1
|
Karlin KD, Hota PK, Kim B, Panda S, Phan H. Synthetic Copper-(Di)oxygen Complex Generation and Reactivity Relevant to Copper Protein O 2-Processing. BULLETIN OF JAPAN SOCIETY OF COORDINATION CHEMISTRY 2024; 83:16-27. [PMID: 39372915 PMCID: PMC11448371 DOI: 10.4019/bjscc.83.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Synthetic copper-dioxygen complex design, generation and characterization, play a crucial role in elucidating the structure/function of copper-based metalloenzymes, including dopamine β-monooxygenase, lytic polysaccharide monooxygenases, particulate methane monooxygenase, tyrosinase, hemocyanin, and catechol oxidase. Designing suitable ligands to closely mimic the variable active sites found in these enzymes poses a challenging task for synthetic bioinorganic chemists. In this review, we have highlighted a few representative ligand systems capable of stabilizing various copper-dioxygen species such as CuII-(O2 •-)(superoxide), Cu2 II-(μ-η 1:η 1-O2 2-) (trans/cis-peroxide), Cu2 II-(μ-η 2:η 2-O2 2-)(side-on peroxide) and Cun II--OOH (hydroperoxide) species. Here, we discuss the ligand type utilized, syntheses, and spectroscopic characterization of these species. We also delineate reactivity patterns, particularly electrophilic arene hydroxylation by a side-on peroxo species which occurs via a "NIH shift" mechanism and thermodynamic-kinetic relationships among Cu2-(O2 •-)/O2 2-/-OOH moieties.
Collapse
Affiliation(s)
| | | | - Bohee Kim
- Department of Chemistry, Johns Hopkins University
| | - Sanjib Panda
- Department of Chemistry, Johns Hopkins University
| | - Hai Phan
- Department of Chemistry, Johns Hopkins University
| |
Collapse
|
2
|
Srisuk C, Choolert C, Bendena WG, Longyant S, Sithigorngul P, Chaivisuthangkura P. Molecular isolation and expression analysis of hemocyanin isoform 2 of Macrobrachium rosenbergii. JOURNAL OF AQUATIC ANIMAL HEALTH 2022; 34:208-220. [PMID: 36205717 DOI: 10.1002/aah.10173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/16/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Hemocyanin is a copper-bearing protein in the hemolymph of many arthropods and mollusks and functions as an oxygen transport and important nonspecific immune protein. METHODS In this study, complementary DNA of hemocyanin isoform 2 of the prawn Macrobrachium rosenbergii (MrHc2) was isolated by rapid amplification of cDNA ends and mRNA expression was characterized to elucidate molecular basis of its function. RESULT With a molecular mass of 77.3 kDa, MrHc2 contained three domains: hemocyanin-all-alpha, hemocyanin-copper-containing, and hemocyanin-immunoglobulin-like domains. Molecular phylogenetic analysis revealed that MrHc2 belongs to the γ-type subunit and is closely related to hemocyanin subunit 1 of the palaemonid shrimp Macrobrachium nipponense. In addition, MrHc2 resided in a different clade relative to hemocyanin (MrHc) of M. rosenbergii (α-type subunit) and in a different subclade relative to the hemocyanin proteins of penaeid shrimp. The messenger RNA transcript of MrHc2 was highly expressed in the hepatopancreas and weakly expressed in the gills, intestine, stomach, muscle, and hemocytes. Upon challenge with M. rosenbergii nodavirus (MrNV), the expression of MrHc2 was 1.96-, 2.93-, and 1.96-fold on days 3, 4, and 5, respectively, and then gradually declined to basal levels on day 7. CONCLUSION This study suggests that MrHc2 plays an important role in the innate immune response of M. rosenbergii to MrNV.
Collapse
Affiliation(s)
- Chutima Srisuk
- Innovative Learning Center, Srinakharinwirot University, Bangkok, Thailand
| | - Chanitcha Choolert
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - William G Bendena
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Siwaporn Longyant
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology, Srinakharinwirot University, Bangkok, Thailand
| | - Paisarn Sithigorngul
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology, Srinakharinwirot University, Bangkok, Thailand
| | - Parin Chaivisuthangkura
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
3
|
Papaemmanouil CD, Peña-García J, Banegas-Luna AJ, Kostagianni AD, Gerothanassis IP, Pérez-Sánchez H, Tzakos AG. ANTIAGE-DB: A Database and Server for the Prediction of Anti-Aging Compounds Targeting Elastase, Hyaluronidase, and Tyrosinase. Antioxidants (Basel) 2022; 11:antiox11112268. [PMID: 36421454 PMCID: PMC9686885 DOI: 10.3390/antiox11112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Natural products bear a multivariate biochemical profile with antioxidant, anti-inflammatory, antibacterial, and antitumoral properties. Along with their natural sources, they have been widely used both as anti-aging and anti-melanogenic agents due to their effective contribution in the elimination of reactive oxygen species (ROS) caused by oxidative stress. Their anti-aging activity is mainly related to their capacity of inhibiting enzymes like Human Neutrophil Elastase (HNE), Hyaluronidase (Hyal) and Tyrosinase (Tyr). Herein, we accumulated literature information (covering the period 1965–2020) on the inhibitory activity of natural products and their natural sources towards these enzymes. To navigate this information, we developed a database and server termed ANTIAGE-DB that allows the prediction of the anti-aging potential of target compounds. The server operates in two axes. First a comparison of compounds by shape similarity can be performed against our curated database of natural products whose inhibitory potential has been established in the literature. In addition, inverse virtual screening can be performed for a chosen molecule against the three targeted enzymes. The server is open access, and a detailed report with the prediction results is emailed to the user. ANTIAGE-DB could enable researchers to explore the chemical space of natural based products, but is not limited to, as anti-aging compounds and can predict their anti-aging potential. ANTIAGE-DB is accessed online.
Collapse
Affiliation(s)
- Christina D. Papaemmanouil
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Jorge Peña-García
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain
| | - Antonio Jesús Banegas-Luna
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain
| | - Androniki D. Kostagianni
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Ioannis P. Gerothanassis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain
- Correspondence: (H.P.-S.); (A.G.T.)
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
- Correspondence: (H.P.-S.); (A.G.T.)
| |
Collapse
|
4
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Bux K, Shen X, Tariq M, Yin J, Moin ST, Bhowmik D, Haider S. Inter-Subunit Dynamics Controls Tunnel Formation During the Oxygenation Process in Hemocyanin Hexamers. Front Mol Biosci 2021; 8:710623. [PMID: 34604302 PMCID: PMC8479113 DOI: 10.3389/fmolb.2021.710623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Hemocyanin from horseshoe crab in its active form is a homo-hexameric protein. It exists in open and closed conformations when transitioning between deoxygenated and oxygenated states. Here, we present a detailed dynamic atomistic investigation of the oxygenated and deoxygenated states of the hexameric hemocyanin using explicit solvent molecular dynamics simulations. We focus on the variation in solvent cavities and the formation of tunnels in the two conformational states. By employing principal component analysis and CVAE-based deep learning, we are able to differentiate between the dynamics of the deoxy- and oxygenated states of hemocyanin. Finally, our results identify the deoxygenated open conformation, which adopts a stable, closed conformation after the oxygenation process.
Collapse
Affiliation(s)
- Khair Bux
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Xiayu Shen
- UCL School of Pharmacy, London, United Kingdom
| | - Muhammad Tariq
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Junqi Yin
- Oak Ridge National Laboratory, Center for Computational Sciences, Oak Ridge, TN, United States
| | - Syed Tarique Moin
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Debsindhu Bhowmik
- Oak Ridge National Laboratory, Computer Sciences and Engineering Division, Oak Ridge, TN, United States
| | | |
Collapse
|
6
|
Maity R, Birenheide BS, Breher F, Sarkar B. Cooperative Effects in Multimetallic Complexes Applied in Catalysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202001951] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ramananda Maity
- Department of Chemistry University of Calcutta 92, A. P. C. Road Kolkata 700009 India
| | - Bernhard S. Birenheide
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology (KIT) Engesserstr. 15 76131 Karlsruhe Germany
| | - Frank Breher
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology (KIT) Engesserstr. 15 76131 Karlsruhe Germany
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische Koordinationschemie Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 D 70569 Stuttgart Germany
| |
Collapse
|
7
|
Molecular Cloning, Structure and Phylogenetic Analysis of a Hemocyanin Subunit from the Black Sea Crustacean Eriphia verrucosa (Crustacea, Malacostraca). Genes (Basel) 2021; 12:genes12010093. [PMID: 33450956 PMCID: PMC7828413 DOI: 10.3390/genes12010093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 11/30/2022] Open
Abstract
Hemocyanins are copper-binding proteins that play a crucial role in the physiological processes in crustaceans. In this study, the cDNA encoding hemocyanin subunit 5 from the Black sea crab Eriphia verrucosa (EvHc5) was cloned using EST analysis, RT-PCR and rapid amplification of the cDNA ends (RACE) approach. The full-length cDNA of EvHc5 was 2254 bp, consisting of a 5′ and 3′ untranslated regions and an open reading frame of 2022 bp, encoding a protein consisting of 674 amino acid residues. The protein has an N-terminal signal peptide of 14 amino acids as is expected for proteins synthesized in hepatopancreas tubule cells and secreted into the hemolymph. The 3D model showed the presence of three functional domains and six conserved histidine residues that participate in the formation of the copper active site in Domain 2. The EvHc5 is O-glycosylated and the glycan is exposed on the surface of the subunit similar to Panulirus interruptus. The phylogenetic analysis has shown its close grouping with γ-type of hemocyanins of other crustacean species belonging to order Decapoda, infraorder Brachyura.
Collapse
|
8
|
Masuda T, Baba S, Matsuo K, Ito S, Mikami B. The high-resolution crystal structure of lobster hemocyanin shows its enzymatic capability as a phenoloxidase. Arch Biochem Biophys 2020; 688:108370. [DOI: 10.1016/j.abb.2020.108370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 02/04/2023]
|
9
|
Riciluca KCT, Borges AC, Mello JFR, de Oliveira UC, Serdan DC, Florez-Ariza A, Chaparro E, Nishiyama MY, Cassago A, Junqueira-de-Azevedo ILM, van Heel M, Silva PI, Portugal RV. Myriapod haemocyanin: the first three-dimensional reconstruction of Scolopendra subspinipes and preliminary structural analysis of S. viridicornis. Open Biol 2020; 10:190258. [PMID: 32228398 PMCID: PMC7241075 DOI: 10.1098/rsob.190258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Haemocyanins (Hcs) are copper-containing, respiratory proteins that occur in the haemolymph of many arthropod species. Here, we report the presence of Hcs in the chilopode Myriapoda, demonstrating that these proteins are more widespread among the Arthropoda than previously thought. The analysis of transcriptome of S. subspinipes subpinipes reveals the presence of two distinct subunits of Hc, where the signal peptide is present, and six of prophenoloxidase (PPO), where the signal peptide is absent, in the 75 kDa range. Size exclusion chromatography profiles indicate different quaternary organization for Hc of both species, which was corroborated by TEM analysis: S. viridicornis Hc is a 6 × 6-mer and S. subspinipes Hc is a 3 × 6-mer, which resembles the half-structure of the 6 × 6-mer but also includes the presence of phenoloxidases, since the 1 × 6-mer quaternary organization is commonly associated with hexamers of PPO. Studies with Chelicerata showed that PPO activity are exclusively associated with the Hcs. This study indicates that Scolopendra may have different proteins playing oxygen transport (Hc) and PO function, both following the hexameric oligomerization observed in Hcs.
Collapse
Affiliation(s)
- K C T Riciluca
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil.,Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil
| | - A C Borges
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - J F R Mello
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - U C de Oliveira
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil
| | - D C Serdan
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - A Florez-Ariza
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - E Chaparro
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil.,Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - M Y Nishiyama
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil
| | - A Cassago
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - I L M Junqueira-de-Azevedo
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil
| | - M van Heel
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - P I Silva
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil.,Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - R V Portugal
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| |
Collapse
|
10
|
Mendoza-Porras O, Kamath S, Harris JO, Colgrave ML, Huerlimann R, Lopata AL, Wade NM. Resolving hemocyanin isoform complexity in haemolymph of black tiger shrimp Penaeus monodon - implications in aquaculture, medicine and food safety. J Proteomics 2020; 218:103689. [PMID: 32088355 DOI: 10.1016/j.jprot.2020.103689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/21/2023]
Abstract
Hemocyanin (Hc) is a multifunctional macromolecule involved in oxygen transport and non-specific immunity in shrimp. Hc is crucial in physiology and nutrition linked with optimal performance in aquaculture production systems. In medicine, Hc has been approved for clinical use in humans as adjuvant and anticancer therapeutic. In contrast, Hc has also been identified as one of the proteins causing anaphylaxis following shrimp consumption. The role of individual Hc isoforms remains unknown due to a lack of resolved Hc isoforms. We successfully identified eleven different Penaeus monodon hemocyanin (PmoHc) γ isoforms including two truncated isoforms (50 and 20 kDa) and one PmoHc β isoform in haemolymph using proteomics informed by transcriptomics. Amino acid sequence homology ranged from 24 to 97% between putative PmoHc gene isoforms. Hc isoforms showed specific patterns of transcript expression in shrimp larval stages and adult hepatopancreas. These findings enable isoform level investigations aiming to define molecular mechanisms underpinning Hc functionality in shrimp physiology and immunity, as well as their individual immunogenic role in human allergy. Our research demonstrates the power of proteomics informed by transcriptomics to resolve isoform complexity in non-model organisms and lay the foundations for improved performance within the aquaculture industry and advance allergenic applications in medicine. SIGNIFICANCE: The roles of hemocyanin (Hc) in shrimp homeostasis and immunity as well as in human allergy are not well understood because the complexity of Hc isoforms has remained unresolved. Our results have confirmed the existence of at least 12 individual Hc isoforms in shrimp haemolymph and validated putative Hc gene assemblies from transcriptomics. Our findings will enable monitoring the expression of specific Hc isoforms in shrimp haemolymph during different environmental, nutritional and pathogenic conditions, thus providing insights into isoform specific functional roles. In medicine, the potential allergenicity of each Hc isoform could be determined and advance allergenic applications. Lastly, since Hc comprises up to 95% of the total protein in haemolymph, these isoforms become ideal targets for prawn provenance, traceability and food contamination studies.
Collapse
Affiliation(s)
- Omar Mendoza-Porras
- CSIRO Livestock and Aquaculture, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, Australia.
| | - Sandip Kamath
- James Cook University, Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook Drive, Townsville, QLD 4811, Australia; James Cook University, Australian Institute of Tropical Health and Medicine, James Cook Drive, Townsville, QLD 4811, Australia
| | - James O Harris
- Flinders University, College of Science and Engineering, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Michelle L Colgrave
- CSIRO Livestock and Aquaculture, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, Australia
| | - Roger Huerlimann
- James Cook University, College of Science and Engineering, James Cook Drive, Townsville, QLD 4811, Australia; Australian Research Council Industrial Transformation Research Hub for Advanced Shrimp Breeding, Australia
| | - Andreas L Lopata
- James Cook University, Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook Drive, Townsville, QLD 4811, Australia; James Cook University, Australian Institute of Tropical Health and Medicine, James Cook Drive, Townsville, QLD 4811, Australia
| | - Nicholas M Wade
- CSIRO Livestock and Aquaculture, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, Australia; James Cook University, College of Science and Engineering, James Cook Drive, Townsville, QLD 4811, Australia; Australian Research Council Industrial Transformation Research Hub for Advanced Shrimp Breeding, Australia
| |
Collapse
|
11
|
Masuda T, Kawauchi T, Yata Y, Matoba Y, Toyohara H. Two types of phenoloxidases contribute to hemolymph PO activity in spiny Lobster. Food Chem 2018; 260:166-173. [DOI: 10.1016/j.foodchem.2018.03.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 02/13/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
|
12
|
Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol Immunol 2018; 100:28-57. [PMID: 29858102 DOI: 10.1016/j.molimm.2018.04.008] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
Abstract
Seafood refers to several distinct groups of edible aquatic animals including fish, crustacean, and mollusc. The two invertebrate groups of crustacean and mollusc are, for culinary reasons, often combined as shellfish but belong to two very different phyla. The evolutionary and taxonomic diversity of the various consumed seafood species poses a challenge in the identification and characterisation of the major and minor allergens critical for reliable diagnostics and therapeutic treatments. Many allergenic proteins are very different between these groups; however, some pan-allergens, including parvalbumin, tropomyosin and arginine kinase, seem to induce immunological and clinical cross-reactivity. This extensive review details the advances in the bio-molecular characterisation of 20 allergenic proteins within the three distinct seafood groups; fish, crustacean and molluscs. Furthermore, the structural and biochemical properties of the major allergens are described to highlight the immunological and subsequent clinical cross-reactivities. A comprehensive list of purified and recombinant allergens is provided, and the applications of component-resolved diagnostics and current therapeutic developments are discussed.
Collapse
|
13
|
A new crystal form of Aspergillus oryzae catechol oxidase and evaluation of copper site structures in coupled binuclear copper enzymes. PLoS One 2018; 13:e0196691. [PMID: 29715329 PMCID: PMC5929527 DOI: 10.1371/journal.pone.0196691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/17/2018] [Indexed: 11/19/2022] Open
Abstract
Coupled binuclear copper (CBC) enzymes have a conserved type 3 copper site that binds molecular oxygen to oxidize various mono- and diphenolic compounds. In this study, we found a new crystal form of catechol oxidase from Aspergillus oryzae (AoCO4) and solved two new structures from two different crystals at 1.8-Å and at 2.5-Å resolutions. These structures showed different copper site forms (met/deoxy and deoxy) and also differed from the copper site observed in the previously solved structure of AoCO4. We also analysed the electron density maps of all of the 56 CBC enzyme structures available in the protein data bank (PDB) and found that many of the published structures have vague copper sites. Some of the copper sites were then re-refined to find a better fit to the observed electron density. General problems in the refinement of metalloproteins and metal centres are discussed.
Collapse
|
14
|
Qin Z, Babu VS, Wan Q, Muhammad A, Li J, Lan J, Lin L. Antibacterial activity of hemocyanin from red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2018; 75:391-399. [PMID: 29427719 DOI: 10.1016/j.fsi.2018.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Hemocyanins (HMC): the copper-containing respiratory proteins present in invertebrate hemolymph, which plays many essential roles in the immune system. Currently, little is known about the HMC domains of Procambarus clarkii (P. clarkii) and their function in antimicrobial immune response. In this present study, we comparatively studied the expression pattern of native PcHMC with the three recombinant proteins of variable domains of crayfish hemocyanin (PcHMC-N, N-terminal domain of hemocyanin; PcHMC-T, tyrosinase domain of hemocyanin; PcHMC-C, C-terminal domain of hemocyanin). The results showed that three purified recombinant proteins had a strong binding to various bacteria and lipopolysaccharides that further highly agglutinated. The HMCs recombinant proteins showed strong antibacterial activity against V. parahaemolyticus and S. aureus by bacterial growth inhibition, phenoloxidase (PO) and phagocytosis assays. Specifically, rPcHMC1-T and rPcHMC1-C inhibited both the bacteria efficiently, rPcHMC1-T was highly upregulated the PO activity than the other recombinant proteins. Whereas, recombinant proteins pretreated crayfish hemocytes participated in phagocytosis activity, rPcHMC1-N and rPcHMC1-C proteins had a profound effect than the rPcHMC1-T on S. aureus and V. parahaemolyticus phagocytosis. The crayfish hemocyanin domains clearly exhibited antibacterial and phagocytic activities against both the bacteria, suggesting that its variable domains of hemocyanin have the different function on specific pathogen during the assault of pathogens.
Collapse
Affiliation(s)
- Zhendong Qin
- College of Fisheries, Huazhong Agricultural University Wuhan, Hubei 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - V Sarath Babu
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Quanyuan Wan
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Asim Muhammad
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jun Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI 49783, USA
| | - Jiangfeng Lan
- College of Fisheries, Huazhong Agricultural University Wuhan, Hubei 430070, China.
| | - Li Lin
- College of Fisheries, Huazhong Agricultural University Wuhan, Hubei 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
15
|
Toledo L, Aguirre C. Enzymatic browning in avocado (Persea americana) revisited: History, advances, and future perspectives. Crit Rev Food Sci Nutr 2018; 57:3860-3872. [PMID: 27172067 DOI: 10.1080/10408398.2016.1175416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Considering nearly 80 years of research regarding one of the enzymes responsible for catalyzing the formation of pigments in higher animals, plants, fungi and bacteria, this review will focus on collecting and categorizing the existing information about polyphenol oxidase (PPO) in fruits, with particular emphasis on the information in relation to avocado, which is one of the hardiest species in terms of inactivation, has documented dual activity (EC 1.14.18.1/EC 1.10.3.1), and represents one of the oldest challenges for food science research and fruit processors. It is expected that this review will contribute to the further development of the field by highlighting the questions that have arisen during the characterization of PPO, the progress that has been made and the questions that remain today, in addition to new methodologies that are being applied to study this system. Holistic methodologies offer unexplored potential for advancing our understanding of the complex phenomena that govern PPO activity in fruits, because these methodologies will enable the characterization of this family of enzymes in all of its complexity. Subsequently, it will be possible to develop better techniques for controlling enzymatic browning in this valuable fruit.
Collapse
Affiliation(s)
- Lea Toledo
- a School of Food Engineering , Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| | - Carolina Aguirre
- b Research Center for Biodiversity and Sustainable Environments (CIBAS) , Universidad Católica de la Santísima Concepción , Concepción , Chile
| |
Collapse
|
16
|
Li Y, Zhang Z, Feng L, Zhao X, Zhang DC, Yin H. Gene and expression analysis of the hexamerin family proteins from the grasshopper, Locusta migratoria(Orthoptera: Acridoidea). BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1373601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yanli Li
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - Zitong Zhang
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - Li Feng
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - Xueqian Zhao
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
| | - Dao Chuan Zhang
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
- The Key Laboratory of Zoological Systematics and Application, Hebei University, Baoding, Hebei, PR China
| | - Hong Yin
- College of Life Sciences, Hebei University, Baoding, Hebei, PR China
- The Key Laboratory of Zoological Systematics and Application, Hebei University, Baoding, Hebei, PR China
| |
Collapse
|
17
|
Phenoloxidase activity in humoral plasma, hemocyanin and hemocyanin separated proteins of the giant freshwater prawn Macrobrachium rosenbergii. Int J Biol Macromol 2017; 102:977-985. [DOI: 10.1016/j.ijbiomac.2017.04.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 11/21/2022]
|
18
|
Lieb B, Ebner B, Kayser H. cDNA sequences of two arylphorin subunits of an insect biliprotein: phylogenetic differences and gene duplications during evolution of hexamerins-implications for hexamer formation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:136-48. [DOI: 10.1002/jez.b.22672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/29/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Bernhard Lieb
- Institut für Zoologie; Johannes Gutenberg-Universität; Mainz Germany
| | - Bettina Ebner
- Institut für Zoologie; Johannes Gutenberg-Universität; Mainz Germany
| | - Hartmut Kayser
- Institute of General Zoology and Endocrinology; Ulm University; Ulm Germany
| |
Collapse
|
19
|
Hu Y, Wang Y, Deng J, Jiang H. The structure of a prophenoloxidase (PPO) from Anopheles gambiae provides new insights into the mechanism of PPO activation. BMC Biol 2016; 14:2. [PMID: 26732497 PMCID: PMC4700666 DOI: 10.1186/s12915-015-0225-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Phenoloxidase (PO)-catalyzed melanization is a universal defense mechanism of insects against pathogenic and parasitic infections. In mosquitos such as Anopheles gambiae, melanotic encapsulation is a resistance mechanism against certain parasites that cause malaria and filariasis. PO is initially synthesized by hemocytes and released into hemolymph as inactive prophenoloxidase (PPO), which is activated by a serine protease cascade upon recognition of foreign invaders. The mechanisms of PPO activation and PO catalysis have been elusive. RESULTS Herein, we report the crystal structure of PPO8 from A. gambiae at 2.6 Å resolution. PPO8 forms a homodimer with each subunit displaying a classical type III di-copper active center. Our molecular docking and mutagenesis studies revealed a new substrate-binding site with Glu364 as the catalytic residue responsible for the deprotonation of mono- and di-phenolic substrates. Mutation of Glu364 severely impaired both the monophenol hydroxylase and diphenoloxidase activities of AgPPO8. Our data suggested that the newly identified substrate-binding pocket is the actual site for catalysis, and PPO activation could be achieved without withdrawing the conserved phenylalanine residue that was previously deemed as the substrate 'placeholder'. CONCLUSIONS We present the structural and functional data from a mosquito PPO. Our results revealed a novel substrate-binding site with Glu364 identified as the key catalytic residue for PO enzymatic activities. Our data offered a new model for PPO activation at the molecular level, which differs from the canonical mechanism that demands withdrawing a blocking phenylalanine residue from the previously deemed substrate-binding site. This study provides new insights into the mechanisms of PPO activation and enzymatic catalysis of PO.
Collapse
Affiliation(s)
- Yingxia Hu
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
20
|
Khalil M, Boubegtiten-Fezoua Z, Hellmann N, Hellwig P. Extraordinary stability of hemocyanins from L. polyphemus and E. californicum studied using infrared spectroscopy from 294 to 20 K. Phys Chem Chem Phys 2016; 18:28732-28739. [DOI: 10.1039/c6cp03510h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared spectroscopic evidence of a high stability towards exposure to sub-zero temperatures for hemocyanins from the arthropods Limulus polyphemus and Eurypelma californicum.
Collapse
Affiliation(s)
- Mireille Khalil
- Laboratoire de Bioélectrochimie et Spectroscopie
- UMR 7140 Université de Strasbourg CNRS
- 1 Rue Blaise Pascal 67070
- France
| | - Zahia Boubegtiten-Fezoua
- Laboratoire de Bioélectrochimie et Spectroscopie
- UMR 7140 Université de Strasbourg CNRS
- 1 Rue Blaise Pascal 67070
- France
| | - Nadja Hellmann
- Institute for Molecular Biophysics
- University of Mainz
- 55128 Mainz
- Germany
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie
- UMR 7140 Université de Strasbourg CNRS
- 1 Rue Blaise Pascal 67070
- France
| |
Collapse
|
21
|
Minute F, Hellmann N, Spinozzi F, Ortore MG, Di Muro P, Bubacco L, Beltramini M. Entrapment and characterization of functional allosteric conformers of hemocyanin in sol–gel matrices. RSC Adv 2016. [DOI: 10.1039/c5ra26377h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Entrapment of hemocyanin in sol–gel stabilizes conformations scarcely populated in solution, allowing for their structural and functional analysis.
Collapse
Affiliation(s)
- Fabrizio Minute
- Department of Biology
- University of Padova
- I-35131 Padova
- Italy
| | - Nadja Hellmann
- Institute for Molecular Biophysics
- University of Mainz
- Mainz
- Germany
| | - Francesco Spinozzi
- Department DISVA
- Marche Polytechnic University and CNISM
- I-60131 Ancona
- Italy
| | | | - Paolo Di Muro
- Department of Biology
- University of Padova
- I-35131 Padova
- Italy
| | - Luigi Bubacco
- Department of Biology
- University of Padova
- I-35131 Padova
- Italy
| | | |
Collapse
|
22
|
Dolashki A, Radkova M, Todorovska E, Ivanov M, Stevanovic S, Molin L, Traldi P, Voelter W, Dolashka P. Structure and Characterization of Eriphia verrucosa Hemocyanin. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:743-752. [PMID: 26256301 DOI: 10.1007/s10126-015-9653-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
Arthropod hemocyanins (Hcs) are a family of large extracellular oxygen-transporting proteins with high molecular mass and hexameric or multi-hexameric molecular assembly. This study reports for the first time the isolation and characterization of the structure of an arthropod hemocyanin from crab Eriphia verrucosa (EvH) living in the Black Sea. Its oligomeric quaternary structure is based on different arrangements of a basic 6 × 75 kDa hexameric unit, and four of them (EvH1, EvH2, EvH3, and EvH4) were identified using ion-exchange chromatography. Subunit 3 (EvH3) shows high similarity scores (75.0, 87.5, 91.7, and 75.0 %, respectively) by comparison of the N-terminal sequence of subunit 1 from Cancer pagurus of the North Sea (Cp1), subunits 3 and 6 of Cancer magister (Cm3 and Cm6), and subunit 2 of Carcinus aestuarii (CaSS2), respectively. Moreover, a partial cDNA sequence (1309 bp) of E. verrucosa hemocyanin encoding a protein of 435 amino acids was isolated. The deduced amino acid sequence shows a high degree of similarity with subunits 3, 4, 5, and 6 of C. magister (81-84 %). Most of the hemocyanins are glycosylated, and three putative O-linkage sites were identified in the partial amino acid sequence of EvH at positions 444-446, 478-480, and 547-549, respectively. The higher stability of native Hc in comparison to its subunit EvH4 as determined by circular dichroism (CD) could be explained with the formation of a stabilizing quaternary structure.
Collapse
Affiliation(s)
- A Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, G. Bonchev str. 9, Sofia, 1113, Bulgaria
| | - M Radkova
- AgroBioInstitute, 8 Dragan Tsankov, Str., 1164, Sofia, Bulgaria
| | - E Todorovska
- AgroBioInstitute, 8 Dragan Tsankov, Str., 1164, Sofia, Bulgaria
| | - M Ivanov
- AgroBioInstitute, 8 Dragan Tsankov, Str., 1164, Sofia, Bulgaria
| | - S Stevanovic
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, D-72076, Tϋbingen, Germany
| | - L Molin
- CNR-ISTM, Corso Stati Uniti 4, 35129, Padova, Italy
| | - P Traldi
- CNR-ISTM, Corso Stati Uniti 4, 35129, Padova, Italy
| | - W Voelter
- Interfacultary Institute of Biochemistry, University of Tϋbingen, Hoppe-Seyler-Str. 4, D-72076, Tϋbingen, Germany
| | - P Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, G. Bonchev str. 9, Sofia, 1113, Bulgaria.
| |
Collapse
|
23
|
Kanteev M, Goldfeder M, Fishman A. Structure-function correlations in tyrosinases. Protein Sci 2015; 24:1360-9. [PMID: 26104241 DOI: 10.1002/pro.2734] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 06/19/2015] [Indexed: 11/08/2022]
Abstract
Tyrosinases are metalloenzymes belonging to the type-3 copper protein family which contain two copper ions in the active site. They are found in various prokaryotes as well as in plants, fungi, arthropods, and mammals and are responsible for pigmentation, wound healing, radiation protection, and primary immune response. Tyrosinases perform two sequential enzymatic reactions: hydroxylation of monophenols and oxidation of diphenols to form quinones which polymerize spontaneously to melanin. Two other members of this family are catechol oxidases, which are prevalent mainly in plants and perform only the second oxidation step, and hemocyanins, which lack enzymatic activity and are oxygen carriers. In the last decade, several structures of plant and bacterial tyrosinases were determined, some with substrates or inhibitors, highlighting features and residues which are important for copper uptake and catalysis. This review summarizes the updated information on structure-function correlations in tyrosinases along with comparison to other type-3 copper proteins.
Collapse
Affiliation(s)
- Margarita Kanteev
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Mor Goldfeder
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
24
|
Dolashki A, Radkova M, Todorovska E, Ivanov M, Stevanovic S, Molin L, Traldi P, Voelter W, Dolashka P. RETRACTED ARTICLE: Structure and characterization of cancer pagurus hemocyanin. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:375. [PMID: 25503855 DOI: 10.1007/s10126-014-9609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/09/2014] [Indexed: 06/04/2023]
Affiliation(s)
- Aleksandar Dolashki
- Institute of Organic Chemistry, Bulgarian Academy of Sciences, G. Bonchev 9, Sofia, 1113, Bulgaria
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cañellas S, Bauzá A, Lancho A, García-Raso A, Fiol JJ, Molins E, Ballester P, Frontera A. Synthesis, X-ray characterization and DFT studies of N-benzimidazolyl-pyrimidine–M(ii) complexes (M = Cu, Co and Ni): the prominent role of π-hole and anion–π interactions. CrystEngComm 2015. [DOI: 10.1039/c5ce01009h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five Cu(ii), Co(ii) and Ni(ii) complexes with 2-(N-benzimidazolyl)-pyrimidine and nitrate co-ligands have been synthesized and characterized by X-ray diffraction.
Collapse
Affiliation(s)
- Santiago Cañellas
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares), Spain
| | - Antonio Bauzá
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares), Spain
| | - Aïda Lancho
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares), Spain
| | - Angel García-Raso
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares), Spain
| | - Joan J. Fiol
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares), Spain
| | - Elies Molins
- Institut de Ciència de Materials de Barcelona (CSIC)
- Campus UAB
- , Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ)
- Avgda. Països Catalans 16
- 43007 Tarragona, Spain and Catalan Institution for Research and Advanced Studies (ICREA)
- Passeig Lluís Companys, 23
- Barcelona, Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares), Spain
| |
Collapse
|
26
|
Marxen JC, Pick C, Oakley TH, Burmester T. Occurrence of Hemocyanin in Ostracod Crustaceans. J Mol Evol 2014; 79:3-11. [DOI: 10.1007/s00239-014-9636-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/02/2014] [Indexed: 12/23/2022]
|
27
|
Coates CJ, Nairn J. Diverse immune functions of hemocyanins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:43-55. [PMID: 24486681 DOI: 10.1016/j.dci.2014.01.021] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 06/03/2023]
Abstract
Substantial evidence gathered recently has revealed the multiple functionalities of hemocyanin. Contrary to previous claims that this ancient protein is involved solely in oxygen transport within the hemolymph of invertebrates, hemocyanin and hemocyanin-derived peptides have been linked to key aspects of innate immunity, in particular, antiviral and phenoloxidase-like activities. Both phenoloxidase and hemocyanin belong to the family of type-3 copper proteins and share a high degree of sequence homology. While the importance of phenoloxidase in immunity and development is well characterised, the contribution of hemocyanin to biological defence systems within invertebrates is not recognised widely. This review focusses on the conversion of hemocyanin into a phenoloxidase-like enzyme and the array of hemocyanin-derived immune responses documented to date.
Collapse
Affiliation(s)
- Christopher J Coates
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - Jacqueline Nairn
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| |
Collapse
|
28
|
Berry R, Vivian JP, Deuss FA, Balaji GR, Saunders PM, Lin J, Littler DR, Brooks AG, Rossjohn J. The structure of the cytomegalovirus-encoded m04 glycoprotein, a prototypical member of the m02 family of immunoevasins. J Biol Chem 2014; 289:23753-63. [PMID: 24982419 DOI: 10.1074/jbc.m114.584128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of CMVs to evade the immune system of the host is dependent on the expression of a wide array of glycoproteins, many of which interfere with natural killer cell function. In murine CMV, two large protein families mediate this immune-evasive function. Although it is established that the m145 family members mimic the structure of MHC-I molecules, the structure of the m02 family remains unknown. The most extensively studied m02 family member is m04, a glycoprotein that escorts newly assembled MHC-I molecules to the cell surface, presumably to avoid "missing self" recognition. Here we report the crystal structure of the m04 ectodomain, thereby providing insight into this large immunoevasin family. m04 adopted a β-sandwich immunoglobulin variable (Ig-V)-like fold, despite sharing very little sequence identity with the Ig-V superfamily. In addition to the Ig-V core, m04 possesses several unique structural features that included an unusual β-strand topology, a number of extended loops and a prominent α-helix. The m04 interior was packed by a myriad of hydrophobic residues that form distinct clusters around two conserved tryptophan residues. This hydrophobic core was well conserved throughout the m02 family, thereby indicating that murine CMV encodes a number of Ig-V-like molecules. We show that m04 binds a range of MHC-I molecules with low affinity in a peptide-independent manner. Accordingly, the structure of m04, which represents the first example of an murine CMV encoded Ig-V fold, provides a basis for understanding the structure and function of this enigmatic and large family of immunoevasins.
Collapse
Affiliation(s)
- Richard Berry
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences and
| | - Julian P Vivian
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences and
| | - Felix A Deuss
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences and
| | - Gautham R Balaji
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences and
| | - Philippa M Saunders
- the Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia, and
| | - Jie Lin
- the Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia, and
| | - Dene R Littler
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences and
| | - Andrew G Brooks
- the Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia, and
| | - Jamie Rossjohn
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences and the Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom the Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia,
| |
Collapse
|
29
|
Chen W, Ye D, Wang H, Lin D, Huang J, Sun H, Zhong W. Binding of oxo-Cu2 clusters to ferric ion-binding protein A from Neisseria gonorrhoeae: a structural insight. Metallomics 2014; 5:1430-9. [PMID: 23884152 DOI: 10.1039/c3mt00091e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ferric ion-binding protein A (FbpA), a member of transferrin superfamily, is a periplasmic iron transporter employed by many Gram-negative pathogens. Our experiments indicated copper(ii) could bind with Neisseria gonorrhoeae FbpA (NgFbpA), and the binding constant reached up to (8.7 ± 0.2) × 10(8) M(-1)via UV-vis titration. The crystal structure of recombinant Cu-NgFbpA at 2.1 Å revealed that the oxo-Cu2 clusters (dinuclear centres) assembled in the iron binding cleft and were bound to the two adjacent tyrosine residues (Y195 and Y196) of the protein, two Cu ions coordinated with two tyrosines, Y195 and Y196, respectively, which was different from the binding model of Fe ion with FbpA, in which Y195 and Y196 coordinated together with one Fe ion. While this was similar to the binding of Zr and Hf ion clusters, Y195 and Y196 coordinated with two metal ions and the μ-oxo-bridges linking the metal ions. Structural superimposition demonstrated that oxo-Cu2-NgFbpA still keeping an open conformation, similar to the apo-form of NgFbpA. The structure presented additional information towards an understanding of the function of FbpA, and provided a detailed binding model for FbpA protein with the possible metal ions in a biological system.
Collapse
Affiliation(s)
- Weijing Chen
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Masuda T, Momoji K, Hirata T, Mikami B. The crystal structure of a crustacean prophenoloxidase provides a clue to understanding the functionality of the type 3 copper proteins. FEBS J 2014; 281:2659-73. [PMID: 24720693 DOI: 10.1111/febs.12812] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/27/2014] [Accepted: 04/08/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED Phenoloxidase (PO), which is classified as a type 3 copper protein, catalyzes the hydroxylation of monophenol to o-diphenol and subsequent oxidation to the corresponding o-quinone. The geometry and coordination environment of the active site of the arthropod PO are very similar to those of the arthropod hemocyanin (Hc). However, unlike the POs, Hc is an oxygen carrier in crustaceans, and does not possess PO activity in general. Recently, we identified a new type of proPO from a crustacean and designated it proPOβ. This enzyme has many characteristics that are rather similar to those of Hc, such as its maturation, localization, and oligomeric state. Here, we determined the crystal structure of proPOβ prepared from the hemolymph of kuruma prawns (Marsupenaeus japonicus) at 1.8-Å resolution. M. japonicus proPOβ forms a homohexamer rather similar to that of arthropod Hc. The geometry of the active copper site in proPOβ is nearly identical to that of arthropod Hc. Furthermore, the well-characterized 'place-holder' phenylalanine is present (Phe72). However, the accessibility to the active site differs in several ways. First, another phenylalanine, which shields the active site by interacting with a copper-coordinated histidine in crustacean Hc, is replaced by valine in the proPOβ structure. Second, two tyrosines, Tyr208 and Tyr209, both of which are absent in Hc, show the alternative conformations and form a pathway providing access to the reaction center. Thus, the present crystal structure clarifies the similarities and differences in the activity of two closely related proteins, PO and Hc. DATABASE Structural data are available in the RSCB protein data bank under the accession number 3WKY. ray crystallography (View interaction).
Collapse
Affiliation(s)
- Taro Masuda
- Laboratory of Food Quality Design and Development, Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | |
Collapse
|
31
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1157] [Impact Index Per Article: 115.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
32
|
Qiu C, Sun J, Liu M, Wang B, Jiang K, Sun S, Meng X, Luo Z, Wang L. Molecular cloning of hemocyanin cDNA from Fenneropenaeus chinensis and antimicrobial analysis of two C-terminal fragments. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:46-53. [PMID: 23887674 DOI: 10.1007/s10126-013-9519-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 06/07/2013] [Indexed: 06/02/2023]
Abstract
Peptides derived from shrimp hemocyanin have antimicrobial properties. This is the first report of hemocyanin cDNA (FCHc) cloned from Fenneropenaeus chinensis and recombinant expression of two C-terminal fragments. Based on sequence analysis of Fenneropenaeus chinensis hemocyanin FCHc, we subcloned two FCHc fragments by designing special primers. Two antimicrobial peptides (AMPs) were derived from FCHc (FCHc-C1 and FCHc-C2). The recombinant sequence of FCHc-C1 consisted of 207 bp encoding 69 amino acids and the recombinant sequence of FCHc-C2 consisted of 120 bp encoding 40 amino acids. The results of Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting indicated that recombinant FCHc-C1 and FCHc-C2 peptides (rFCHc-C1 and rFCHc-C2) were expressed successfully. An inhibition assay showed that FCHc-C1 and FCHc-C2 were anionic AMPs with antifungal and antibacterial activities.
Collapse
Affiliation(s)
- Chuwen Qiu
- R&D Center of Marine Biotechnology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Blomberg MRA, Borowski T, Himo F, Liao RZ, Siegbahn PEM. Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 2014; 114:3601-58. [PMID: 24410477 DOI: 10.1021/cr400388t] [Citation(s) in RCA: 441] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Cánaves MM, Cabra MI, Bauzá A, Cañellas P, Sánchez K, Orvay F, García-Raso A, Fiol JJ, Terrón A, Barceló-Oliver M, Ballester P, Mata I, Molins E, Hussain F, Frontera A. Crystal structures and DFT calculations of new chlorido-dimethylsulfoxide-MIII (M = Ir, Ru, Rh) complexes with the N-pyrazolyl pyrimidine donor ligand: kinetic vs. thermodynamic isomers. Dalton Trans 2014; 43:6353-64. [DOI: 10.1039/c3dt52700j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Abry S, Zhang P, Albela B, Bonneviot L. Site isolation and coordination control of a transition metal ion by molecular surface engineering in mesoporous silica: the case of a bio-inspired copper–polyamine grafted complex. RSC Adv 2014. [DOI: 10.1039/c4ra10109j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Design of a bio-inspired material, where a competition between copper ions and their triflate counterions to the grafted polyamine is evidenced.
Collapse
Affiliation(s)
- Sébastien Abry
- Laboratoire de Chimie
- UMR 5182 CNRS
- Ecole Normale Supérieure de Lyon
- Université de Lyon
- 69364 Lyon Cedex-07, France
| | - Ping Zhang
- Key Laboratory of Inorganic Synthesis Preparative Chemistry
- Department of Chemistry
- Jilin University
- Changchun 130023, China
| | - Belén Albela
- Laboratoire de Chimie
- UMR 5182 CNRS
- Ecole Normale Supérieure de Lyon
- Université de Lyon
- 69364 Lyon Cedex-07, France
| | - Laurent Bonneviot
- Laboratoire de Chimie
- UMR 5182 CNRS
- Ecole Normale Supérieure de Lyon
- Université de Lyon
- 69364 Lyon Cedex-07, France
| |
Collapse
|
37
|
Pietrzyk AJ, Bujacz A, Mueller-Dieckmann J, Łochynska M, Jaskolski M, Bujacz G. Crystallographic identification of an unexpected protein complex in silkworm haemolymph. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2353-64. [PMID: 24311577 DOI: 10.1107/s0907444913021823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/05/2013] [Indexed: 11/10/2022]
Abstract
The first crystal structure of a complex formed by two storage proteins, SP2 and SP3, isolated from their natural source, mulberry silkworm (Bombyx mori L.) haemolymph, has been determined. The structure was solved by molecular replacement using arylphorin, a protein rich in aromatic amino-acid residues, from oak silkworm as the initial model. The quality of the electron-density maps obtained from the X-ray diffraction experiment allowed the authors to detect that the investigated crystal structure was composed of two different arylphorins: SP2 and SP3. This discovery was confirmed by N-terminal sequencing. SP2 has been extensively studied previously, whereas only a few reports on SP3 are available. However, to date no structural studies have been reported for these proteins. These studies revealed that SP2 and SP3 exist in the silkworm body as a heterohexamer formed by one SP2 trimer and one SP3 trimer. The overall fold, consisting of three haemocyanin-like subdomains, of SP2 and SP3 is similar. Both proteins contain a conserved N-glycosylation motif in their structures.
Collapse
Affiliation(s)
- Agnieszka J Pietrzyk
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | | | | | | | |
Collapse
|
38
|
Idakieva K, Raynova Y, Meersman F, Gielens C. Phenoloxidase activity and thermostability of Cancer pagurus and Limulus polyphemus hemocyanin. Comp Biochem Physiol B Biochem Mol Biol 2013; 164:201-9. [DOI: 10.1016/j.cbpb.2012.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/24/2012] [Accepted: 12/31/2012] [Indexed: 11/28/2022]
|
39
|
Marxen JC, Pick C, Kwiatkowski M, Burmester T. Molecular characterization and evolution of haemocyanin from the two freshwater shrimps Caridina multidentata (Stimpson, 1860) and Atyopsis moluccensis (De Haan, 1849). J Comp Physiol B 2013; 183:613-24. [PMID: 23338600 DOI: 10.1007/s00360-013-0740-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 11/22/2012] [Accepted: 12/29/2012] [Indexed: 01/28/2023]
Abstract
Haemocyanin (Hc) is a copper-containing respiratory protein, floating freely dissolved in the hemolymph of many arthropod species. A typical haemocyanin is a hexamer or oligohexamer of six identical or similar subunits, with a molecular mass around 75 kDa each. In the crustaceans, the haemocyanins appear to be restricted to the remipedes and the malacostracans. We have investigated the haemocyanins of two freshwater shrimps, the Amano shrimp Caridina multidentata and the bamboo shrimp Atyopsis moluccensis. We obtained three full-length and one partial cDNA sequences of haemocyanin subunits from the Amano shrimp, which were assigned to the α- and γ-types of decapod haemocyanin subunits. Three complete and two partial haemocyanin cDNA sequences were obtained from the bamboo shrimp, which represent subunit types α, β and γ. This is the first time that sequences of all three subunit types of the decapod haemocyanins were obtained from a single species. However, mass spectrometry analyses identified only α- and γ-type subunits, suggesting that a β-subunit is not a major component of the native haemocyanin of the bamboo shrimp. Phylogenetic and molecular clock analyses showed that malacostracan haemocyanins commenced to diversify into distinct subunit types already ~515 million years ago. β-subunits diverged first, followed by α- and γ-type subunits ~396 million years ago. The haemocyanins of phyllocarids and peracarids form distinct clades within the α/γ-cluster. Within the Caridea, an early divergence of distinct α-type subunits occurred ~200 MYA. The tree of the γ-subunits suggests a common clade of the Caridea (shrimps) and Penaeidae (prawns).
Collapse
Affiliation(s)
- Julia C Marxen
- Institute of Zoology and Zoological Museum, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
| | | | | | | |
Collapse
|
40
|
Cun S, Lai YT, Chang YY, Sun H. Structure-oriented bioinformatic approach exploring histidine-rich clusters in proteins. Metallomics 2013; 5:904-12. [DOI: 10.1039/c3mt00026e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Ballarin L, Franchi N, Schiavon F, Tosatto SCE, Mičetić I, Kawamura K. Looking for putative phenoloxidases of compound ascidians: haemocyanin-like proteins in Polyandrocarpa misakiensis and Botryllus schlosseri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:232-242. [PMID: 22698614 DOI: 10.1016/j.dci.2012.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/03/2012] [Accepted: 05/08/2012] [Indexed: 06/01/2023]
Abstract
Phenoloxidases (POs) and haemocyanins constitute a family of copper-containing proteins widely distributed among invertebrates. Both of them are able, under appropriate conditions, to convert polyphenols to quinones and induce cytotoxicity through the production of reactive oxygen species, a fundamental event in many immune responses. In ascidians, PO activity has been described and studied in both solitary and colonial species and the enzyme is involved in inflammatory and cytotoxic reactions against foreign cells or molecules, and in the formation of the cytotoxic foci which characterise the nonfusion reaction of botryllids. Expressed genes for two putative POs (CiPO1 and CiPO2) have been recently identified in C. intestinalis. In the present study, we determined the cDNA sequences of two haemocyanin-like proteins from two colonial ascidians: Botryllus schlosseri from the Mediterranean Sea and Polyandrocarpa misakiensis from Japan. Multiple sequence alignments evidenced the similarity between the above sequences and crustacean proPOs whereas the analysis of the three-dimensional structure reveals high similarity with arthropod haemocyanins which share common precursors with arthropod proPOs. Botryllus HLP grouped in the same cluster with Ciona POs, whereas Polyandrocarpa HLP clustered with arthropod haemocyanins; all of them share the full conservation of the six histidines at the two copper-binding sites as well as of other motifs, also found in arthropod haemocyanin subunits, involved in the regulation of enzyme activity. In situ hybridisation indicated that the genes are transcribed inside morula cells, a characteristic haemocyte type in ascidians where PO activity is located, at the beginning of their differentiation. These results represent a first attempt to identify candidate molecules responsible of the PO activity in compound ascidians.
Collapse
|
42
|
Cañellas P, Torres M, Bauzá A, Cánaves MM, Sánchez K, Cabra MI, García‐Raso A, Fiol JJ, Deyà PM, Molins E, Mata I, Frontera A. Complexes of Zinc(II) with
N
‐Imidazolyl‐ and
N
‐Pyrazolylpyrimidine Donor Ligands: Synthesis, Crystal Structures, and Theoretical Study. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200379] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pablo Cañellas
- Department of Chemistry, Universitat de les Illes Balears, Crta. Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain, Fax: +34‐971‐173426, http://www.uib.es/depart/dqu/supramolecular/index.html
| | - Marta Torres
- Department of Chemistry, Universitat de les Illes Balears, Crta. Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain, Fax: +34‐971‐173426, http://www.uib.es/depart/dqu/supramolecular/index.html
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Crta. Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain, Fax: +34‐971‐173426, http://www.uib.es/depart/dqu/supramolecular/index.html
| | - María M. Cánaves
- Department of Chemistry, Universitat de les Illes Balears, Crta. Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain, Fax: +34‐971‐173426, http://www.uib.es/depart/dqu/supramolecular/index.html
| | - Kika Sánchez
- Department of Chemistry, Universitat de les Illes Balears, Crta. Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain, Fax: +34‐971‐173426, http://www.uib.es/depart/dqu/supramolecular/index.html
| | - María I. Cabra
- Department of Chemistry, Universitat de les Illes Balears, Crta. Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain, Fax: +34‐971‐173426, http://www.uib.es/depart/dqu/supramolecular/index.html
| | - Angel García‐Raso
- Department of Chemistry, Universitat de les Illes Balears, Crta. Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain, Fax: +34‐971‐173426, http://www.uib.es/depart/dqu/supramolecular/index.html
| | - Juan J. Fiol
- Department of Chemistry, Universitat de les Illes Balears, Crta. Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain, Fax: +34‐971‐173426, http://www.uib.es/depart/dqu/supramolecular/index.html
| | - Pere M. Deyà
- Department of Chemistry, Universitat de les Illes Balears, Crta. Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain, Fax: +34‐971‐173426, http://www.uib.es/depart/dqu/supramolecular/index.html
| | - Elies Molins
- Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC), Campus de la Universitat Autònoma, 0183 Cerdanyola del Vallés, Barcelona, Spain
| | - Ignasi Mata
- Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC), Campus de la Universitat Autònoma, 0183 Cerdanyola del Vallés, Barcelona, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain, Fax: +34‐971‐173426, http://www.uib.es/depart/dqu/supramolecular/index.html
| |
Collapse
|
43
|
Structure/function correlations among coupled binuclear copper proteins through spectroscopic and reactivity studies of NspF. Proc Natl Acad Sci U S A 2012; 109:10793-7. [PMID: 22711806 DOI: 10.1073/pnas.1208718109] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The terminal step of 4-hydroxy-3-nitrosobenzamide biosynthesis in Streptomyces murayamaensis is performed by NspF, a mono-oxygenase that converts o-aminophenols to the corresponding nitroso product (hydroxyanilinase activity). Previous biochemical characterization of the resting form of NspF suggested that this enzyme belonged to the coupled binuclear copper enzyme (CBC) family. Another member of this enzyme family, tyrosinase, is able to mono-oxygenate monophenols (monophenolase activity) but not o-aminophenols. To gain insight into the unique reactivity of NspF, we have generated and characterized the oxy form of its active site. The observation of spectral features identical to those of oxy-tyrosinase indicates that oxy-NspF contains a Cu(2)O(2) core where peroxide is coordinated in a μ-η(2):η(2) mode, confirming that NspF is a CBC enzyme. This oxy form is found to react with monophenols, indicating that, like tyrosinase, NspF also possesses monophenolase activity. A comparison of the two electrophilic mechanisms for the monophenolase and hydroxyanilinase activity indicates a large geometric change between their respective transition states. The potential for specific interactions between the protein pocket and the substrate in each transition state is discussed within the context of the differential reactivity of this family of enzymes with equivalent μ-η(2):η(2) peroxy bridged coupled binuclear copper active sites.
Collapse
|
44
|
El-Taras AA, EL-Mehasseb IM, Ramadan AEMM. Synthesis, characterization, magnetic, thermal and electrochemical studies of oxidovanadium (IV) picolyl hydrazones as functional catechol oxidase models. CR CHIM 2012. [DOI: 10.1016/j.crci.2011.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
45
|
Jaenicke E, Pairet B, Hartmann H, Decker H. Crystallization and preliminary analysis of crystals of the 24-meric hemocyanin of the emperor scorpion (Pandinus imperator). PLoS One 2012; 7:e32548. [PMID: 22403673 PMCID: PMC3293826 DOI: 10.1371/journal.pone.0032548] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 02/01/2012] [Indexed: 11/19/2022] Open
Abstract
Hemocyanins are giant oxygen transport proteins found in the hemolymph of several invertebrate phyla. They constitute giant multimeric molecules whose size range up to that of cell organelles such as ribosomes or even small viruses. Oxygen is reversibly bound by hemocyanins at binuclear copper centers. Subunit interactions within the multisubunit hemocyanin complex lead to diverse allosteric effects such as the highest cooperativity for oxygen binding found in nature. Crystal structures of a native hemocyanin oligomer larger than a hexameric substructure have not been published until now. We report for the first time growth and preliminary analysis of crystals of the 24-meric hemocyanin (MW = 1.8 MDa) of emperor scorpion (Pandinus imperator), which diffract to a resolution of 6.5 Å. The crystals are monoclinc with space group C 1 2 1 and cell dimensions a = 311.61 Å, b = 246.58 Å and c = 251.10 Å (α = 90.00°, β = 90.02°, γ = 90.00°). The asymmetric unit contains one molecule of the 24-meric hemocyanin and the solvent content of the crystals is 56%. A preliminary analysis of the hemocyanin structure reveals that emperor scorpion hemocyanin crystallizes in the same oxygenated conformation, which is also present in solution as previously shown by cryo-EM reconstruction and small angle x-ray scattering experiments.
Collapse
Affiliation(s)
- Elmar Jaenicke
- Institut für Molekulare Biophysik, Johannes Gutenberg-Universität, Mainz, Germany.
| | | | | | | |
Collapse
|
46
|
Synthesis, X-ray characterization and computational Studies of N-imidazolyl and N-pyrazolyl pyrimidine derivatives. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Cañellas P, Bauzá A, García-Raso A, Fiol JJ, Deyà PM, Molins E, Mata I, Frontera A. Synthesis, X-ray characterization and computational studies of Cu(ii) complexes of N-pyrazolyl pyrimidine. Dalton Trans 2012; 41:11161-9. [DOI: 10.1039/c2dt31162c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Matoba Y, Bando N, Oda K, Noda M, Higashikawa F, Kumagai T, Sugiyama M. A molecular mechanism for copper transportation to tyrosinase that is assisted by a metallochaperone, caddie protein. J Biol Chem 2011; 286:30219-31. [PMID: 21730070 DOI: 10.1074/jbc.m111.256818] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Cu(II)-soaked crystal structure of tyrosinase that is present in a complex with a protein, designated "caddie," which we previously determined, possesses two copper ions at its catalytic center. We had identified two copper-binding sites in the caddie protein and speculated that copper bound to caddie may be transported to the tyrosinase catalytic center. In our present study, at a 1.16-1.58 Å resolution, we determined the crystal structures of tyrosinase complexed with caddie prepared by altering the soaking time of the copper ion and the structures of tyrosinase complexed with different caddie mutants that display little or no capacity to activate tyrosinase. Based on these structures, we propose a molecular mechanism by which two copper ions are transported to the tyrosinase catalytic center with the assistance of caddie acting as a metallochaperone.
Collapse
Affiliation(s)
- Yasuyuki Matoba
- Department of Molecular Microbiology and Biotechnology, Graduate School of Biomedical Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Kaljunen H, Gasparetti C, Kruus K, Rouvinen J, Hakulinen N. Crystallization and preliminary X-ray analysis of Aspergillus oryzae catechol oxidase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:672-4. [PMID: 21636908 PMCID: PMC3107139 DOI: 10.1107/s1744309111010141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/17/2011] [Indexed: 11/11/2022]
Abstract
Catechol oxidase is an enzyme that catalyzes the oxidation of o-diphenols to the corresponding o-quinones. It is a copper-containing enzyme with a binuclear copper active site. Here, the crystallization and multiple-wavelength anomalous dispersion data collection of catechol oxidase from the mould fungus Aspergillus oryzae are described. During the purification, three forms of the enzyme (39.3, 40.5 and 44.3 kDa) were obtained. A mixture of these three forms was initially crystallized and gave crystals that diffracted to 2.5 Å resolution and belonged to space group P3(2)21, with unit-cell parameters a = b = 118.9, c = 84.5 Å, α = β = 90, γ = 120°. A preparation containing only the shorter form (39.3 kDa) produced crystals that diffracted to 2.9 Å resolution and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 51.8, b = 95.3, c = 139.5 Å, α = β = γ = 90°.
Collapse
Affiliation(s)
- Heidi Kaljunen
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, PO Box 111, FIN-80101 Joensuu, Finland
| | - Chiara Gasparetti
- VTT Technical Research Center of Finland, PO Box 1000, FIN-02044 VTT, Finland
| | - Kristiina Kruus
- VTT Technical Research Center of Finland, PO Box 1000, FIN-02044 VTT, Finland
| | - Juha Rouvinen
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, PO Box 111, FIN-80101 Joensuu, Finland
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, PO Box 111, FIN-80101 Joensuu, Finland
| |
Collapse
|
50
|
Nanomechanics of Ig-like domains of human contactin (BIG-2). J Mol Model 2011; 17:2313-23. [PMID: 21445711 PMCID: PMC3168757 DOI: 10.1007/s00894-011-1010-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 02/06/2011] [Indexed: 01/06/2023]
Abstract
Contactins are modular extracellular cell matrix proteins that are present in the brain, and they are responsible for the proper development and functioning of neurons. They contain six immunoglobulin-like IgC2 domains and four fibronectin type III repeats. The interactions of contactin with other proteins are poorly understood. The mechanical properties of all IgC2 domains of human contactin 4 were studied using a steered molecular dynamics approach and CHARMM force field with an explicit TIP3P water environment on a 10-ns timescale. Force spectra of all domains were determined computationally and the nanomechanical unfolding process is described. The domains show different mechanical stabilities. The calculated maxima of the unfolding force are in the range of 900–1700 pN at a loading rate of 7 N/s. Our data indicate that critical regions of IgC2 domains 2 and 3, which are responsible for interactions with tyrosine phosphatases and are important in nervous system development, are affected by even weak mechanical stretching. Thus, tensions present in the cell may modulate cellular activities related to contactin function. The present data should facilitate the interpretation of atomic force microscope single-molecule spectra of numerous proteins with similar IgC2 motives. The general fold of IgC2 domains of contactin 4 protein. Vectors show directions of pulling forces applied in mechanical unfolding computer experiments. ![]()
Collapse
|