1
|
Yella VR, Vanaja A. Computational analysis on the dissemination of non-B DNA structural motifs in promoter regions of 1180 cellular genomes. Biochimie 2023; 214:101-111. [PMID: 37311475 DOI: 10.1016/j.biochi.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
The promoter regions of gene regulation are under evolutionary constraints and earlier studies uncovered that they are characterized by enrichment of functional non-B DNA structural signatures like curved DNA, cruciform DNA, G-quadruplex, triple-helical DNA, slipped DNA structures, and Z-DNA. However, these studies are restricted to a few model organisms, single non-B DNA motif types, or whole genomic sequences, and their comparative accumulation in promoter regions of different domains of life has not been reported comprehensively. In this study, for the first time, we investigated the preponderance of non-B DNA-prone motifs in promoter regions in 1180 genomes belonging to 28 taxonomic groups using the non-B DNA Motif Search Tool (nBMST). The trends suggest that they are predominant in promoters compared to the upstream and downstream regions of all three domains of life and variably linked to taxonomic groups. Cruciform DNA motif is the most abundant form of non-B DNA, spanning from archaea to lower eukaryotes. Curved DNA motifs are prominent in host-associated bacteria, and suppressed in mammals. Triplex-DNA and slipped DNA structure repeats are discretely dispersed in all lineages. G-quadruplex motifs are significantly enriched in mammals. We also observed that the unique enrichment of non-B DNA in promoters is strongly linked to genome GC, size, evolutionary time divergence, and ecological adaptations. Overall, our work systematically reports the unique non-B DNA structural landscape of cellular organisms from the perspective of the cis-regulatory code of genomes.
Collapse
Affiliation(s)
- Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, 522302, Andhra Pradesh, India.
| | - Akkinepally Vanaja
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, 522302, Andhra Pradesh, India; KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, 522302, Andhra Pradesh, India
| |
Collapse
|
2
|
Li K, Carroll M, Vafabakhsh R, Wang XA, Wang JP. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3142-3154. [PMID: 35288750 PMCID: PMC8989542 DOI: 10.1093/nar/gkac162] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
DNA mechanical properties play a critical role in every aspect of DNA-dependent biological processes. Recently a high throughput assay named loop-seq has been developed to quantify the intrinsic bendability of a massive number of DNA fragments simultaneously. Using the loop-seq data, we develop a software tool, DNAcycP, based on a deep-learning approach for intrinsic DNA cyclizability prediction. We demonstrate DNAcycP predicts intrinsic DNA cyclizability with high fidelity compared to the experimental data. Using an independent dataset from in vitro selection for enrichment of loopable sequences, we further verified the predicted cyclizability score, termed C-score, can well distinguish DNA fragments with different loopability. We applied DNAcycP to multiple species and compared the C-scores with available high-resolution chemical nucleosome maps. Our analyses showed that both yeast and mouse genomes share a conserved feature of high DNA bendability spanning nucleosome dyads. Additionally, we extended our analysis to transcription factor binding sites and surprisingly found that the cyclizability is substantially elevated at CTCF binding sites in the mouse genome. We further demonstrate this distinct mechanical property is conserved across mammalian species and is inherent to CTCF binding DNA motif.
Collapse
Affiliation(s)
- Keren Li
- Department of Statistics, Northwestern University, 633 Clark Street, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Matthew Carroll
- Weinberg College IT Solutions (WITS), Northwestern University, 633 Clark Street, Evanston, IL 60208, USA
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Xiaozhong A Wang
- Correspondence may also be addressed to Xiaozhong A. Wang. Tel: +1 847 467 4897;
| | - Ji-Ping Wang
- To whom correspondence should be addressed. Tel: +1 847 467 6896;
| |
Collapse
|
3
|
Wondergem JAJ, Schiessel H, Tompitak M. Performing SELEX experimentsin silico. J Chem Phys 2017; 147:174101. [DOI: 10.1063/1.5001394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- J. A. J. Wondergem
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - H. Schiessel
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - M. Tompitak
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| |
Collapse
|
4
|
Lemkul JA, MacKerell AD. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: II. Microsecond Molecular Dynamics Simulations of Duplex DNA. J Chem Theory Comput 2017; 13:2072-2085. [PMID: 28398748 PMCID: PMC5485260 DOI: 10.1021/acs.jctc.7b00068] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The structure and dynamics of DNA are governed by a sensitive balance between base stacking and pairing, hydration, and interactions with ions. Force-field models that include explicit representations of electronic polarization are capable of more accurately modeling the subtle details of these interactions versus commonly used additive force fields. In this work, we validate our recently refined polarizable force field for DNA based on the classical Drude oscillator model, in which electronic degrees of freedom are represented as negatively charged particles attached to their parent atoms via harmonic springs. The previous version of the force field, called Drude-2013, produced stable A- and B-DNA trajectories on the order of hundreds of nanoseconds, but deficiencies were identified that included weak base stacking ultimately leading to distortion of B-DNA duplexes and unstable Z-DNA. As a result of extensive refinement of base nonbonded terms and bonded parameters in the deoxyribofuranose sugar and phosphodiester backbone, we demonstrate that the new version of the Drude DNA force field is capable of simulating A- and B-forms of DNA on the microsecond time scale and the resulting conformational ensembles agree well with a broad set of experimental properties, including solution X-ray scattering profiles. In addition, simulations of Z-form duplex DNA in its crystal environment are stable on the order of 100 ns. The revised force field is to be called Drude-2017.
Collapse
Affiliation(s)
- Justin A. Lemkul
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
5
|
Yella VR, Bansal M. DNA structural features of eukaryotic TATA-containing and TATA-less promoters. FEBS Open Bio 2017; 7:324-334. [PMID: 28286728 PMCID: PMC5337902 DOI: 10.1002/2211-5463.12166] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 01/26/2023] Open
Abstract
Eukaryotic genes can be broadly classified as TATA‐containing and TATA‐less based on the presence of TATA box in their promoters. Experiments on both classes of genes have revealed a disparity in the regulation of gene expression and cellular functions between the two classes. In this study, we report characteristic differences in promoter sequences and associated structural properties of the two categories of genes in six different eukaryotes. We have analyzed three structural features, DNA duplex stability, bendability, and curvature along with the distribution of A‐tracts, G‐quadruplex motifs, and CpG islands. The structural feature analyses reveal that while the two classes of gene promoters are distinctly different from each other, the properties are also distinguishable across the six organisms.
Collapse
Affiliation(s)
- Venkata Rajesh Yella
- Molecular Biophysics Unit Indian Institute of Science Bangalore India; Present address: Department of Biotechnology K L University, Vaddeswaram Guntur 522502 India
| | - Manju Bansal
- Molecular Biophysics Unit Indian Institute of Science Bangalore India
| |
Collapse
|
6
|
Flickinger R. AT-rich repetitive DNA sequences, transcription frequency and germ layer determination. Mech Dev 2015; 138 Pt 3:227-32. [PMID: 26506258 DOI: 10.1016/j.mod.2015.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 01/30/2023]
Abstract
Non-coding sequences of frog embryo endoderm poly (A+) nuclear RNA are AU-enriched, as compared to those of ectoderm and mesoderm. Endoderm blastomeres contain much less H1 histone than is present in ectoderm and mesoderm. H1 histone preferentially binds AT-rich DNA sequences to repress their transcription. The AT-enrichment of non-coding DNA sequences transcribed into poly (A+) nuclear RNA, as well as the low amount of H1 histone, may contribute to the higher transcription frequency of mRNA of endoderm, as compared to that of ectoderm and mesoderm. A greater accumulation of H1 histone in presumptive mesoderm and ectoderm may prevent transcription of endoderm specifying genes in mesoderm and ectoderm. Experimental upregulation of various transcription factors (TFs) can redirect germ layer fate. Most of these TFs bind AT-rich consensus sequences in DNA, suggesting that H1 histone and TFs active during germ layer determination are binding similar sequences.
Collapse
Affiliation(s)
- Reed Flickinger
- Emeritus Department, Biological Sciences State University of New York at Buffalo, Buffalo, N.Y. 14260, USA.
| |
Collapse
|
7
|
Rosanio G, Widom J, Uhlenbeck OC. In vitro selection of DNAs with an increased propensity to form small circles. Biopolymers 2015; 103:303-20. [DOI: 10.1002/bip.22608] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Gabriel Rosanio
- Department of Molecular Biosciences; Northwestern University; Evanston IL 60208
- Department of Chemistry; Northwestern University; Evanston IL 60208
| | - Jonathan Widom
- Department of Molecular Biosciences; Northwestern University; Evanston IL 60208
- Department of Chemistry; Northwestern University; Evanston IL 60208
| | - Olke C. Uhlenbeck
- Department of Molecular Biosciences; Northwestern University; Evanston IL 60208
- Department of Chemistry; Northwestern University; Evanston IL 60208
| |
Collapse
|
8
|
|
9
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
10
|
Abstract
AbstractSemiconductor quantum dots of cadmium sulfide, CdS, are approximately the size of proteins and are photoluminescent in the red, yellow, or green, depending on surface preparation. This photoluminescence is very sensitive to the Nature and amount of adsorbates. We have found that DNAs with intrinsic curvature adsorb more strongly to the surface of 47 Å CdS quantum dots, as judged by concentration-dependent changes in photoluminescence. The binding constants we obtain are similar to those found for nonspecific protein-DNA interactions. The surface groups of the CdS substrate also influence DNA adsorption. Thus these protein-sized colloidal particles can be used in chemical sensing applications for curved or kinked DNA; DNA with unusual structures is thought to influence biological function such as transcription.
Collapse
|
11
|
Lionberger TA, Meyhöfer E. Bending the rules of transcriptional repression: tightly looped DNA directly represses T7 RNA polymerase. Biophys J 2010; 99:1139-48. [PMID: 20712997 DOI: 10.1016/j.bpj.2010.04.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 04/09/2010] [Accepted: 04/21/2010] [Indexed: 10/19/2022] Open
Abstract
From supercoiled DNA to the tight loops of DNA formed by some gene repressors, DNA in cells is often highly bent. Despite evidence that transcription by RNA polymerase (RNAP) is affected in systems where DNA is deformed significantly, the mechanistic details underlying the relationship between polymerase function and mechanically stressed DNA remain unclear. Seeking to gain additional insight into the regulatory consequences of highly bent DNA, we hypothesize that tightly looping DNA is alone sufficient to repress transcription. To test this hypothesis, we have developed an assay to quantify transcription elongation by bacteriophage T7 RNAP on small, circular DNA templates approximately 100 bp in size. From these highly bent transcription templates, we observe that the elongation velocity and processivity can be repressed by at least two orders of magnitude. Further, we show that minicircle templates sustaining variable levels of twist yield only moderate differences in repression efficiency. We therefore conclude that the bending mechanics within the minicircle templates dominate the observed repression. Our results support a model in which RNAP function is highly dependent on the bending mechanics of DNA and are suggestive of a direct, regulatory role played by the template itself in regulatory systems where DNA is known to be highly bent.
Collapse
Affiliation(s)
- Troy A Lionberger
- Cellular and Molecular Biology Program, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
12
|
Abstract
AbstractShort runs of adenines are a ubiquitous DNA element in regulatory regions of many organisms. When runs of 4–6 adenine base pairs (‘A-tracts’) are repeated with the helical periodicity, they give rise to global curvature of the DNA double helix, which can be macroscopically characterized by anomalously slow migration on polyacrylamide gels. The molecular structure of these DNA tracts is unusual and distinct from that of canonical B-DNA. We review here our current knowledge about the molecular details of A-tract structure and its interaction with sequences flanking them of either side and with the environment. Various molecular models were proposed to describe A-tract structure and how it causes global deflection of the DNA helical axis. We review old and recent findings that enable us to amalgamate the various findings to one model that conforms to the experimental data. Sequences containing phased repeats of A-tracts have from the very beginning been synonymous with global intrinsic DNA bending. In this review, we show that very often it is the unique structure of A-tracts that is at the basis of their widespread occurrence in regulatory regions of many organisms. Thus, the biological importance of A-tracts may often be residing in their distinct structure rather than in the global curvature that they induce on sequences containing them.
Collapse
|
13
|
Marilley M, Milani P, Rocca-Serra J. Gradual melting of a replication origin (Schizosaccharomyces pombe ars1): in situ atomic force microscopy (AFM) analysis. Biochimie 2007; 89:534-41. [PMID: 17397989 DOI: 10.1016/j.biochi.2007.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 02/15/2007] [Indexed: 02/02/2023]
Abstract
Local DNA melting is integral to fundamental processes such as replication or transcription. In vivo, these two processes do not occur on molecules free in solution but, instead, involve DNA molecules which are organized into DNA/proteins complexes. Atomic force microscopy imaging offers a possibility to look at individual molecules. It allowed us to follow the progress of local denaturation in liquid, but with the added constraints of DNA lying on a surface. We present a kinetic analysis of the mapping of the temperature-driven melting seen at a replication origin (Schizosaccharomyces pombe ars1). The results indicate an expected base composition dependency, but also a strong extremity effect. Noteworthy, a "structural" effect is clearly occurring - which is shown by the greater susceptibility of the strongly curved region present in the sequence to unwind. DNA melting, at this place, is seen to occur after an increase in the curvature amplitude and a simultaneous shift of the nucleotide sequence positioned at the apex. Because this may determine the position of the Replication Initiation (R.I.) site, the result suggests that eukaryotic replication origins, although described as possessing no consensus sequences, may well have their mechanics sustained by the properties of common structural features. Our analysis may, therefore, provide new information that will give genuine insights on how DNA molecules behave when organized into primosomes, replisomes, promoter initiation complexes, etc. and thus, be essential to better understanding the way genes function.
Collapse
Affiliation(s)
- Monique Marilley
- Laboratoire de régulation génique et fonctionnelle & microscopie champ proche (RGFCP), IFR 125, Faculté de Médecine, Réseau AFM, Université de la Méditerranée, 13385 Marseille cedex 5, France.
| | | | | |
Collapse
|
14
|
Abstract
Gene expression is regulated by a complex interplay between binding and the three-dimensional arrangement of transcription factors with RNA polymerase and DNA. Previous studies have supported a direct role for DNA bending and conformation in gene expression, which suggests that agents that induce bends in DNA might be able to control gene expression. To test this hypothesis, we examined the effect of triple-helix-forming oligonucleotide (TFO) bending agents on the transcription of luciferase in an in vitro transcriptional/translational system. We find that transcription is regulated only by a TFO that induces a bend in the DNA. Related TFOs that do not induce bends in DNA have no effect on transcription. Reporter expression can be increased by as much as 80 % or decreased by as much as 50 % depending on the phasing of the upstream bend relative to the promoter. We interpret the results as follows: when the bend is positioned such that the upstream DNA is curved toward the RNA polymerase on the same DNA face, transcription is enhanced. When the upstream DNA is curved away, transcription is attenuated. These results support the hypothesis that DNA-bending agents might have the capability to regulate gene expression, thereby opening up a previously undervalued avenue in research on the artificial control of gene expression.
Collapse
Affiliation(s)
- David Bednarski
- Eugene Applebaum College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
15
|
|
16
|
Flegontov PN, Guo Q, Ren L, Strelkova MV, Kolesnikov AA. Conserved repeats in the kinetoplast maxicircle divergent region of Leishmania sp. and Leptomonas seymouri. Mol Genet Genomics 2006; 276:322-33. [PMID: 16909285 DOI: 10.1007/s00438-006-0145-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 06/22/2006] [Indexed: 11/29/2022]
Abstract
The maxicircle control region [also termed divergent region (DR)] composed of various repeat elements remains the most poorly studied part of the kinetoplast genome. Only three extensive DR sequences demonstrating no significant similarity were available for trypanosomatids (Leishmania tarentolae, Crithidia oncopelti, Trypanosoma brucei). Recently, extensive DR sequences have been obtained for Leishmania major and Trypanosoma cruzi. In this work we have sequenced DR fragments of Leishmania turanica, Leishmania mexicana, Leishmania chagasi and two monogenetic trypanosomatids Leptomonas seymouri and Leptomonas collosoma. With the emergence of the additional extensive sequences some conserved features of DR structure become evident. A conserved palindromic sequence has been revealed in the DRs of the studied Leishmania species, L. seymouri, and T. cruzi. The overall DR structure appears to be similar in all the Leishmania species, their relative L. seymouri, and T. brucei: long relatively GC-rich repeats are interspersed with clusters of short AT-rich repeats. C. oncopelti, L. collosoma, and T. cruzi have a completely different DR structure. Identification of conserved sequences and invariable structural features of the DR may further our understanding of the functioning of this important genome fragment.
Collapse
Affiliation(s)
- Pavel N Flegontov
- Department of Molecular Biology, Lomonosov Moscow State University, Vorobjevy Gory 1, build. 12, 119992, Moscow, Russia
| | | | | | | | | |
Collapse
|
17
|
Li H, O'Sullivan DJ. Identification of a nisI promoter within the nisABCTIP operon that may enable establishment of nisin immunity prior to induction of the operon via signal transduction. J Bacteriol 2006; 188:8496-503. [PMID: 17012392 PMCID: PMC1698219 DOI: 10.1128/jb.00946-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain strains of Lactococcus lactis produce the broad-spectrum bacteriocin nisin, which belongs to the lantibiotic class of antimicrobial peptides. The genes encoding nisin are organized in three contiguous operons: nisABTCIP, encoding production and immunity (nisI); nisRK, encoding regulation; and nisFEG, also involved in immunity. Transcription of nisABTCIP and nisFEG requires autoinduction by external nisin via signal transducing by NisRK. This organization poses the intriguing question of how sufficient immunity (NisI) can be expressed when the nisin cluster enters a new cell, before it encounters external nisin. In this study, Northern analysis in both Lactococcus and Enterococcus backgrounds revealed that nisI mRNA was present under conditions when no nisA transcription was occurring, suggesting an internal promoter within the operon. The nisA transcript was significantly more stable than nisI, further substantiating this. Reverse transcriptase PCR analysis revealed that the transcription initiated just upstream from nisI. Fusing this region to a lacZ gene in a promoter probe vector demonstrated that a promoter was present. The transcription start site (TSS) of the nisI promoter was mapped at bp 123 upstream of the nisI translation start codon. Ordered 5' deletions revealed that transcription activation depended on sequences located up to bp -234 from the TSS. The presence of poly(A) tracts and computerized predictions for this region suggested that a high degree of curvature may be required for transcription initiation. The existence of this nisI promoter is likely an evolutionary adaptation of the nisin gene cluster to enable its successful establishment in other cells following horizontal transfer.
Collapse
Affiliation(s)
- Haiping Li
- Department of Food Science and Nutrition and Center for Microbial and Plant Genomics, University of Minnesota, Cargill Building for Microbial and Plant Genomics, 1500 Gortner Ave, St. Paul, MN 55108, USA
| | | |
Collapse
|
18
|
Kozobay-Avraham L, Hosid S, Bolshoy A. Involvement of DNA curvature in intergenic regions of prokaryotes. Nucleic Acids Res 2006; 34:2316-27. [PMID: 16679450 PMCID: PMC1458280 DOI: 10.1093/nar/gkl230] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
It is known that DNA curvature plays a certain role in gene regulation. The distribution of curved DNA in promoter regions is evolutionarily preserved, and it is mainly determined by temperature of habitat. However, very little is known on the distribution of DNA curvature in termination sites. Our main objective was to comprehensively analyze distribution of curved sequences upstream and downstream to the coding genes in prokaryotic genomes. We applied CURVATURE software to 170 complete prokaryotic genomes in a search for possible typical distribution of DNA curvature around starts and ends of genes. Performing cluster analyses and other statistical tests, we obtained novel results regarding various factors influencing curvature distribution in intergenic regions, such as growth temperature, A+T composition and genome size. We also analyzed intergenic regions between converging genes in 15 selected genomes. The results show that six genomes presented peaks of curvature excess larger than 3 SDs. Insufficient statistics did not allow us to draw further conclusion. Our hypothesis is that DNA curvature could affect transcription termination in many prokaryotes either directly, through contacts with RNA polymerase, or indirectly, via contacts with some regulatory proteins.
Collapse
Affiliation(s)
| | | | - Alexander Bolshoy
- To whom correspondence should be addressed. Tel./Fax: +972 4 8240382; Email.
| |
Collapse
|
19
|
Flickinger RA. Transcriptional frequency and cell determination. J Theor Biol 2005; 232:151-6. [PMID: 15530486 DOI: 10.1016/j.jtbi.2004.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 05/17/2004] [Accepted: 05/19/2004] [Indexed: 01/19/2023]
Abstract
The relative base composition of DNA regulatory sequences of certain genes of undetermined multipotent progenitor cells may account for the frequency of transcription of these genes in cell determination. The sequences of these regulatory regions of cell determination genes that are more AT-rich would create the potential for transcription at a higher frequency due to their lower melting temperature, as well as propensity to bend. An increase of one or more of the high mobility group (HMG) chromatin proteins would preferentially bind the more AT-rich regulatory sequences, thereby increasing the rate of transcription. The amount of unphosphorylated H1 histone reacting with these same regulatory sites may decrease transcription frequency. The level of cell growth, i.e. total protein synthesis of a cell, is correlated positively with the synthesis of HMG proteins. H1 histone synthesis is linked to DNA replication. Unbalanced growth would alter the amounts of HMG proteins and H1 histone, thus changing transcriptional frequency. The greater the enrichment of AT sequences in the regulatory regions of the cell determination genes, the greater may be the extent of evolutionary conservation. Higher frequency of transcription of the cell determination genes with the more AT-rich regulatory sequences could account for the earlier expression of the more conserved cell determination genes during embryonic development. Preferential binding of H1 histone to the more AT-rich regulatory sequences would subsequently restrict their transcription before that of less conserved cell determination genes.
Collapse
Affiliation(s)
- R A Flickinger
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
20
|
Susanna KA, van der Werff AF, den Hengst CD, Calles B, Salas M, Venema G, Hamoen LW, Kuipers OP. Mechanism of transcription activation at the comG promoter by the competence transcription factor ComK of Bacillus subtilis. J Bacteriol 2004; 186:1120-8. [PMID: 14762007 PMCID: PMC344208 DOI: 10.1128/jb.186.4.1120-1128.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of genetic competence in Bacillus subtilis is regulated by a complex signal transduction cascade, which results in the synthesis of the competence transcription factor, encoded by comK. ComK is required for the transcription of the late competence genes that encode the DNA binding and uptake machinery and of genes required for homologous recombination. In vivo and in vitro experiments have shown that ComK is responsible for transcription activation at the comG promoter. In this study, we investigated the mechanism of this transcription activation. The intrinsic binding characteristics of RNA polymerase with and without ComK at the comG promoter were determined, demonstrating that ComK stabilizes the binding of RNA polymerase to the comG promoter. This stabilization probably occurs through interactions with the upstream DNA, since a deletion of the upstream DNA resulted in an almost complete abolishment of stabilization of RNA polymerase binding. Furthermore, a strong requirement for the presence of an extra AT box in addition to the common ComK-binding site was shown. In vitro transcription with B. subtilis RNA polymerase reconstituted with wild-type alpha-subunits and with C-terminal deletion mutants of the alpha-subunits was performed, demonstrating that these deletions do not abolish transcription activation by ComK. This indicates that ComK is not a type I activator. We also show that ComK is not required for open complex formation. A possible mechanism for transcription activation is proposed, implying that the major stimulatory effect of ComK is on binding of RNA polymerase.
Collapse
Affiliation(s)
- K A Susanna
- Department of Genetics, University of Groningen, NL-9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
DNA sequences containing short adenine tracts are intrinsically curved and play a role in transcriptional regulation. Despite many high-resolution NMR and x-ray studies, the origins of curvature remain disputed. Long-range restraints provided by 85 residual dipolar couplings were measured for a DNA decamer containing an adenine (A)(4)-tract and used to refine the structure. The overall bend in the molecule is a result of in-phase negative roll in the A-tract and positive roll at its 5' junction, as well as positive and negative tilt inside the A-tract and near its junctions. The bend magnitude and direction obtained from NMR structures is 9.0 degrees into the minor groove in a coordinate frame located at the third AT base pair. We evaluated long-range and wedge models for DNA curvature and concluded that our data for A-tract curvature are best explained by a "delocalized bend" model. The global bend magnitude and direction of the NMR structure are in excellent agreement with the junction model parameters used to rationalize gel electrophoretic data and with preliminary results of a cyclization kinetics assay from our laboratory.
Collapse
Affiliation(s)
- Andrej Barbic
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | | | | |
Collapse
|
22
|
Tchernaenko V, Radlinska M, Drabik C, Bujnicki J, Halvorson HR, Lutter LC. Topological measurement of an A-tract bend angle: comparison of the bent and straightened states. J Mol Biol 2003; 326:737-49. [PMID: 12581636 DOI: 10.1016/s0022-2836(02)01468-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is well established that an A-tract imparts curvature to the DNA double helix. Constructs of such A-tracts have been used as bend standards in a large number of both structural and functional studies, and A-tracts can confer significant activation in transcription. An accurate value for the bend angle induced by an A-tract is centrally important to all such studies, but the estimates reported for the bend angle of an A-tract differ by greater than threefold. To address this problem, we have used the rotational variant method to measure the angle of DNA curvature conferred by a tract of six adenine bases (A6 tract). The original version of the method measured a protein-induced bend angle independent of external standards. It compared the effect of bent and straight forms of the sequence on the topology of a DNA plasmid in which the sequence is cloned as a series of tandem repeats. To adapt the approach to the measurement of an intrinsic bend, high temperature was used to generate the straightened reference state, with the required topological relaxation being performed by a hyperthermophile topoisomerase. Appropriate plasmids containing tandem repeats of A-tracts were constructed and topologically analyzed in this manner. The bend value measured at 4 degrees C was 26(+/-2), and decreased linearly to 17(+/-2) at 37 degrees C. The relationship to other estimates and the application of these values are discussed.
Collapse
Affiliation(s)
- Vladimir Tchernaenko
- Molecular Biology Research Program, Henry Ford Hospital, One Ford Place 5D, Detroit, MI 48202-3450, USA
| | | | | | | | | | | |
Collapse
|
23
|
Cashel M, Hsu LM, Hernandez VJ. Changes in conserved region 3 of Escherichia coli sigma 70 reduce abortive transcription and enhance promoter escape. J Biol Chem 2003; 278:5539-47. [PMID: 12477716 DOI: 10.1074/jbc.m211430200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations within the Escherichia coli rpoD gene encoding amino acid substitutions in conserved region 3 of the sigma(70) subunit of E. coli RNA polymerase restore normal stress responsiveness to strains devoid of the stress alarmone, guanosine-3',5'-(bis)pyrophosphate (ppGpp). The presence of a mutant protein, either sigma(70)(P504L) or sigma(70)(S506F), suppresses the physiological defects in strains devoid of ppGpp. In vitro, when reconstituted into RNA polymerase holoenzyme, these sigma mutants confer unique transcriptional properties, namely they reduce the probabilities of forming abortive RNAs. Here we investigated the behavior of these mutant enzymes during transcription of the highly abortive cellular promoter, gal P2. No differences between mutant and wild-type enzymes were observed prior to and including open complex formation. Remarkably, the mutant enzymes produced drastically reduced levels of gal P2 abortive RNAs and increased production of full-length gal P2 RNAs relative to the wild-type enzyme, leading to greatly reduced ratios of abortive to productive RNAs. These results are attributed mainly to a decreased formation of unproductive initial transcribing complexes with the mutant polymerases and increased rates of promoter escape. Altered transcription properties of these mutant polymerases arise from an alternative structure of the sigma(70) region 3.2 segment that permits efficient positioning of the nascent RNA into the RNA exit channel displacing sigma and facilitating sigma release.
Collapse
Affiliation(s)
- Michael Cashel
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
24
|
Hardwidge PR, Zimmerman JM, Maher LJ. Charge neutralization and DNA bending by the Escherichia coli catabolite activator protein. Nucleic Acids Res 2002; 30:1879-85. [PMID: 11972323 PMCID: PMC113849 DOI: 10.1093/nar/30.9.1879] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We are interested in the role of asymmetric phosphate neutralization in DNA bending induced by proteins. We describe an experimental estimate of the actual electrostatic contribution of asymmetric phosphate neutralization to the bending of DNA by the Escherichia coli catabolite activator protein (CAP), a prototypical DNA-bending protein. Following assignment of putative electrostatic interactions between CAP and DNA phosphates based on X-ray crystal structures, appropriate phosphates in the CAP half-site DNA were chemically neutralized by methylphosphonate substitution. DNA shape was then evaluated using a semi-synthetic DNA electrophoretic phasing assay. Our results confirm that the unmodified CAP DNA half-site sequence is intrinsically curved by 26 degrees in the direction enhanced in the complex with protein. In the absence of protein, neutralization of five appropriate phosphates increases DNA curvature to 32 degrees (approximately 23% increase), in the predicted direction. Shifting the placement of the neutralized phosphates changes the DNA shape, suggesting that sequence-directed DNA curvature can be modified by the asymmetry of phosphate neutralization. We suggest that asymmetric phosphate neutralization contributes favorably to DNA bending by CAP, but cannot account for the full DNA deformation.
Collapse
Affiliation(s)
- Philip R Hardwidge
- Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
25
|
Akakura R, Winans SC. Constitutive mutations of the OccR regulatory protein affect DNA bending in response to metabolites released from plant tumors. J Biol Chem 2002; 277:5866-74. [PMID: 11717314 DOI: 10.1074/jbc.m110555200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OccR is a LysR-type transcriptional regulator of Agrobacterium tumefaciens that positively regulates the octopine catabolism operon of the Ti plasmid and is also an autorepressor. Positive control of the occ genes occurs in response to octopine, a nutrient released from crown gall tumors. OccR binds to a site upstream of the occQ promoter in the presence and absence of octopine. Octopine causes prebound OccR to undergo a conformational change at the DNA binding site that causes changes in footprint length and DNA bending. To determine the roles of these conformational changes in transcriptional activation, we isolated 22 OccR mutants that were able to activate the occQ promoter in the absence of octopine. Thirteen of these mutants contained single amino acid substitutions, and nine contained two base pair changes resulting in two amino acid substitutions, which in most cases acted synergistically. These mutations spanned the entire length of the protein. Most of these mutant proteins in the absence of octopine displayed DNA binding and bending properties characteristic of transcriptionally active OccR-octopine complexes.
Collapse
Affiliation(s)
- Reiko Akakura
- Department of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
26
|
Lutter LC, Tchernaenko V, Radlinska M, Drabik CE, Bujnicki J, Halvorson HR. Measurement of DNA Bend Angles Using DNA Topology. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/978-94-015-9930-6_36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
|
27
|
Abstract
The relative stiffness of naked DNA is evident from measured values of longitudinal persistence length (approximately 150 bp) and torsional persistence length (approximately 180 bp). These parameters predict that certain arrangements of eukaryotic transcription activator proteins in gene promoters should be much more effective than others in fostering protein-protein interactions with the basal RNA polymerase II transcription apparatus. Thus, if such interactions require some kind of DNA looping, DNA loop energies should depend sensitively on helical phasing of protein binding sites, loop size, and intrinsic DNA curvature within the loop. Using families of artificial transcription templates where these parameters were varied, we were surprised to find that the degree of transcription activation by arrays of Gal4-VP1 transcription activators in HeLa cell nuclear extract was sensitive only to the linear distance separating a basal promoter from an array of bound activators on DNA templates. We now examine the hypothesis that this unexpected result is due to factors in the extract that act to enhance apparent DNA flexibility. We demonstrate that HeLa cell nuclear extract is rich in a heat-resistant activity that dramatically enhances apparent DNA longitudinal and torsional flexibility. Recombinant mammalian high-mobility group 2 (HMG-2) protein can substitute for this activity. We propose that the abundance of HMG proteins in eukaryotic nuclei provides an environment in which DNA is made sufficiently flexible to remove many constraints on protein binding site arrangements that would otherwise limit efficient transcription activation to certain promoter geometries.
Collapse
Affiliation(s)
- E D Ross
- Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
28
|
Abstract
The cyclic AMP receptor protein (CRP) of Escherichia coli is a dimer made up of identical subunits. Each CRP subunit contains a cyclic nucleotide binding pocket and the CRP dimer exhibits negative cooperativity in binding cAMP. In solutions containing cAMP, CRP undergoes sequential conformation changes from the inactive apo-form through the active CRP:(cAMP)(1) complex to the less active CRP:(cAMP)(2) complex depending on the cAMP concentration. Apo-CRP binds DNA with low affinity and no apparent sequence specificity. The CRP:(cAMP)(1) complex exhibits high affinity, sequence-specific DNA binding and interacts with RNA polymerase, whether free in solution or complexed with DNA. The results of genetic, biochemical and biophysical studies have helped to uncover many of the details of cAMP-mediated allosteric control over CRP conformation and activity as a transcription factor. These studies indicate that cAMP binding produces only small, but significant, changes in CRP structure; changes that include subunit realignment and concerted motion of the secondary structure elements within the C-terminal DNA binding domain of each subunit. These adjustments promote CRP surface-patch interaction with RNA polymerase and protrusion of the F-helix to promote CRP site-specific interaction with DNA. Interactions between CRP and RNA polymerase at CRP-dependent promoters produce active ternary transcription complexes.
Collapse
Affiliation(s)
- J G Harman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
29
|
Brunetti A, Manfioletti G, Chiefari E, Goldfine ID, Foti D. Transcriptional regulation of human insulin receptor gene by the high-mobility group protein HMGI(Y). FASEB J 2001; 15:492-500. [PMID: 11156965 DOI: 10.1096/fj.00-0190com] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have previously identified two closely related nuclear binding proteins that specifically interact with two unique functional AT-rich sequences of the 5' regulatory region of the human insulin receptor gene. Expression of these nuclear binding proteins increases during myocyte and adipocyte differentiation, and in other tissues appears to correlate with insulin receptor content. We have hypothesized, therefore, that insulin receptor expression in the insulin target tissues is regulated at least in part by these nuclear proteins. Here we show data on purification and biochemical characterization of these DNA binding proteins. Using a conventional chromatographic purification procedure combined with electrophoresis mobility shift assay and immunoblot analyses, a unique approximately 15 kDa protein, either identical to or highly related to the architectural transcription factor HMGI(Y), has now been identified, suggesting an essential role for HMGI(Y) in regulating insulin receptor gene transcription. Direct evidence of HMGI(Y) insulin receptor promoter interactions is provided by functional analysis with the CAT reporter gene and by hormone binding studies in cells expressing HMGI(Y) antisense RNA. In these experiments, antisense HMGI(Y) specifically inhibits insulin receptor promoter function and insulin receptor protein expression, indicating that HMGI(Y) is required for proper transcription of insulin receptor gene. Moreover, our data consistently support the hypothesis that a putative defect in this nuclear binding protein may cause insulin receptor dysfunction with subsequent impairment of insulin signaling and action.
Collapse
Affiliation(s)
- A Brunetti
- Dipartimento di Medicina Sperimentale e Clinica G. Salvatore, Cattedra di Endocrinologia, Università degli Studi di Catanzaro Magna Graecia, Catanzaro, Italy
| | | | | | | | | |
Collapse
|
30
|
Abstract
DNA structure is well known to be sensitive to hydration and ionic strength. Recent theoretical predictions and experimental observations have raised the idea of the intrusion of monovalent cations into the minor groove spine of hydration in B-form DNA. To investigate this further, extensions and further analysis of molecular dynamics (MD) simulations on d(CGCCGAATTCGCG), d(ATAGGCAAAAAATAGGCAAAAATGG) and d(G(5)-(GA(4)T(4)C)(2)-C(5)), including counterions and water, have been performed. To examine the effective of minor groove ions on structure, we analyzed the MD snapshots from a 15 ns trajectory on d(CGCGAATTCGCG) as two subsets: those exhibiting a minor groove water spine and those with groove-bound ions. The results indicate that Na(+) at the ApT step of the minor groove of d(CGCCGAATTCGCG) makes only small local changes in the DNA structure, and these changes are well within the thermal fluctuations calculated from the MD. To examine the effect of ions on the differential stability of a B-form helix, further analysis was performed on two longer oligonucleotides, which exhibit A-tract-induced axis bending localized around the CpG step in the major groove. Plots of axis bending and proximity of ions to the bending locus were generated as a function of time and revealed a strong linear correlation, supporting the idea that mobile cations play a key role in local helix deformations of DNA and indicating ion proximity just precedes the bending event. To address the issue of "what's in charge?" of DNA structure more generally, the relative free energy of A and B-form d(CGCGAATTCGCG) structures from MD simulations under various environmental circumstances were estimated using the free energy component method. The results indicate that the dominant effects on conformational stability come from the electrostatic free energy, but not exclusively from groove bound ions per se, but from a balance of competing factors in the electrostatic free energy, including phosphate repulsions internal to the DNA, the electrostatic component of hydration (i.e. solvent polarization), and electrostatic effects of the counterion atmosphere. In summary, free energy calculations indicate that the electrostatic component is dominant, MD shows temporal proximity of mobile counterions to be correlated with A-track-induced bending, and thus the mobile ion component of electrostatics is a significant contributor. However, the MD structure of the dodecamer d(CGCGAATTCGCG) is not highly sensitive to whether there is a sodium ion in the minor groove.
Collapse
Affiliation(s)
- K J McConnell
- Chemistry Department and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459, USA
| | | |
Collapse
|
31
|
Sommer N, Salniene V, Gineikiene E, Nivinskas R, Rüger W. T4 early promoter strength probed in vivo with unribosylated and ADP-ribosylated Escherichia coli RNA polymerase: a mutation analysis. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2643-2653. [PMID: 11021939 DOI: 10.1099/00221287-146-10-2643] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The consensus sequence of T4 early promoters differs in length, sequence and degree of conservation from that of Escherichia coli sigma(70) promoters. The enzyme interacting with these promoters, and transcribing the T4 genome, is native host RNA polymerase, which is increasingly modified by the phage-encoded ADP-ribosyltransferase, Alt. T4 early transcription is a very active process, possibly out-competing host transcription. The much stronger T4 promoters enhance viral transcription by a factor of at least two and the Alt-catalysed ADP-ribosylation of the host enzyme triggers an additional enhancement, again by a factor of about two. To address the question of which promoter elements contribute to the increasing transcriptional activity directed towards phage genes, the very strong E. coli promoter, Ptac, was sequentially mutated towards the sequence of the T4 early promoter consensus. Second, mutations were introduced into the highly conserved regions of the T4 early promoter, P8.1. The co-occurrence of the promoter-encoding plasmid pKWIII and vector pTKRI, which expresses Alt in E. coli, constitutes a test system that allows comparison of the transcriptional activities of phage and bacterial promoters, in the presence of native, or alternatively ADP-ribosylated RNA polymerase. Results reveal that T4 early promoters exhibit a bipartite structure, capable of strong interaction with both types of RNA polymerase. The -10, -16, -42 and -52 regions are important for transcript initiation with the native polymerase. To facilitate acceleration of transcription, the ADP-ribosylated enzyme requires not only the integrity of the -10, -16 and -35 regions, but also that of position -33, and even more importantly, maintenance of the upstream promoter element at position -42. The latter positions introduced into the E. coli Ptac promoter render this mutant promoter responsive to Alt-ADP-ribosylated RNA polymerase, like T4 early promoters.
Collapse
Affiliation(s)
- Nicole Sommer
- Arbeitsgruppe Molekulare Genetik, Fakultät für Biologie, Ruhr-Universität Bochum, D-44780 Bochum, Germany1
| | - Vida Salniene
- Institute of Biochemistry, Laboratory of Gene Engineering, Vilnius 2600, Lithuania2
| | - Egle Gineikiene
- Institute of Biochemistry, Laboratory of Gene Engineering, Vilnius 2600, Lithuania2
| | - Rimas Nivinskas
- Institute of Biochemistry, Laboratory of Gene Engineering, Vilnius 2600, Lithuania2
| | - Wolfgang Rüger
- Arbeitsgruppe Molekulare Genetik, Fakultät für Biologie, Ruhr-Universität Bochum, D-44780 Bochum, Germany1
| |
Collapse
|
32
|
Koebmann BJ, Nilsson D, Kuipers OP, Jensen PR. The membrane-bound H(+)-ATPase complex is essential for growth of Lactococcus lactis. J Bacteriol 2000; 182:4738-43. [PMID: 10940012 PMCID: PMC111348 DOI: 10.1128/jb.182.17.4738-4743.2000] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eight genes which encode the (F(1)F(o)) H(+)-ATPase in Lactococcus lactis subsp. cremoris MG1363 were cloned and sequenced. The genes were organized in an operon with the gene order atpEBFHAGDC; i.e., the order of atpE and atpB is reversed with respect to the more typical bacterial organization. The deduced amino acid sequences of the corresponding H(+)-ATPase subunits showed significant homology with the subunits from other organisms. Results of Northern blot analysis showed a transcript at approximately 7 kb, which corresponds to the size of the atp operon. The transcription initiation site was mapped by primer extension and coincided with a standard promoter sequence. In order to analyze the importance of the H(+)-ATPase for L. lactis physiology, a mutant strain was constructed in which the original atp promoter on the chromosome was replaced with an inducible nisin promoter. When grown on GM17 plates the resulting strain was completely dependent on the presence of nisin for growth. These data demonstrate that the H(+)-ATPase is essential for growth of L. lactis under these conditions.
Collapse
Affiliation(s)
- B J Koebmann
- Department of Microbiology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | |
Collapse
|
33
|
Strahs D, Schlick T. A-Tract bending: insights into experimental structures by computational models. J Mol Biol 2000; 301:643-63. [PMID: 10966775 DOI: 10.1006/jmbi.2000.3863] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While solution structures of adenine tract (A-tract) oligomers have indicated a unique bend direction equivalent to negative global roll (commonly termed "minor-groove bending"), crystallographic data have not unambiguously characterized the bend direction; nevertheless, many features are shared by all A-tract crystal and solution structures (e.g. propeller twisting, narrow minor grooves, and localized water spines). To examine the origin of bending and to relate findings to the crystallographic and solution data, we analyze molecular dynamics trajectories of two solvated A-tract dodecamers: 1D89, d(CGCGA(6)CG), and 1D98, d(CGCA(6)GCG), using a new general global bending framework for analyzing bent DNA and DNA/protein complexes. It is significant that the crystallographically-based initial structures are converted from dissimilar to similar bend directions equivalent to negative global roll, with the average helical-axis bend ranging from 10.5 degrees to 14.1 degrees. The largest bend occurs as positive roll of 12 degrees on the 5' side of the A-tracts (supporting a junction model) and is reinforced by gradual curvature at each A-tract base-pair (bp) step (supporting a wedge model). The precise magnitude of the bend is subtly sequence dependent (consistent with a curved general sequence model). The conversion to negative global roll only requires small local changes at each bp, accumulated over flexible moieties both outside and inside the A-tract. In contrast, the control sequence 1BNA, d(CGCGA(2)TTCGCG), bends marginally (only 6.9 degrees ) with no preferred direction. The molecular features that stabilize the bend direction in the A-tract dodecamers include propeller twisting of AT base-pairs, puckering differences between A and T deoxyriboses, a narrow minor groove, and a stable water spine (that extends slightly beyond the A-tract, with lifetimes approaching 0.2 ns). The sugar conformations, in particular, are proposed as important factors that support bent DNA. It is significant that all these curvature-stabilizing features are also observed in the crystallographic structures, but yield overall different bending paths, largely due to the effects of sequences outside the A-tract. These results merge structural details reported for A-tract structures by experiment and theory and lead to structural and dynamic insights into sequence-dependent DNA flexibility, as highlighted by the effect of an A-tract variant of a TATA-box element on bending and flexibility required for TBP binding.
Collapse
Affiliation(s)
- D Strahs
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University and Howard Hughes Medical Institute, 251 Mercer Street, New York, NY 10012, USA
| | | |
Collapse
|
34
|
Gourse RL, Ross W, Gaal T. UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Mol Microbiol 2000; 37:687-95. [PMID: 10972792 DOI: 10.1046/j.1365-2958.2000.01972.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In recent years, it has become clear that promoter recognition by bacterial RNA polymerase involves interactions not only between core promoter elements and the sigma subunit, but also between a DNA element upstream of the core promoter and the alpha subunit. DNA binding by alpha can increase transcription dramatically. Here we review the current state of our understanding of the alpha interaction with DNA during basal transcription initiation (i.e. in the absence of proteins other than RNA polymerase) and activated transcription initiation (i.e. when stimulated by transcription factors).
Collapse
Affiliation(s)
- R L Gourse
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
35
|
Abstract
Activators of eukaryotic transcription often function over a range of distances. It is commonly hypothesized that the intervening DNA between the transcription start site and the activator binding sites forms a loop in order to allow the activators to interact with the basal transcription apparatus, either directly or through mediators. If this hypothesis is correct, activation should be sensitive to the presence of intrinsic bends in the intervening DNA. Similarly, the precise helical phasing of such DNA bends and of the activator binding sites relative to the basal promoter should affect the degree of transcription activation. To explore these considerations, we designed transcription templates based on the adenovirus E4 promoter supplemented with upstream Gal4 activator binding sites. Surprisingly, we found that neither insertion of intrinsically curved DNA sequences between the activator binding sites and the basal promoter, nor alteration of the relative helical alignment of the activator binding sites and the basal promoter significantly affected in vitro transcription activation in HeLa cell nuclear extract. In all cases, the degree of transcription activation was a simple inverse function of the length of intervening DNA. Possible implications of these unexpected results are discussed.
Collapse
Affiliation(s)
- E D Ross
- Department of Biochemistry and Molecular Biology, Mayo Foundation, 200 First St, SW, Rochester, MN 55902, USA
| | | |
Collapse
|
36
|
Goodman SD, Kay O. Replacement of integration host factor protein-induced DNA bending by flexible regions of DNA. J Biol Chem 1999; 274:37004-11. [PMID: 10601256 DOI: 10.1074/jbc.274.52.37004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli integration host factor (IHF) protein is required for site-specific recombination of bacteriophage lambda DNA. Previously, we had shown that alternative modules of static DNA curvature could partially replace IHF in recombination. Now we use regions of single-stranded DNA as a flexible tether to address whether the function of IHF in recombination is simply to reduce persistence length. Although we find that these modules clearly enhance recombination in the absence of IHF, they are not perfect replacements. In addition, evidence is presented that the efficacy of a flexibility swap is specific to a particular IHF site. This may indicate that additional functions beyond simple deformation of DNA are required of IHF. During the course of these experiments we discovered that these flexible sequences are still specific sites for IHF binding and function.
Collapse
Affiliation(s)
- S D Goodman
- Department of Basic Sciences, University of Southern California School of Dentistry, Los Angeles, California 90089-0641, USA.
| | | |
Collapse
|
37
|
Gourse RL, Gaal T, Aiyar SE, Barker MM, Estrem ST, Hirvonen CA, Ross W. Strength and regulation without transcription factors: lessons from bacterial rRNA promoters. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:131-9. [PMID: 10384277 DOI: 10.1101/sqb.1998.63.131] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- R L Gourse
- Department of Bacteriology, University of Wisconsin, Madison 53706, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Tagami H, Aiba H. An inactive open complex mediated by an UP element at Escherichia coli promoters. Proc Natl Acad Sci U S A 1999; 96:7202-7. [PMID: 10377392 PMCID: PMC22052 DOI: 10.1073/pnas.96.13.7202] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A specific interaction between the alpha subunit of RNA polymerase and an A+T-rich upstream sequence (UP element) stimulates transcription at some promoters in Escherichia coli. We found that RNA polymerase formed a heparin-resistant nonproductive initiation complex at the malT promoter which has an A+T-rich upstream sequence that begins 9 bp upstream of the -35 region. Substitution of other sequences for the A+T-rich sequence eliminated both the formation of heparin-resistant complexes and alpha binding to the malT promoter. A 5-bp deletion between the A+T-rich sequence and the -35 region increased promoter activity. The UP element derived from the rrnB P1 promoter stimulated transcription of the malT core promoter when placed 4 bp upstream from the malT -35 region, but insertion of an additional 4 bp between the rrnB P1 UP element and the -35 element eliminated transcription activity without eliminating heparin-resistant complex formation. Similar UP element effects were observed in hybrids with the lac core promoter, even though the region around the transcription start site was melted in both productive and nonproductive complexes. We conclude that UP elements can mediate the formation of both productive and nonproductive open complexes, depending on their location with respect to the core promoter.
Collapse
Affiliation(s)
- H Tagami
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | | |
Collapse
|
39
|
Abstract
The real mechanisms of several biological processes involving DNA are not yet understood. We discuss here some aspects of the initiation of transcription, in particular the formation of the open complex and the activation mechanism associated to enhancer binding proteins. Transcription activation seems to be governed by underlying dynamical mechanisms related to several distortions of the double chain structure: a dynamical approach on a mesoscopic description level could then allow a deeper understanding of this complex process. Starting from the Peyrard Bishop (PB) model, that considers only the hydrogen bond stretching of each base pair, we describe here an extended DNA model, proposed in [1], that allows a rather good representation of the double helix geometry and of its structural features by the introduction of angular variables related to the twist angle. Using a generalized multiple scale expansion for the case of vectorial lattices derived elsewhere [2], we derive analytically small amplitude approximate solutions of the model which are movable and spatially localized: we present here the results of this calculation and show how the special shape of the solutions is in good agreement with what can be expected for coupled angular radial distortions in the real molecule.
Collapse
Affiliation(s)
- M Barbi
- Dipartimento di Fisica, Università degli Studi di Firenze, Largo E. Fermi, 2 - 50125 Firenze, Italy
| | | | | | | |
Collapse
|
40
|
Muiznieks I, Rostoks N, Schmitt R. Efficient control of raf gene expression by CAP and two Raf repressors that bend DNA in opposite directions. Biol Chem 1999; 380:19-29. [PMID: 10064133 DOI: 10.1515/bc.1999.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The plasmid-borne raf operon of Escherichia coli encodes proteins involved in the uptake and utilisation of the trisaccharide raffinose. The operon is subject to dual regulation; to negative control by the binding of RafR repressor to twin operators, O1 and O2, and to positive control by the cAMP-binding protein, CAP. We have identified the CAP binding site (CBS) as a 22 bp palindromic sequence with incomplete dyad symmetry by deletion analysis, DNasel footprinting and electrophoretic mobility shift assays (EMSA) of CAP-DNA complexes. The CBS is centred 60.5 bp upstream of the transcription start point and partially overlaps O1. In vivo, CAP increases rafA (alpha-galactosidase) gene expression up to 50-fold. The 28 bp spacing between the centres of CBS and the - 35 box is essential, since insertions of 4, 8, 12 or 16 bp completely eliminated rafA gene expression. In vitro binding studies revealed that the CBS, O1 and O2 sites, can be simultaneously occupied by their cognate proteins. However, no cooperativity between binding of CAP and RafR was detected. EMSA with circularly permuted DNA fragments demonstrated that CAP and RafR proteins bend raf promoter (rafP) DNA by 75 degrees +/- 5 degrees and 95 degrees +/- 5 degrees, respectively, in opposite directions. Among sugar catabolic operons, the compact arrangement of three protein-binding sites, a CBS and two operators bounding the - 35 promoter box, is unique and provides a sensitive and highly efficient device for transcriptional control.
Collapse
Affiliation(s)
- I Muiznieks
- Faculty of Biology, University of Latvia, Riga, Republic of Latvia
| | | | | |
Collapse
|
41
|
Aiyar SE, Gourse RL, Ross W. Upstream A-tracts increase bacterial promoter activity through interactions with the RNA polymerase alpha subunit. Proc Natl Acad Sci U S A 1998; 95:14652-7. [PMID: 9843944 PMCID: PMC24504 DOI: 10.1073/pnas.95.25.14652] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upstream A-tracts stimulate transcription from a variety of bacterial promoters, and this has been widely attributed to direct effects of the intrinsic curvature of A-tract-containing DNA. In this work we report experiments that suggest a different mechanism for the effects of upstream A-tracts on transcription. The similarity of A-tract-containing sequences to the adenine- and thymine-rich upstream recognition elements (UP elements) found in some bacterial promoters suggested that A-tracts might increase promoter activity by interacting with the alpha subunit of RNA polymerase (RNAP). We found that an A-tract-containing sequence placed upstream of the Escherichia coli lac or rrnB P1 promoters stimulated transcription both in vivo and in vitro, and that this stimulation required the C-terminal (DNA-binding) domain of the RNAP alpha subunit. The A-tract sequence was protected by wild-type RNAP but not by alpha-mutant RNAPs in footprints. The effect of the A-tracts on transcription was not as great as that of the most active UP elements, consistent with the degree of similarity of the A-tract sequence to the UP element consensus. A-tracts functioned best when positioned close to the -35 hexamer rather than one helical turn farther upstream, similar to the positioning optimal for UP element function. We conclude that A-tracts function as UP elements, stimulating transcription by providing binding site(s) for the RNAP alphaCTD, and we suggest that these interactions could contribute to the previously described wrapping of promoter DNA around RNAP.
Collapse
Affiliation(s)
- S E Aiyar
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
42
|
Ross W, Aiyar SE, Salomon J, Gourse RL. Escherichia coli promoters with UP elements of different strengths: modular structure of bacterial promoters. J Bacteriol 1998; 180:5375-83. [PMID: 9765569 PMCID: PMC107586 DOI: 10.1128/jb.180.20.5375-5383.1998] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1998] [Accepted: 08/17/1998] [Indexed: 11/20/2022] Open
Abstract
The alpha subunit of Escherichia coli RNA polymerase (RNAP) participates in promoter recognition through specific interactions with UP element DNA, a region upstream of the recognition hexamers for the sigma subunit (the -10 and -35 hexamers). UP elements have been described in only a small number of promoters, including the rRNA promoter rrnB P1, where the sequence has a very large (30- to 70-fold) effect on promoter activity. Here, we analyzed the effects of upstream sequences from several additional E. coli promoters (rrnD P1, rrnB P2, lambda pR, lac, merT, and RNA II). The relative effects of different upstream sequences were compared in the context of their own core promoters or as hybrids to the lac core promoter. Different upstream sequences had different effects, increasing transcription from 1.5- to approximately 90-fold, and several had the properties of UP elements: they increased transcription in vitro in the absence of accessory protein factors, and transcription stimulation required the C-terminal domain of the RNAP alpha subunit. The effects of the upstream sequences correlated generally with their degree of similarity to an UP element consensus sequence derived previously. Protection of upstream sequences by RNAP in footprinting experiments occurred in all cases and was thus not a reliable indicator of UP element strength. These data support a modular view of bacterial promoters in which activity reflects the composite effects of RNAP interactions with appropriately spaced recognition elements (-10, -35, and UP elements), each of which contributes to activity depending on its similarity to the consensus.
Collapse
Affiliation(s)
- W Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
43
|
Engelhorn M, Geiselmann J. Maximal transcriptional activation by the IHF protein of Escherichia coli depends on optimal DNA bending by the activator. Mol Microbiol 1998; 30:431-41. [PMID: 9791186 DOI: 10.1046/j.1365-2958.1998.01078.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional activation in prokaryotes can be mediated by at least two different mechanisms: direct contacts between the activator and RNA polymerase or modulation of the overall geometry of DNA. In the latter case, an activator protein that bends DNA favours contacts between the DNA upstream of the activator binding site and the back of RNA polymerase. The architectural protein integration host factor (IHF) of Escherichia coli bends DNA and activates transcription at several promoters. We have isolated mutants of IHF that maximize transcriptional activation by adjusting the bending angle of the DNA. The amino acid residues of IHF that adjust the bending angle are close to the DNA and probably make electrostatic interactions with the DNA. We show that transcriptional activation is maintained when the IHF binding site is moved further upstream or when its orientation is inverted, and we conclude from these data that direct interactions between IHF and RNA polymerase do not participate in activation. IHF acts merely by bending DNA; weaker bending leading to stronger activation. We propose that wild-type IHF induces too strong a DNA bend (180 degrees) for optimal interactions between DNA upstream of the IHF binding site and the back of RNA polymerase.
Collapse
Affiliation(s)
- M Engelhorn
- Department of Molecular Biology, University of Geneva, 30, Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
44
|
Young MA, Beveridge DL. Molecular dynamics simulations of an oligonucleotide duplex with adenine tracts phased by a full helix turn. J Mol Biol 1998; 281:675-87. [PMID: 9710539 DOI: 10.1006/jmbi.1998.1962] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A theoretical model of a DNA oligonucleotide duplex featuring A-tracts phased by a full helix turn is developed based on molecular dynamics computer simulation. The extent to which this model agrees with relevant experimental data on axis bending and the relationship of A-tracts to bending and other aspects of helix morphology is investigated. Specifically, a series of nanosecond-level molecular dynamics (MD) simulations have been carried out for the 25 bp duplex d(ATAGGCAAAAAATAGGCAAAAATGG) at various concentrations of saline solution. A 30 base-pair sequence composed of three 10 bp repeats of the BamHI recognition sequence ligated together, d(CGGGATCCCG. CGGGATCCCG.CGGGATCCCG), was simulated as a control. The MD was carried out using the AMBER 4.1 suite of programs, and utilized the Cornell et al. force-field with the electrostatic boundary conditions treated by the particle-mesh Ewald summation protocol. The MD results show that at a concentration of 60 mM KCl, 10 mM MgCl2 added salt plus minimal neutralizing cations, the MD model exhibits concerted axis bending to the extent of 15.5 degrees per A-tract. This compares favorably with the bending per turn of 17 to 21 degrees inferred from cyclization experiments. The MD model also exhibits a progressive 5' to 3' narrowing of the minor-groove region of A-tracts, a feature inferred from DNA footprinting experiments. Analysis of the dynamic structure of the MD models shows that the origin of the bending follows a junction-type bending model with an admixture of mixed sequence effects, with A-tracts relatively straight, as in oligonucleotide crystal structures of sequences containing A-tracts. The results are shown to be sensitive to environmental conditions: MD on d(ATAGGCAAAAAATAGGCAAAAATGG) in neutralizing Na+ buffer results in markedly reduced curvature, and the removal of Mg2+ measurably affects bending. Carrying out the simulations at experimental salt conditions appears to be essential to obtain an accurate account of the experimentally observed bending.
Collapse
Affiliation(s)
- M A Young
- Chemistry Department and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459, USA
| | | |
Collapse
|
45
|
Estrem ST, Gaal T, Ross W, Gourse RL. Identification of an UP element consensus sequence for bacterial promoters. Proc Natl Acad Sci U S A 1998; 95:9761-6. [PMID: 9707549 PMCID: PMC21410 DOI: 10.1073/pnas.95.17.9761] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/1998] [Indexed: 11/18/2022] Open
Abstract
The UP element, a component of bacterial promoters located upstream of the -35 hexamer, increases transcription by interacting with the RNA polymerase alpha-subunit. By using a modification of the SELEX procedure for identification of protein-binding sites, we selected in vitro and subsequently screened in vivo for sequences that greatly increased promoter activity when situated upstream of the Escherichia coli rrnB P1 core promoter. A set of 31 of these upstream sequences increased transcription from 136- to 326-fold in vivo, considerably more than the natural rrnB P1 UP element, and was used to derive a consensus sequence: -59 nnAAA(A/T)(A/T)T(A/T)TTTTnnAAAAnnn -38. The most active selected sequence contained the derived consensus, displayed all of the properties of an UP element, and the interaction of this sequence with the alpha C-terminal domain was similar to that of previously characterized UP elements. The identification of the UP element consensus should facilitate a detailed understanding of the alpha-DNA interaction. Based on the evolutionary conservation of the residues in alpha responsible for interaction with UP elements, we suggest that the UP element consensus sequence should be applicable throughout eubacteria, should generally facilitate promoter prediction, and may be of use for biotechnological applications.
Collapse
Affiliation(s)
- S T Estrem
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
46
|
Travers A, Muskhelishvili G. DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. J Mol Biol 1998; 279:1027-43. [PMID: 9642081 DOI: 10.1006/jmbi.1998.1834] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prokaryotic transcriptional activation often involves the formation of DNA microloops upstream of the polymerase binding site. There is substantial evidence that these microloops function to bring activator and polymerase into close spatial proximity. However additional functions are suggested by the ability of certain activators, of which FIS is the best characterised example, to facilitate polymerase binding, promoter opening and polymerase escape. We review here the evidence for the concept that the topology of the microloop formed by such activators is tightly coupled to the structural transitions in DNA mediated by RNA polymerase. In this process, which we term torsional transmission, a major function of the activator is to act as a local topological homeostat. We argue that the same mechanism may also be employed in site-specific DNA inversion.
Collapse
Affiliation(s)
- A Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, England
| | | |
Collapse
|
47
|
Abstract
Repression of the divergent nagE - B operons requires NagC binding to two operators which overlap the nagE and nagB promoters, resulting in formation of a DNA loop. Binding of the cAMP/CAP activator to its site, adjacent to the nagE operator, stabilizes the DNA loop in vitro. The DNA of the nagE-B intergenic region is intrinsically bent, with the bend centred on the CAP site. We show that displacement of the CAP site by 6 bp results in complete derepression of the two operons. This derepression is observed even in the absence of cAMP/CAP binding and despite the fact that the two NagC operators are still in phase, demonstrating that the inherently bent structure of the DNA loop is important for repression. Since no interaction between NagC and CAP has been detected, we propose that the role of CAP in the repression loop is architectural, stabilizing the intrinsic bend. The cAMP/CAP complex is necessary for activation of the nagE-B promoters. In this case protein-protein contacts between CAP and RNA polymerase are necessary for full activation, but at least a part of the activation is likely due to an effect of CAP binding altering DNA structure.
Collapse
Affiliation(s)
- J Plumbridge
- Institut de Biologie Physico-chimique (UPR9073), 13 rue P. et M. Curie, 75005 Paris, France.
| | | |
Collapse
|
48
|
Abstract
DNA bending has been implicated as an important regulatory mechanism in several processes involving protein-DNA interactions. Various methods for examining intrinsic and protein-induced DNA bending may lead to different conclusions. For the Fos and Jun transcription factors, this has resulted in controversy over whether these factors significantly bend DNA at all.
Collapse
Affiliation(s)
- G McGill
- Division of Pediatric Hematology/Oncology, Dana Farber Cancer Institute and Children's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
49
|
Abstract
Cyclin-dependent protein kinases (Cdks) are key regulatory proteins of the eukaryotic cell cycle. The product of the cdc2 gene, p34cdc2 (cdk1), is the catalytic subunit of a serine/ threonine protein kinase that is expressed in S phase and functions in the G2 to M phase transition. Previous studies indicate that the human cdc2 gene expression is dependent on cell growth, and is transcriptionally regulated in a complex manner involving multiple transcription factors binding to specific sites in the promoter. One possible mechanism by which these transcription factors regulate transcription is that by binding to their cognate sites they induce bends in the DNA helix, thereby allowing their interaction with the basal transcription machinery through protein-protein contacts. Such protein-induced DNA bending is also influenced by intrinsic bends in the regulatory region. Using both theoretical and experimental approaches, the study reports that the human cdc2 promoter has an intrinsic DNA bend with a broad locus of curvature.
Collapse
Affiliation(s)
- T M Nair
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City 66160, USA.
| |
Collapse
|
50
|
Abstract
We have calculated the curvature of 504 eukaryotic promoters predicted by the bent A-tract model of Bolshoy et al. (Proc. Natl. Acad. Sci. USA, 88(6), pp. 2312-16) and the bent non-A-tract models of Calladine et al. (J. Mol. Biol., 201, pp. 127-37) and Satchwell et al. (J. Mol. Biol., 191, pp. 659-75) and found in each case a correlation between TBP binding sites and DNA curvature. Characterizing the TBP binding sites revealed that in addition to the classical TATA box (TATAAA) five more elements occur significantly often in the promoters, nearly all of them being one point mutations of the classical TATA box element. Separate curvature calculations for promoters with canonical and non-canonical TATA boxes have shown that in both cases the strong curvature of the helix axes in the domain of the binding sites is maintained (classical TBP binding sites: + 64-135%, non-classical TBP binding sites: + 27-49%). These results support the proposition that beside DNA flexibility and DNA-protein interactions intrinsic curvature of DNA is one further important criterion for the recognition of different DNA elements by TBP.
Collapse
Affiliation(s)
- T Schätz
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany.
| | | |
Collapse
|