1
|
Kolondra A, Labedzka-Dmoch K, Wenda JM, Drzewicka K, Golik P. The transcriptome of Candida albicans mitochondria and the evolution of organellar transcription units in yeasts. BMC Genomics 2015; 16:827. [PMID: 26487099 PMCID: PMC4618339 DOI: 10.1186/s12864-015-2078-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
Background Yeasts show remarkable variation in the organization of their mitochondrial genomes, yet there is little experimental data on organellar gene expression outside few model species. Candida albicans is interesting as a human pathogen, and as a representative of a clade that is distant from the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Unlike them, it encodes seven Complex I subunits in its mtDNA. No experimental data regarding organellar expression were available prior to this study. Methods We used high-throughput RNA sequencing and traditional RNA biology techniques to study the mitochondrial transcriptome of C. albicans strains BWP17 and SN148. Results The 14 protein-coding genes, two ribosomal RNA genes, and 24 tRNA genes are expressed as eight primary polycistronic transcription units. We also found transcriptional activity in the noncoding regions, and antisense transcripts that could be a part of a regulatory mechanism. The promoter sequence is a variant of the nonanucleotide identified in other yeast mtDNAs, but some of the active promoters show significant departures from the consensus. The primary transcripts are processed by a tRNA punctuation mechanism into the monocistronic and bicistronic mature RNAs. The steady state levels of various mature transcripts exhibit large differences that are a result of posttranscriptional regulation. Transcriptome analysis allowed to precisely annotate the positions of introns in the RNL (2), COB (2) and COX1 (4) genes, as well as to refine the annotation of tRNAs and rRNAs. Comparative study of the mitochondrial genome organization in various Candida species indicates that they undergo shuffling in blocks usually containing 2–3 genes, and that their arrangement in primary transcripts is not conserved. tRNA genes with their associated promoters, as well as GC-rich sequence elements play an important role in these evolutionary events. Conclusions The main evolutionary force shaping the mitochondrial genomes of yeasts is the frequent recombination, constantly breaking apart and joining genes into novel primary transcription units. The mitochondrial transcription units are constantly rearranged in evolution shaping the features of gene expression, such as the presence of secondary promoter sites that are inactive, or act as “booster” promoters, simplified transcriptional regulation and reliance on posttranscriptional mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2078-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam Kolondra
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Karolina Labedzka-Dmoch
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Joanna M Wenda
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Katarzyna Drzewicka
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Pawel Golik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland. .,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
2
|
Vialle A, Feau N, Allaire M, Didukh M, Martin F, Moncalvo JM, Hamelin RC. Evaluation of mitochondrial genes as DNA barcode for Basidiomycota. Mol Ecol Resour 2013; 9 Suppl s1:99-113. [PMID: 21564970 DOI: 10.1111/j.1755-0998.2009.02637.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Our study evaluated in silico the potential of 14 mitochondrial genes encoding the subunits of the respiratory chain complexes, including cytochrome c oxidase I (CO1), as Basidiomycota DNA barcode. Fifteen complete and partial mitochondrial genomes were recovered and characterized in this study. Mitochondrial genes showed high values of molecular divergence, indicating a potential for the resolution of lower-level relationships. However, numerous introns occurred in CO1 as well as in six other genes, potentially interfering with polymerase chain reaction amplification. Considering these results and given the minimal length of 600-bp that is optimal for a fungal barcode, the genes encoding for the ATPase subunit 6, the cytochrome oxidase subunit 3 and the NADH dehydrogenase subunit 6 have the most promising characteristics for DNA barcoding among the mitochondrial genes studied. However, biological validation on two fungal data sets indicated that no single mitochondrial gene gave a better taxonomic resolution than the ITS, the region already widely used in fungal taxonomy.
Collapse
Affiliation(s)
- Agathe Vialle
- Centre d'étude de la forêt, Université Laval, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
3
|
Procházka E, Franko F, Poláková S, Sulo P. A complete sequence of Saccharomyces paradoxus mitochondrial genome that restores the respiration in S. cerevisiae. FEMS Yeast Res 2012; 12:819-30. [PMID: 22830625 DOI: 10.1111/j.1567-1364.2012.00833.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/19/2012] [Accepted: 07/21/2012] [Indexed: 12/01/2022] Open
Abstract
We determined the complete sequence of 71 355-bp-long mitochondrial genome from Saccharomyces paradoxus entirely by direct sequencing of purified mitochondrial DNA (mtDNA). This mtDNA possesses the same features as its close relative Saccharomyces cerevisiae - A + T content 85.9%, set of genes coding for the three components of cytochrome oxidase, cytochrome b, three subunits of ATPase, both ribosomal subunits, gene for ribosomal protein, rnpB gene, tRNA package (24) and yeast genetic code. Genes are interrupted by nine group I and group II introns, two of which are in positions unknown in S. cerevisiae, but recognized in Saccharomyces pastorianus. The gene products are related to S. cerevisiae, and the identity of amino acid residues varies from 100% for cox2 to 83% for rps3. The remarkable differences from S. cerevisiae are (1) different gene order (translocation of trnF-trnT1-trnV-cox3-trnfM-rnpb-trnP and transposition of trnW-rns), (2) occurrence of two unusual GI introns, (3) eight active ori elements, and (4) reduced number of GC clusters and divergent intergenic spacers. Despite these facts, the sequenced S. paradoxus mtDNA introduced to S. cerevisiae was able to support the respiratory function to the same extent as the original mtDNAs.
Collapse
Affiliation(s)
- Emanuel Procházka
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, Bratislava, Slovakia
| | | | | | | |
Collapse
|
4
|
|
5
|
Deleterious effect of the Qo inhibitor compound resistance-conferring mutation G143A in the intron-containing cytochrome b gene and mechanisms for bypassing it. Appl Environ Microbiol 2011; 77:2088-93. [PMID: 21278281 DOI: 10.1128/aem.02548-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mutation G143A in the inhibitor binding site of cytochrome b confers a high level of resistance to fungicides targeting the bc(1) complex. The mutation, reported in many plant-pathogenic fungi, has not evolved in fungi that harbor an intron immediately after the codon for G143 in the cytochrome b gene, intron bi2. Using Saccharomyces cerevisiae as a model organism, we show here that a codon change from GGT to GCT, which replaces glycine 143 with alanine, hinders the splicing of bi2 by altering the exon/intron structure needed for efficient intron excision. This lowers the levels of cytochrome b and respiratory growth. We then investigated possible bypass mechanisms that would restore the respiratory fitness of a resistant mutant. Secondary mutations in the mitochondrial genome were found, including a point mutation in bi2 restoring the correct exon/intron structure and the deletion of intron bi2. We also found that overexpression of nuclear genes MRS2 and MRS3, encoding mitochondrial metal ion carriers, partially restores the respiratory growth of the G143A mutant. Interestingly, the MRS3 gene from the plant-pathogenic fungus Botrytis cinerea, overexpressed in an S. cerevisiae G143A mutant, had a similar compensatory effect. These bypass mechanisms identified in yeast could potentially arise in pathogenic fungi.
Collapse
|
6
|
Procházka E, Poláková S, Piskur J, Sulo P. Mitochondrial genome from the facultative anaerobe and petite-positive yeast Dekkera bruxellensis contains the NADH dehydrogenase subunit genes. FEMS Yeast Res 2010; 10:545-57. [PMID: 20528950 DOI: 10.1111/j.1567-1364.2010.00644.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The progenitor of the Dekkera/Brettanomyces clade separated from the Saccharomyces/Kluyveromyces clade over 200 million years ago. However, within both clades, several lineages developed similar physiological traits. Both Saccharomyces cerevisiae and Dekkera bruxellensis are facultative anaerobes; in the presence of excess oxygen and sugars, they accumulate ethanol (Crabtree effect) and they both spontaneously generate respiratory-deficient mutants (petites). In order to understand the role of respiratory metabolism, the mitochondrial DNA (mtDNA) molecules of two Dekkera/Brettanomyces species were analysed. Dekkera bruxellensis mtDNA shares several properties with S. cerevisiae, such as the large genome size (76 453 bp), and the organization of the intergenic sequences consisting of spacious AT-rich regions containing a number of hairpin GC-rich cluster-like elements. In addition to a basic set of the mitochondrial genes coding for the components of cytochrome oxidase, cytochrome b, subunits of ATPase, two rRNA subunits and 25 tRNAs, D. bruxellensis also carries genes for the NADH dehydrogenase complex. Apparently, in yeast, the loss of this complex is not a precondition to develop a petite-positive, Crabtree-positive and anaerobic nature. On the other hand, mtDNA from a petite-negative Brettanomyces custersianus is much smaller (30 058 bp); it contains a similar gene set and has only short intergenic sequences.
Collapse
Affiliation(s)
- Emanuel Procházka
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | |
Collapse
|
7
|
Maciaszczyk E, Wysocki R, Golik P, Lazowska J, Ulaszewski S. Arsenical resistance genes in Saccharomyces douglasii and other yeast species undergo rapid evolution involving genomic rearrangements and duplications. FEMS Yeast Res 2004; 4:821-32. [PMID: 15450189 DOI: 10.1016/j.femsyr.2004.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 03/19/2004] [Accepted: 03/24/2004] [Indexed: 11/17/2022] Open
Abstract
We have isolated and characterized three adjacent Saccharomyces douglasii genes that share remarkable structural homology (97% amino acid sequence identity) with Saccharomyces cerevisiae ARR1 (ACR1), ARR2 (ACR2) and ARR3 (ACR3) genes involved in arsenical resistance. The ARR2 and ARR3 genes encoding the cytoplasmic arsenate reductase and the plasma membrane arsenite transporter are functionally interchangeable in both yeast species. In contrast, a single copy of S. douglasii ARR1 gene is not sufficient to complement the arsenic hypersensitivity of a S. cerevisiae mutant lacking the transcriptional activator Arr1p. This inability may be related to a deletion of a 35-bp sequence including the putative Yap-binding element in the ARR1 promoter of S. douglasii. Different mechanisms of regulation of ARR1 genes expression may therefore explain the increased tolerance of S. douglasii to arsenic in comparison with S. cerevisiae. The apparent duplication of the ARR gene cluster in the S. douglasii genome may constitute another factor contributing to the observed differences in arsenic sensitivity. Comparison of ARR genes from the genomes of several yeast species indicates that they are located in subtelomeric regions undergoing rapid evolution involving large-scale genomic rearrangements.
Collapse
Affiliation(s)
- Ewa Maciaszczyk
- Institute of Genetics and Microbiology, Wroclaw University, Przybyszewskiego 63, 51-148 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
8
|
Nosek J, Novotna M, Hlavatovicova Z, Ussery DW, Fajkus J, Tomaska L. Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis. Mol Genet Genomics 2004; 272:173-80. [PMID: 15449175 DOI: 10.1007/s00438-004-1046-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 07/12/2004] [Indexed: 01/27/2023]
Abstract
The complete sequence of the mitochondrial DNA of the opportunistic yeast pathogen Candida parapsilosis was determined. The mitochondrial genome is represented by linear DNA molecules terminating with tandem repeats of a 738-bp unit. The number of repeats varies, thus generating a population of linear DNA molecules that are heterogeneous in size. The length of the shortest molecules is 30,922 bp, whereas the longer molecules have expanded terminal tandem arrays (nx738 bp). The mitochondrial genome is highly compact, with less than 8% of the sequence corresponding to non-coding intergenic spacers. In silico analysis predicted genes encoding fourteen protein subunits of complexes of the respiratory chain and ATP synthase, rRNAs of the large and small subunits of the mitochondrial ribosome, and twenty-four transfer RNAs. These genes are organized into two transcription units. In addition, six intronic ORFs coding for homologues of RNA maturase, reverse transcriptase and DNA endonucleases were identified. In contrast to its overall molecular architecture, the coding sequences of the linear mitochondrial DNA of C. parapsilosis are highly similar to their counterparts in the circular mitochondrial genome of its close relative C. albicans. The complete sequence has implications for both mitochondrial DNA replication and the evolution of linear DNA genomes.
Collapse
Affiliation(s)
- J Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynska dolina CH-1, 842 15, Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
9
|
Golik P, Zwolinska U, Stepien PP, Lazowska J. The SUV3 gene from Saccharomyces douglasii is a functional equivalent of its Saccharomyces cerevisiae orthologue and is essential for respiratory growth. FEMS Yeast Res 2004; 4:477-85. [PMID: 14734028 DOI: 10.1016/s1567-1356(03)00160-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae the product of the nuclear gene SUV3 has been shown to be involved in a variety of mitochondrial post-transcriptional processes. We have cloned and sequenced the SUV3 gene from Saccharomyces douglasii, a close relative of S. cerevisiae which has important changes in the organization of its mitochondrial genome and concomitant changes in nucleo-mitochondrial interactions. We show that the S. douglasii SUV3 gene shares considerable structural homology (92% amino acid sequence identity) with its S. cerevisiae counterpart and that their nucleotide sequences display evidence of recent divergence. To determine the function of the S. douglasii SUV3 gene we have constructed a strain carrying an inactive SUV3 gene and analyzed the effect of this inactivation on the integrity of the mitochondrial genome and on the stability of mitochondrial transcripts. We have demonstrated that the S. douglasii SUV3 gene, like the S. cerevisiae gene, is essential for respiratory growth and for stability of the intron-containing mitochondrial transcripts, thus the two genes are functionally equivalent. Also the S. douglasii and S. cerevisiae SUV3 genes are completely interchangeable, despite the differences in the structure of the mitochondrial chromosome in the two yeasts.
Collapse
Affiliation(s)
- Pawel Golik
- Centre de Génétique Moléculaire CNRS, 91198 Gif sur Yvette, France
| | | | | | | |
Collapse
|
10
|
Chevalier BS, Stoddard BL. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 2001; 29:3757-74. [PMID: 11557808 PMCID: PMC55915 DOI: 10.1093/nar/29.18.3757] [Citation(s) in RCA: 339] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Homing endonucleases confer mobility to their host intervening sequence, either an intron or intein, by catalyzing a highly specific double-strand break in a cognate allele lacking the intervening sequence. These proteins are characterized by their ability to bind long DNA target sites (14-40 bp) and their tolerance of minor sequence changes in these sites. A wealth of biochemical and structural data has been generated for these enzymes over the past few years. Herein we review our current understanding of homing endonucleases, including their diversity and evolution, DNA-binding and catalytic mechanisms, and attempts to engineer them to bind novel DNA substrates.
Collapse
Affiliation(s)
- B S Chevalier
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center and Graduate Program in Molecular and Cell Biology, University of Washington, 1100 Fairview Avenue North A3-023, Seattle, WA 98109, USA
| | | |
Collapse
|
11
|
Derbyshire V, Kowalski JC, Dansereau JT, Hauer CR, Belfort M. Two-domain structure of the td intron-encoded endonuclease I-TevI correlates with the two-domain configuration of the homing site. J Mol Biol 1997; 265:494-506. [PMID: 9048944 DOI: 10.1006/jmbi.1996.0754] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
I-TevI, the T4 td intron-encoded endonuclease, catalyzes the first step in intron homing by making a double-strand break in the intronless allele within a sequence designated the homing site. The 28 kDa enzyme, which interacts with the homing site over a span of 37 bp, binds as a monomer, contacting two domains of the substrate. In this study, limited proteolysis experiments indicate that I-TevI consists of two domains that behave as discrete physical entities as judged by a number of functional and structural criteria. Overexpression clones for each domain were constructed and the proteins were purified. The carboxy-terminal domain has DNA-binding activity coincident with the primary binding region of the homing site and binds with the same affinity as the full-length enzyme. The isolated amino-terminal domain, contains the conserved GIY-YIG motif, consistent with its being the catalytic domain. Furthermore, site-directed mutagenesis of a conserved arginine residue within the extended motif rendered the full-length protein catalytically inactive, although DNA-binding was maintained. This is the first evidence that the GIY-YIG motif is important for catalytic activity. An enzyme with an N-terminal catalytic domain and a C-terminal DNA-binding domain connected by a flexible linker is in accord with the bipartite structure of the homing site.
Collapse
Affiliation(s)
- V Derbyshire
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health and School of Public Health, State University of New York, Albany 12201-2002, USA
| | | | | | | | | |
Collapse
|
12
|
Lehnert V, Jaeger L, Michel F, Westhof E. New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme. CHEMISTRY & BIOLOGY 1996; 3:993-1009. [PMID: 9000010 DOI: 10.1016/s1074-5521(96)90166-0] [Citation(s) in RCA: 243] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Group I introns self-splice via two consecutive trans-esterification reactions in the presence of guanosine cofactor and magnesium ions. Comparative sequence analysis has established that a catalytic core of about 120 nucleotides is conserved in all known group I introns. This core is generally not sufficient for activity, however, and most self-splicing group I introns require non-conserved peripheral elements to stabilize the complete three-dimensional (3D) structure. The physico-chemical properties of group I introns make them excellent systems for unraveling the structural basis of the RNA-RNA interactions responsible for promoting the self-assembly of complex RNAs. RESULTS We present phylogenetic and experimental evidence for the existence of three additional tertiary base pairings between hairpin loops within peripheral components of subgroup IC1 and ID introns. Each of these new long range interactions, called P13, P14 and P16, involves a terminal loop located in domain 2. Although domains 2 of IC and ID introns share very strong sequence similarity, their terminal loops interact with domains 5 and 9 (subgroup IC1) and domain 6 (subgroup ID). Based on these tertiary contacts, comparative sequence analysis, and published experimental results such as Fe(II)-EDTA protection patterns, we propose 3D models for two entire group I introns, the subgroup IC1 intron in the large ribosomal precursor RNA of Tetrahymena thermophila and the SdCob.1 subgroup ID intron found in the cytochrome b gene of Saccharomyces douglasii. CONCLUSIONS Three-dimensional models of group I introns belonging to four different subgroups are now available. They all emphasize the modular and hierarchical organization of the architecture of group I introns and the widespread use of base-pairings between terminal hairpin loops for stabilizing the folded and active structures of large and complex RNA molecules.
Collapse
Affiliation(s)
- V Lehnert
- Institut de Biologie Moléculaire et Cellulaire du CNRS, UPR9002, 15 rue Descartes, 67084, Strasbourg, France
| | | | | | | |
Collapse
|
13
|
Saville BJ, Yoell H, Anderson JB. Genetic exchange and recombination in populations of the root-infecting fungus Armillaria gallica. Mol Ecol 1996; 5:485-97. [PMID: 8794559 DOI: 10.1111/j.1365-294x.1996.tb00341.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Genetic individuals, or genets, of Armillaria and other root-infecting basidiomycetes are usually found in discrete patches that often include the root systems of several adjacent trees. Each diploid individual is thought to arise in an unique mating event and then grow vegetatively in an expanding territory over a long period of time. Our objective in this study was to describe the population from which such genetic individuals are drawn. In a sample including 274 collections representing 121 genetic individuals of A. gallica (synonym A. bulbosa) from two sites in each of four regions of eastern North America, genotype frequencies at seven nuclear loci were not significantly different from Hardy-Weinberg expectations. Furthermore, allele frequencies at the seven loci were not significantly different between regions. Additional allelic data from four non-contiguous regions of mitochondrial DNA showed little or no population subdivision over the four regions. Analysis of the distribution of multilocus mtDNA haplotypes revealed some clonal transmission of mtDNAs between genets and nonrandom mating within sites. Despite the sharing of mtDNA types by some individuals, the overall sample contained a high level of genotypic diversity. The apparent linkage equilibrium between some pairs of loci and the high level of phylogenetic inconsistency among all four loci suggest the occurrence heteroplasmy and recombination among mtDNAs of A. gallica in nature. In laboratory matings of two haploid strains with different mtDNA types, a low frequency of recombination in mtDNA was detected.
Collapse
Affiliation(s)
- B J Saville
- Department of Botany, Erindale College, University of Toronto, Ontario, Canada.
| | | | | |
Collapse
|
14
|
Li GY, Tian GL, Slonimski PP, Herbert CJ. The CBP2 gene from Saccharomyces douglasii is a functional homologue of the Saccharomyces cerevisiae gene and is essential for respiratory growth in the presence of a wild-type (intron-containing) mitochondrial genome. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:316-22. [PMID: 8602146 DOI: 10.1007/bf02174389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In Saccharomyces cerevisiae the only known role of the CBP2 gene is the excision of the fifth intron of the mitochondrial cyt b gene (bI5). We have cloned the CBP2 gene from Saccharomyces douglasii (a close relative of S. cerevisiae). A comparison of the S. douglasii and S. cerevisiae sequences shows that there are 14% nucleotide substitutions in the coding region, with transitions being three times more frequent than transversions. At the protein level sequence identity is 87%. We have demonstrated that the S. douglasii CBP2 gene is essential for respiratory growth in the presence of a wild-type S. douglasii mitochondrial genome, but not in the presence of an intronless S. cerevisiae mitochondrial genome. Also the S. douglasii and S. cerevisiae CBP2 genes are completely interchangeable, even though the intron bI5 is absent from the S. douglasii mitochondrial genome.
Collapse
Affiliation(s)
- G Y Li
- Centre de Génétique Moléculaire, Laboratoire propre du CNRS, Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
15
|
Jaeger L, Westhof E, Michel F. Function of a pseudoknot in the suppression of an alternative splicing event in a group I intron. Biochimie 1996; 78:466-73. [PMID: 8915536 DOI: 10.1016/0300-9084(96)84753-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Like most mitochondrial group I introns with a free-standing open reading frame (ORF) located downstream of their catalytic core, the Sd.cob, 1 intron in the gene coding for the cytochrome b of Saccharomyces douglasii mitochondria possesses a putative proximal 3' splice site. However, incubation of Sd.cob, 1 preRNA transcripts under optimal in vitro splicing conditions essentially results in splicing at the authentic, distal 3' splice junction. The mechanism by which the proximal splicing event is suppressed in vitro involves formation of a tertiary interaction which is only found in the Sd.cob, 1 intron. Core nucleotides located in loop L5 block proximal splicing by forming Watson-Crick base pairs with the nucleotide sequence of the proximal 3' splice site. This tertiary base pairing, also important for the folding of the intron into an active conformation, may be regarded as equivalent to the L9/P5, GNRA-loop/helix interaction found in more than one-third of known group I introns.
Collapse
Affiliation(s)
- L Jaeger
- Institut de Biologie Moléculaire et Cellulaire, CNRS, UPR 9002, Strasbourg, France
| | | | | |
Collapse
|
16
|
Affiliation(s)
- M Belfort
- Molecular Genetics Program, Wadsworth Center, State University of New York, New York State Department of Health, Albany 12201-2002, USA
| | | |
Collapse
|
17
|
Paquin B, O'Kelly CJ, Lang BF. Intron-encoded open reading frame of the GIY-YIG subclass in a plastid gene. Curr Genet 1995; 28:97-9. [PMID: 8536320 DOI: 10.1007/bf00311888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Group-I introns, containing open reading frames (ORFs) that code for homing endonucleases, are widely distributed amongst eukaryotic organellar genomes. However, endonucleases of the GIY-YIG subclass have a restricted distribution in mitochondria and bacteriophages, and have never been observed in plastids. We have found the GIY-YIG motif in an intronic ORF within the previously published psbA gene sequence from Chlamydomonas reinhardtii chloroplasts. Based on phylogenetic analysis and an evaluation of amino-acid substitutions, this ORF is not closely related to any of the other GIY-YIG ORFs. These results suggest that GIY-YIG ORFs have a longer evolutionary history than previously assumed.
Collapse
Affiliation(s)
- B Paquin
- Département de Biochimie, Université de Montréal, Canada
| | | | | |
Collapse
|
18
|
Paquin B, Laforest MJ, Lang BF. Interspecific transfer of mitochondrial genes in fungi and creation of a homologous hybrid gene. Proc Natl Acad Sci U S A 1994; 91:11807-10. [PMID: 7991539 PMCID: PMC45324 DOI: 10.1073/pnas.91.25.11807] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In eukaryotes, horizontal gene transfer is a rare event. Here we show that the mitochondrial genome of a lower fungus, Allomyces macrogynus, has an extra DNA segment not present in a close relative, Allomyces arbusculus. This insert consists of the C terminus of a foreign gene encoding a subunit of the ATP synthetase complex (atp6) plus an open reading frame encoding an endonuclease. The inserted atp6 portion is fused in phase to the resident gene, resulting in expression of a hybrid atp6 gene and the displacement of the original C-terminal atp6 region. We present evidence that this insertion may have been acquired by interspecific transfer and we discuss the possible role of the endonuclease in this process.
Collapse
Affiliation(s)
- B Paquin
- Département de Biochimie, Université de Montréal, PQ, Canada
| | | | | |
Collapse
|
19
|
Sharma M, Hinton DM. Purification and characterization of the SegA protein of bacteriophage T4, an endonuclease related to proteins encoded by group I introns. J Bacteriol 1994; 176:6439-48. [PMID: 7961394 PMCID: PMC196996 DOI: 10.1128/jb.176.21.6439-6448.1994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Although not encoded by an intron, the bacteriophage T4 SegA protein shares common amino acid motifs with a family of proteins found within mobile group I introns present in fungi and phage. Each of these intron-encoded proteins is thought to initiate the homing of its own intron by cleaving the intronless DNA at or near the site of insertion. Previously, we have found that SegA also cleaves DNA. In this report, we have purified the SegA protein and characterized this endonuclease activity extensively. SegA protein cleaved circular and linear plasmids, DNA containing unmodified cytosines, and wild-type T4 DNA containing hydroxymethylated, glucosylated cytosines. In all cases, certain sites on the DNA were highly preferred for cleavage, but with increasing protein concentration or time of incubation, cleavage occurred at many sites. SegA cleaving activity was stimulated by the presence of ATP or ATP gamma S. Sequence analysis of three highly preferred cleavage sites did not reveal a simple consensus sequence, suggesting that even among highly preferred sites, SegA tolerates many different sequences. A T4 segA amber mutant that we constructed had no phenotype, and PCR analyses indicated that several T-even-related phages lack the segA gene. Taken together, our results show that SegA is an endonuclease with a hierarchy of site specificity, and these results are consistent with the insertion of segA DNA into the T4 genome some time after the divergence of the closely consistent with the insertion of segA DNA into the T4 genome some time after the divergence of the closely related T-even phages.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacteriophage T4/enzymology
- Bacteriophage T4/genetics
- Base Sequence
- Cloning, Molecular
- DNA, Viral/metabolism
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/isolation & purification
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Endonucleases/genetics
- Endonucleases/isolation & purification
- Endonucleases/metabolism
- Genome, Viral
- Introns/genetics
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Selection, Genetic
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Substrate Specificity
- T-Phages/genetics
- Viral Proteins
Collapse
Affiliation(s)
- M Sharma
- Section on Nucleic Acid Biochemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
20
|
Hawthorne D, Philippsen P. Genetic and molecular analysis of hybrids in the genus Saccharomyces involving S. cerevisiae, S. uvarum and a new species, S. douglasii. Yeast 1994; 10:1285-96. [PMID: 7900417 DOI: 10.1002/yea.320101005] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have studied the phenomenon of infertility of yeast hybrids obtained with physiological conditions under the control of compatible mating systems. The yeasts investigated are three Saccharomyces species: S. cerevisiae, S. uvarum and a new species, S. douglasii. The diploid hybrids from crosses between these species sporulate well but are essentially infertile. The rare viable spores, one per 10(4) to 10(5) asci, that have been examined carry a complete genome comprised of chromosomes contributed by both parents but invariably have extra chromosomes, i.e. they are generally disomic for at least two or three chromosomes. This observation is consistent with a failure, in meiosis I, of the pairing and disjunction of homologous chromosomes which in most cases results in spores with an incomplete set of chromosomes. This apparent lack of pairing of 'homeologous' chromosomes in meiosis I was analysed in most detail with S. cerevisiae/S. douglasii hybrids. As a genetic tool we studied frequencies of recombination, taking advantage of an S. douglasii breeding stock of some 50 identified mutations in non-switching haploids. Recombination, although markedly reduced, could be observed at both the chromosomal and allelic levels, implying a sporadic pairing in meiosis to allow genetic exchange. Meiotic recombination frequencies were studied for 14 gene pairs and generally found to be reduced ten-fold. Heteroallelic recombination (gene conversion) frequencies were measured at 22 loci and were judged to be reduced at least two- to 100-fold. DNA hybridization experiments with S. cerevisiae gene probes gave results consistent with low DNA sequence homologies between S. cerevisiae and S. douglasii. Moreover, by change, our experiments disclosed another Saccharomyces strain (CBS2908, originally classified as S. cerevisiae) with hybridization patterns identical to S. douglasii except for the hybridization with the Ty transposon probes. Crosses between CBS2908 and S. douglasii yielded diploid hybrids with 80-90% spore viability, thus establishing a second member of the S. douglasii species.
Collapse
Affiliation(s)
- D Hawthorne
- Department of Genetics, University of Washington, Seattle 98195
| | | |
Collapse
|
21
|
Groudinsky O, Bousquet I, Wallis MG, Slonimski PP, Dujardin G. The NAM1/MTF2 nuclear gene product is selectively required for the stability and/or processing of mitochondrial transcripts of the atp6 and of the mosaic, cox1 and cytb genes in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1993; 240:419-27. [PMID: 8413192 DOI: 10.1007/bf00280396] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The NAM1/MTF2 gene was firstly isolated as a multicopy suppressor of mitochondrial splicing deficiencies and independently as a gene of which a thermosensitive allele affects mitochondrial transcription in organello. To determine which step in mitochondrial RNA metabolism is controlled in vivo by the NAM1 gene, mitochondrial transcripts of seven transcription units from strains carrying an inactive nam1::URA3 gene disruption in various mitochondrial genetic backgrounds were analysed by Northern blot hybridisations. In a strain carrying an intron-containing mitochondrial genome, the inactivation of the NAM1 gene led to a strong decrease in (or total absence of) the mosaic cytb and cox1 mRNAs and in transcripts of the atp6-rf3/ens2 genes, which are co-transcribed with cox1. Neither the accumulation of unspliced cytb or cox1 pre-mRNAs, nor that of excised circular intron molecules of ai1 or ai2 were observed, but the abundance of the bi1 and ai7 lariats was comparable to that observed in the wild-type strain, thus demonstrating that transcription of the cytb and cox1 genes does occur. In strains carrying the intron-less mitochondrial genome with or without the rf3/ens2 sequence, wild-type amounts of cytb and cox1 mRNAs were detected while the amount of the atp6 mRNA was always strongly decreased. The abundance of transcripts from five other genes was either slightly (21S rRNA) or not at all (cox2, cox3, atp9 and 15S rRNA) affected by the nam1 inactivation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- O Groudinsky
- Centre de Génétique Moléculaire, Laboratoire propre du CNRS associé à l'Université P. et M. Curie, Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
22
|
di Rago JP, Macadre C, Lazowska J, Slonimski PP. The C-terminal domain of yeast cytochrome b is essential for a correct assembly of the mitochondrial cytochrome bc1 complex. FEBS Lett 1993; 328:153-8. [PMID: 8393806 DOI: 10.1016/0014-5793(93)80984-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Yeast mutants modifying the C-terminal region of mitochondrial cytochrome b were isolated and characterized. A nonsense mutation of the leucine codon 335 (TTA-->TAA), 50 residues before the normal C-terminus, blocks incorporation of heme into the apocytochrome b and prevents growth on non-fermentable substrates. The same defects were observed in a frameshift mutant (after codon 348, TAT-->TATT) in which the last 37 C-terminal residues are predicted to be replaced by a novel sequence of 33 amino acids. Function was regained in the nonsense mutant only by true back mutations restoring a protein of the wild-type sequence. The respiratory capacity was restored to wild-type levels in the frameshift mutant by a variety of single base subtractions located within a window of 24 bases before or after the original +T addition, these pseudo-reversions resulted in single or multiple (up to five) consecutive amino acid replacements between positions 346 and 354 and restored the wild-type sequence from position 355 to 385. These data, combined with hydropathy calculations and sequence comparisons, suggest that the C-terminal domain of cytochrome b forms a transmembrane segment essential for the correct assembly of the cytochrome bc1 complex.
Collapse
Affiliation(s)
- J P di Rago
- Centre de Génétique Moléculaire du Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
23
|
Esposti MD, De Vries S, Crimi M, Ghelli A, Patarnello T, Meyer A. Mitochondrial cytochrome b: evolution and structure of the protein. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1143:243-71. [PMID: 8329437 DOI: 10.1016/0005-2728(93)90197-n] [Citation(s) in RCA: 245] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytochrome b is the central redox catalytic subunit of the quinol: cytochrome c or plastocyanin oxidoreductases. It is involved in the binding of the quinone substrate and it is responsible for the transmembrane electron transfer by which redox energy is converted into a protonmotive force. Cytochrome b also contains the sites to which various inhibitors and quinone antagonists bind and, consequently, inhibit the oxidoreductase. Ten partial primary sequences of cytochrome b are presented here and they are compared with sequence data from over 800 species for a detailed analysis of the natural variation in the protein. This sequence information has been used to predict some aspects of the structure of the protein, in particular the folding of the transmembrane helices and the location of the quinone- and heme-binding pockets. We have observed that inhibitor sensitivity varies greatly among species. The comparison of inhibition titrations in combination with the analysis of the primary structures has enabled us to identify amino acid residues in cytochrome b that may be involved in the binding of the inhibitors and, by extrapolation, quinone/quinol. The information on the quinone-binding sites obtained in this way is expected to be both complementary and supplementary to that which will be obtained in the future by mutagenesis and X-ray crystallography.
Collapse
Affiliation(s)
- M D Esposti
- Department of Biology, University of Bologna, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Tian GL, Michel F, Macadre C, Lazowska J. Sequence of the mitochondrial gene encoding subunit I of cytochrome oxidase in Saccharomyces douglasii. Gene 1993; 124:153-63. [PMID: 8383070 DOI: 10.1016/0378-1119(93)90389-k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have determined the complete sequence of the mitochondrial (mt) gene (COXI) coding for cytochrome oxidase subunit I of Saccharomyces douglasii. This gene is 7238 bp long and includes four introns. The salient feature of the S. douglasii COXI gene is the presence of two introns, Sd.ai1 and Sd.ai2, which have not been observed in S. cerevisiae genes. Both are group-I introns and are located at novel positions compared with the S. cerevisiae COXI. Interestingly, one of these introns (the second one) is inserted at the same position as intron 2 of COXI of Kluyveromyces lactis and also as intron 8 of the same gene in Podospora anserina. The ORFs contained in these three introns display a high degree of similarity. Comparisons of exonic and intronic sequences of the COXI of two Saccharomyces species reinforces our previous conclusions: the evolution of mt genes in yeast obeys different rules to those found in vertebrates.
Collapse
Affiliation(s)
- G L Tian
- Centre de Génétique Moléculaire du CNRS, Laboratoire Propre Associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
25
|
Sharma M, Ellis RL, Hinton DM. Identification of a family of bacteriophage T4 genes encoding proteins similar to those present in group I introns of fungi and phage. Proc Natl Acad Sci U S A 1992; 89:6658-62. [PMID: 1631169 PMCID: PMC49561 DOI: 10.1073/pnas.89.14.6658] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The bacteriophage T4 segA gene lies in a genetically unmapped region between the gene beta gt (beta-glucosyltransferase) and uvsX (recombination protein) and encodes a protein of 221 amino acids. We have found that the first 100 amino acids of the SegA protein are highly similar to the N termini of four other predicted T4 proteins, also of unknown function. Together these five proteins, SegA-E (similar to endonucleases of group I introns), contain regions of similarity to the endonuclease I-Tev I, which is encoded by the mobile group I intron of the T4 td gene, and to putative endonucleases of group I introns present in the mitochondria of Neurospora crassa, Podospora anserina, and Saccharomyces douglasii. Intron-encoded endonucleases are required for the movement (homing) of the intron DNA into an intronless gene, cutting at or near the site of intron insertion. Our in vitro assays indicate that SegA, like I-Tev I, is a Mg(2+)-dependent DNA endonuclease that has preferred sites for cutting. Unlike the I-Tev I gene, however, there is no evidence that segA (or the other seg genes) resides within introns. Thus, it is possible that segA encodes an endonuclease that is involved in the movement of the endonuclease-encoding DNA rather than in the homing of an intron.
Collapse
Affiliation(s)
- M Sharma
- Section on Nucleic Acid Biochemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
26
|
Affiliation(s)
- M W Gray
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
27
|
Tian GL, Macadre C, Kruszewska A, Szczesniak B, Ragnini A, Grisanti P, Rinaldi T, Palleschi C, Frontali L, Slonimski PP. Incipient mitochondrial evolution in yeasts. I. The physical map and gene order of Saccharomyces douglasii mitochondrial DNA discloses a translocation of a segment of 15,000 base-pairs and the presence of new introns in comparison with Saccharomyces cerevisiae. J Mol Biol 1991; 218:735-46. [PMID: 1850804 DOI: 10.1016/0022-2836(91)90262-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have determined the physical and genetic map of the 73,000 base-pair mitochondrial genome of a novel yeast species Saccharomyces douglasii. Most of the protein and RNA-coding genes known to be present in the mitochondrial DNA of Saccharomyces cerevisiae have been identified and located on the S. douglasii mitochondrial genome. The nuclear genomes of the two species are thought to have diverged some 50 to 80 million years ago and their nucleo-mitochondrial hybrids are viable but respiratorily deficient. The mitochondrial genome of S. douglasii displays many interesting features in comparison with that of S. cerevisiae. The three mosaic genes present in both genomes are quite different with regard to their structure. The S. douglasii COXI gene has two new introns and is missing the five introns of the S. cerevisiae gene. The S. douglasii cytochrome b gene has one new intron and lacks two introns of the S. cerevisiae gene. Finally, the L-rRNA gene of S. douglasii, like that of S. cerevisiae, has one intron of which the structure is different. Another salient feature of the S. douglasii mitochondrial genome reported here is that the gene order is different in comparison with S. cerevisiae mitochondrial DNA. In particular, a segment of approximately 15,000 base-pairs including the genes coding for COXIII and S-rRNA has been translocated to a position between the genes coding for varl and L-rRNA.
Collapse
Affiliation(s)
- G L Tian
- Centre de Génétique Moléculaire du C.N.R.S., Laboratoire Propre Associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|