompF transcription. This inhibition was reversed by increasing the concentration of OmpR, a positive activator required for ompF expression, suggesting that IHF may inhibit ompF transcription by altering how OmpR interacts with the ompF promoter.
Collapse
Affiliation(s)
- N Ramani
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794-5215
| | | | | |
Collapse
|
29
|
Tsui P, Huang L, Freundlich M. Integration host factor binds specifically to multiple sites in the ompB promoter of Escherichia coli and inhibits transcription. J Bacteriol 1991; 173:5800-7. [PMID: 1885551 PMCID: PMC208313 DOI: 10.1128/jb.173.18.5800-5807.1991] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Escherichia coli integration host factor (IHF) is a DNA-binding protein that participates in gene regulation, site-specific recombination, and other processes in E. coli and some of its bacteriophages and plasmids. In the present study, we showed that IHF is a direct negative effector of the ompB operon of E. coli. Gel retardation experiments and DNase I footprinting studies revealed that IHF binds to three sites in the ompB promoter region. In vitro transcription from ompB promoter fragments was specifically blocked by IHF. In vivo experiments showed that IHF is a negative effector of ompB expression in growing cells. Analysis of IHF binding site mutations strongly suggested that IHF binding in the ompB promoter region is necessary for the negative effects seen in vivo.
Collapse
Affiliation(s)
- P Tsui
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794-5212
| | | | | |
Collapse
|
30
|
Silverman PM, Wickersham E, Rainwater S, Harris R. Regulation of the F plasmid traY promoter in Escherichia coli K12 as a function of sequence context. J Mol Biol 1991; 220:271-9. [PMID: 1906941 DOI: 10.1016/0022-2836(91)90012-u] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
TraJ and SfrA are, respectively, plasmid and host (Escherichia coli)-encoded proteins normally required for F plasmid traY promoter function. Beginning with plasmids in which a traY-lacZ fusion gene, designated phi (traY'-'lacZ)hyb, and lacY are expressed from the F plasmid traY promoter, we isolated mutants in which lac gene expression was SfrA or TraJ-independent. A total of 45 of 50 SfrA-independent isolates obtained after 2-aminopurine mutagenesis proved to have chromosomal mutations, whereas four out of four isolates obtained without mutagenesis had plasmid mutations. All of 17 isolates selected for TraJ-independent expression after mutagenesis had plasmid mutations. By restriction endonuclease digestions, 25 of 26 SfrA-independent and TraJ-independent plasmid mutations were insertions. Four of the former and three of the latter were examined further. By sequence analysis, all seven proved to be IS1 or IS2 insertions defining five insertion sites between base-pairs -49 and -82 with respect to the major traY transcription initiation site. In two cases, the same insertion allele was obtained from the two selection schemes. All three of the mutants selected for TraJ-independent gene expression manifested SfrA-independent expression as well, and levels of beta-galactosidase in different plasmid mutant strains lacking TraJ and SfrA were indistinguishable. By primer extension analysis, transcription initiation sites for traY mRNA synthesis were unaltered by the mutations. Replacing the tra sequence upstream from base-pair -78, without genetic selection, increased beta-galactosidase activity in the absence of TraJ and SfrA greater than tenfold. Activity increased two- to threefold more in a traJ+ sfrA mutant strain, and fivefold more in a traJ+ sfrA+ strain. Activity was unaltered in an sfrA+ strain without TraJ. By primer extension analysis, the traY promoter was utilized under all conditions. The data indicate that regulation of traY promoter activity is strongly dependent on sequence context.
Collapse
Affiliation(s)
- P M Silverman
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104
| | | | | | | |
Collapse
|
31
|
Boffini A, Prentki P. Identification of protein binding sites in genomic DNA by two-dimensional gel electrophoresis. Nucleic Acids Res 1991; 19:1369-74. [PMID: 1827523 PMCID: PMC333888 DOI: 10.1093/nar/19.7.1369] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We describe a simple two-dimensional electrophoresis procedure to identify the recognition sites of DNA-binding proteins within large DNA molecules. Using this approach, we have mapped E. coli IHF (Integration Host Factor) binding sites within phage Lambda (48 kb) and phage Mu (39 kb) DNA. We are also able to visualize IHF binding sites in E. coli chromosomal DNA (4,700 kb). We present an extension of this technique using direct amplification by PCR of the isolated restriction fragments, which should permit the cloning of a collection of recognition sequences for DNA binding proteins in complex genomes.
Collapse
Affiliation(s)
- A Boffini
- Department of Molecular Biology, University of Geneva, Switzerland
| | | |
Collapse
|
32
|
Mendelson I, Gottesman M, Oppenheim AB. HU and integration host factor function as auxiliary proteins in cleavage of phage lambda cohesive ends by terminase. J Bacteriol 1991; 173:1670-6. [PMID: 1825651 PMCID: PMC207316 DOI: 10.1128/jb.173.5.1670-1676.1991] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
HU and integration host factor (IHF) are small, basic heterodimeric DNA-binding proteins which participate in transcription initiation, DNA replication, and recombination. We constructed isogenic Escherichia coli strains in which HU, IHF, or both proteins were absent. Bacteriophage lambda did not grow in hosts lacking both HU and IHF. Phage DNA replication and late gene transcription were normal in the double mutants, but packaging of lambda DNA was defective. Mature phage DNA molecules were absent, indicating that terminase was unable to linearize lambda DNA. Phage variants carrying a small substitution near cos or the ohm1 mutation in the terminase gene, Nul, formed plaques on HU- IHF- strains. We propose that HU or IHF is required to establish the higher-order DNA-protein structure at cos that is the substrate for lambda terminase.
Collapse
Affiliation(s)
- I Mendelson
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
33
|
Hoover TR, Santero E, Porter S, Kustu S. The integration host factor stimulates interaction of RNA polymerase with NIFA, the transcriptional activator for nitrogen fixation operons. Cell 1990; 63:11-22. [PMID: 2208275 DOI: 10.1016/0092-8674(90)90284-l] [Citation(s) in RCA: 312] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The regulatory protein NIFA activates transcription of nitrogen fixation (nif) operons by the sigma 54 holoenzyme form of RNA polymerase. NIFA from Klebsiella pneumoniae activates transcription from the nifH promoter in vitro; in addition, the integration host factor, IHF, binds between the nifH promoter and an upstream binding site for NIFA. We demonstrate here that IHF greatly stimulates NIFA-mediated activation of nifH transcription in vitro and thus that the two factors are functionally synergistic. Electron micrographs indicate that IHF bends the DNA in the nifH promoter regulatory region. Although IHF binds close to the nifH promoter, it does not directly stimulate binding of sigma 54 holoenzyme. Rather, the IHF-induced bend may facilitate productive contacts between NIFA and sigma 54 holoenzyme that lead to the formation of open complexes. IHF binds to nif promoter regulatory regions from a variety of organisms within the phylum "purple bacteria," suggesting a general ability to stimulate NIFA-mediated activation of nif transcription.
Collapse
Affiliation(s)
- T R Hoover
- Department of Plant Pathology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
34
|
Goodrich JA, Schwartz ML, McClure WR. Searching for and predicting the activity of sites for DNA binding proteins: compilation and analysis of the binding sites for Escherichia coli integration host factor (IHF). Nucleic Acids Res 1990; 18:4993-5000. [PMID: 2205834 PMCID: PMC332103 DOI: 10.1093/nar/18.17.4993] [Citation(s) in RCA: 239] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An analysis of the sequence information contained in a compilation of published binding sites for E. coli integration host factor (IHF) was performed. The sequences of twenty-seven IHF sites were aligned; the base occurrences at each position, the information content, and an extended consensus sequence were obtained for the IHF site. The base occurrences at each position of the IHF site were used with a program written for the Apple Macintosh computers in order to determine the similarity scores for published IHF sites. A linear correlation was found to exist between the logarithm of IHF binding and functional data (relative free energies) and similarity scores for two groups of IHF sites. The MacTargsearch program and its potential usefulness in searching for other sites and predicting their relative activities is discussed.
Collapse
Affiliation(s)
- J A Goodrich
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | | | | |
Collapse
|
35
|
Huang L, Tsui P, Freundlich M. Integration host factor is a negative effector of in vivo and in vitro expression of ompC in Escherichia coli. J Bacteriol 1990; 172:5293-8. [PMID: 2203749 PMCID: PMC213192 DOI: 10.1128/jb.172.9.5293-5298.1990] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Integration host factor (IHF) of Escherichia coli is a DNA-binding protein involved in gene expression and other cellular functions in E. coli and some of its bacteriophages and plasmids. We report here that IHF is a direct negative effector of the ompC operon of E. coli. IHF binds to ompC DNA and protects a region of 35 base pairs located upstream from the ompC promoters. The addition of IHF to a purified in vitro transcription system inhibited transcription from two of the three ompC promoters. In vivo experiments suggest that the in vitro results are physiologically relevant. IHF mutants show increased expression of OmpC. In addition, the OmpC- phenotype of certain strains is completely suppressed by a mutation in IHF.
Collapse
Affiliation(s)
- L Huang
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794-5215
| | | | | |
Collapse
|
36
|
Gober JW, Shapiro L. Integration host factor is required for the activation of developmentally regulated genes in Caulobacter. Genes Dev 1990; 4:1494-504. [PMID: 2253876 DOI: 10.1101/gad.4.9.1494] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several temporally controlled flagellar genes in Caulobacter crescentus require a sigma 54 promoter and upstream sites for transcription activation. We demonstrate here that in some of these genes, an AT-rich region containing an integration host factor (IHF) consensus binding site lies between the activator and the promoter, and that this region binds IHF in vitro. Analysis of mutations in the IHF-binding region of the hook operon demonstrated that an intact IHF-binding site is necessary for transcription in vivo. An adjacent and divergent promoter also has an IHF consensus sequence that binds IHF. The IHF and enhancer sites are 3' to the transcription start site in this promoter. We postulate that IHF mediates the formation of a higher order structure between the divergent promoter regions in a manner analogous to the nucleosome-like structure generated for lambda-Escherichia coli DNA recombination and that this higher order structure modulates transcription.
Collapse
Affiliation(s)
- J W Gober
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427
| | | |
Collapse
|
37
|
Hayes S, Duncan D, Hayes C. Alcohol treatment of defective lambda lysogens is deletionogenic. MOLECULAR & GENERAL GENETICS : MGG 1990; 222:17-24. [PMID: 2146486 DOI: 10.1007/bf00283017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We ascertained that transient exposure to ethanol, above 18%, was deletionogenic to an Escherichia coli strain with a fragment (12.5 kb) of bacteriophage lambda integrated within the chromosome. The lambda attL B.P' through P fragment provided a forward selection for mutants, and a target for mutagenesis. The cells were killed by thermal derepression of transcription and replication of the lambda fragment when transferred from 30 degrees to 42 degrees C. Survivor mutants, capable of forming colonies at 42 degrees C, were selected from untreated starting cells. About half no longer supported marker rescue of the lambda fragment imm lambda (immunity) region, comprising the cI repressor, and the PL and PR promoters. Ethanol treatment of starting cells increased the occurrence of imm lambda-defective clones to near 100%. The mutations responsible for the imm lambda defect were found to be large deletions (12 kb or more of DNA). Ethanol treatment of the starting cells also produced a 5- to 18-fold increase in the occurrence of E. coli pgl mutations, which likely arose by the deletion mechanism generating the imm lambda defects, since pgl was closely linked to the integrated lambda fragment. A unifying hypothesis for these observations was that ethanol was deletionogenic. The inclusion or substitution of the int-kil segment of the lambda fragment produced no real change in the spontaneous occurrence of large imm lambda deletions from the untreated cells. Substitution of this segment suppressed the deletionogenic effect of ethanol, implying a prerequisite for sequence homology or gene function from this interval.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Hayes
- Department of Microbiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
38
|
Abstract
Escherichia coli integration host factor (IHF) is a small dimeric protein that binds to a specific DNA consensus sequence and produces DNA bending. Transcription from the bacteriophage lambda pL promoter is stimulated three- to fourfold by IHF both in vivo and in vitro. IHF binds with high-affinity to two tandem sites located just upstream from the pL promoter and enhances the formation of RNA polymerase-promoter closed complexes. The rate of isomerization to open complex is not influenced by IHF. IHF may stimulate recognition of pL by one or more of several mechanisms: (1) by bending DNA; (2) by making protein-protein contacts with RNA polymerase; or (3) by occluding a competing promoter upstream from pL.
Collapse
Affiliation(s)
- H Giladi
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|