1
|
Svilenov HL, Menzen T, Richter K, Winter G. Modulated Scanning Fluorimetry Can Quickly Assess Thermal Protein Unfolding Reversibility in Microvolume Samples. Mol Pharm 2020; 17:2638-2647. [DOI: 10.1021/acs.molpharmaceut.0c00330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hristo L. Svilenov
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5, 81377 Munich, Germany
| | - Tim Menzen
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Klaus Richter
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Gerhard Winter
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5, 81377 Munich, Germany
| |
Collapse
|
2
|
Luo L, Lv J. Quantum protein folding. ADVANCES IN QUANTUM CHEMISTRY 2020. [DOI: 10.1016/bs.aiq.2020.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Quantum conformational transition in biological macromolecule. QUANTITATIVE BIOLOGY 2017. [DOI: 10.1007/s40484-016-0087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Mitsuya D, Tanaka SI, Matsumura H, Urano N, Takano K, Ogasahara K, Takehira M, Yutani K, Ishida M. Strategy for cold adaptation of the tryptophan synthase α subunit from the psychrophile Shewanella frigidimarina K14-2: crystal structure and physicochemical properties. J Biochem 2013; 155:73-82. [PMID: 24163283 DOI: 10.1093/jb/mvt098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To investigate the molecular basis of cold adaptation of enzymes, we determined the crystal structure of the tryptophan synthase α subunit (SfTSA) from the psychrophile Shewanella frigidimarina K14-2 by X-ray analysis at 2.6-Å resolution and also examined its physicochemical properties. SfTSA was found to have the following characteristics: (i) The stabilities against heat and denaturant of SfTSA were lower than those of an α subunit (EcTSA) from Escherichia coli. This lower equilibrium stability originated from both a faster unfolding rate and a slower refolding rate; (ii) the heat denaturation of SfTSA was completely reversible at pH 7.0 and the solubility of denatured SfTSA was higher than that of denatured EcTSA. The two-state transition of denaturation for SfTSA was highly cooperative, whereas the denaturation process of EcTSA was considerably more complex and (iii) the global structure of SfTSA was quite similar to those of α subunits from other species. Relative to those other proteins, SfTSA exhibited an increase in cavity volume and a decrease in the number of ion pairs. SfTSA also lacks a hydrogen bond near loop B, related to catalytic function. These characteristics of SfTSA might provide the conformational flexibility required for catalytic activity at low temperatures.
Collapse
Affiliation(s)
- Daisuke Mitsuya
- Department of Ocean Sciences, Graduate school of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato, Tokyo 108-8477; Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871; Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522; Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871; Department of Life Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako-gun, Hyogo 678-1297; and RIKEN SPring-8 Center, RIKEN Harima Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Nájera H, Dagdug L, Fernández-Velasco DA. Thermodynamic and kinetic characterization of the association of triosephosphate isomerase: the role of diffusion. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:985-94. [PMID: 17644053 DOI: 10.1016/j.bbapap.2007.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Revised: 05/26/2007] [Accepted: 06/13/2007] [Indexed: 12/12/2022]
Abstract
It is known that diffusion plays a central role in the folding of small monomeric proteins and in the rigid-body association of proteins, however, the role of diffusion in the association of the folding intermediates of oligomeric proteins has been scarcely explored. In this work, catalytic activity and fluorescence measurements were used to study the effect of viscosity in the unfolding and refolding of the homodimeric enzyme triosephosphate isomerase from Saccharamyces cerevisiae. Two transitions were found by equilibrium and kinetic experiments, suggesting a three-state model with a monomeric intermediate. Glycerol barely affects DeltaG(0)(fold) whereas DeltaG(0)(assoc) becomes more favourable in the presence of the cosolvent. From 0 to 60% (v/v) glycerol, the association rate constant showed a near unitary dependence on solvent viscosity. However, at higher glycerol concentrations deviations from Kramers theory were observed. The dissociation rate constant showed a viscosity effect much higher than one. This may be related to secondary effects such as short-range glycerol-induced repulsion between monomers. Nevertheless, after comparison under isostability conditions, a slope near one was also observed for the dissociation rate. These results strongly suggest that the bimolecular association producing the native dimer is limited by diffusional events of the polypeptide chains through the solvent.
Collapse
Affiliation(s)
- Hugo Nájera
- Area Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, México.
| | | | | |
Collapse
|
6
|
Iimura S, Umezaki T, Takeuchi M, Mizuguchi M, Yagi H, Ogasahara K, Akutsu H, Noda Y, Segawa SI, Yutani K. Characterization of the Denatured Structure of Pyrrolidone Carboxyl Peptidase from a Hyperthermophile under Nondenaturing Conditions: Role of the C-Terminal α-Helix of the Protein in Folding and Stability,. Biochemistry 2007; 46:3664-72. [PMID: 17309236 DOI: 10.1021/bi602456y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cysteine-free pyrrolidone carboxyl peptidase (PCP-0SH) from a hyperthermophile, Pyrococcus furiosus, can be trapped in the denatured state under nondenaturing conditions, corresponding to the denatured structure that exists in equilibrium with the native state under physiological conditions. The denatured state is the initial state (D1 state) in the refolding process but differs from the completely denatured state (D2 state) in the concentrated denaturant. Also, it has been found that the D1 state corresponds to the heat-denatured state. To elucidate the structural basis of the D1 state, H/D exchange experiments with PCP-0SH were performed at pD 3.4 and 4 degrees C. The results indicated that amide protons in the C-terminal alpha6-helix region hardly exchanged in the D1 state with deuterium even after 7 days, suggesting that the alpha6-helix (from Ser188 to Glu205) of PCP-0SH was stably formed in the D1 state. In order to examine the role of the alpha6-helix in folding and stability, H/D exchange experiments with a mutant, A199P, at position 199 in the alpha6-helix region were performed. The alpha6-helix region of A199P in the D1 state was partially unprotected, while some hydrophobic residues were protected against the H/D exchange, although these hydrophobic residues were unprotected in the wild-type protein. These results suggest that the structure of A199P in the D1 state formed a temporary stable denatured structure with a non-native hydrophobic cluster and the unstructured alpha6-helix. Both the stability and the refolding rate decreased by the substitution of Pro for Ala199. We can conclude that the native-like helix (alpha6-helix) of PCP-0SH is already constructed in the D1 state and is necessary for efficient refolding into the native structure and stabilization of PCP-0SH.
Collapse
Affiliation(s)
- Satoshi Iimura
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang L, Sun T. Folding rate prediction using n-order contact distance for proteins with two- and three-state folding kinetics. Biophys Chem 2006; 113:9-16. [PMID: 15617806 DOI: 10.1016/j.bpc.2004.07.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 07/19/2004] [Accepted: 07/21/2004] [Indexed: 10/26/2022]
Abstract
It is a challenging task to understand the relationship between sequences and folding rates of proteins. Previous studies are found that one of contact order (CO), long-range order (LRO), total contact distance (TCD), chain topology parameter (CTP), and effective length (Leff) has a significant correlation with folding rate of proteins. In this paper, we introduce a new parameter called n-order contact distance (nOCD) and use it to predict folding rate of proteins with two- and three-state folding kinetics. A good linear correlation between the folding rate logarithm lnkf and nOCD with n=1.2, alpha=0.6 is found for two-state folders (correlation coefficient is -0.809, P-value<0.0001) and n=2.8, alpha=1.5 for three-state folders (correlation coefficient is -0.816, P-value<0.0001). However, this correlation is completely absent for three-state folders with n=1.2, alpha=0.6 (correlation coefficient is 0.0943, P-value=0.661) and for two-state folders with n=2.8, alpha=1.5 (correlation coefficient is -0.235, P-value=0.2116). We also find that the average number of contacts per residue Pm in the interval of m for two-state folders is smaller than that for three-state folders. The probability distribution P(gamma) of residue having gamma pairs of contacts fits a Gaussian distribution for both two- and three-state folders. We observe that the correlations between square radius of gyration S2 and number of residues for two- and three-state folders are both good, and the correlation coefficient is 0.908 and 0.901, and the slope of the fitting line is 1.202 and 0.795, respectively. Maybe three-state folders are more compact than two-state folders. Comparisons with nTCD and nCTP are also made, and it is found that nOCD is the best one in folding rate prediction.
Collapse
Affiliation(s)
- Linxi Zhang
- Department of Physics, Wenzhou Normal College, Wenzhou 325027, PR China.
| | | |
Collapse
|
8
|
Role of N- and C-terminal domains and non-homologous region in co-refolding of Thermotoga maritima β-glucosidase. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.molcatb.2005.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Kim YJ, Kim YA, Park N, Son HS, Kim KS, Hahn JH. Structural characterization of the molten globule state of apomyoglobin by limited proteolysis and HPLC-mass spectrometry. Biochemistry 2005; 44:7490-6. [PMID: 15895992 DOI: 10.1021/bi050305w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method to characterize the structural conformation of an acidic molten globule apomyoglobin (apoMb) at pH 4.2 was developed using limited proteolysis and HPLC-mass spectrometry (HPLC-MS). Endoproteinase Glu-C, which has a double maximum activity at pH 4.0 and pH 7.8 toward glutamic acid (Glu), was used as a proteolytic enzyme. Using this method enabled us to compare the proteolytic cleavages of native apoMb (at pH 8.0) and molten globule (at pH 4.2) directly. Only the first cleavage event in each molecule was considered as reflecting original structural information since the original structure of the protein can be altered after the fist cleavage. Structural changes of apoMb in various pH conditions were studied here to elucidate the local helicity of molten globule apoMb. Among 13 Glu sites, only Glu83 and Glu85 in the F-helix were cleaved at pH 8.0, which confirms that only helix F is frayed upon removal of heme group. At acidic molten globule state, rapid cleavages at Glu38, Glu52, Glu54, Glu85, and Glu148 were detected, while the remaining eight sites were protected. Glu6 and Glu18 in the A-helix, and Glu105 in the G-helix were protected due to the helicity of the secondary structures. The cleavage at Glu38 and the protection at Glu41 in the C-helix indicate that the first half of the C-helix is frayed and the second half of the C-helix is structured. Cleavage at both Glu52 and Glu54 in the D-helix proves that the D-helix is disordered. The N-terminal end of the E-helix at Glu59 was protected, and the beginning of the F-helix was protected by aid of the pH-induced C-cap of the E-helix. The cleavage at Glu148 in H suggests that the C-terminal end of the H-helix is disordered. The A-helix and the first half of the B-helix were highly stable.
Collapse
Affiliation(s)
- Yeoun Jin Kim
- Department of Chemistry, Division of Molecular and Life Sciences, Pohang University of Science and Technology, South Korea
| | | | | | | | | | | |
Collapse
|
10
|
Santra MK, Banerjee A, Krishnakumar SS, Rahaman O, Panda D. Multiple-probe analysis of folding and unfolding pathways of human serum albumin. Evidence for a framework mechanism of folding. ACTA ACUST UNITED AC 2004; 271:1789-97. [PMID: 15096218 DOI: 10.1111/j.1432-1033.2004.04096.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The changes in the far-UV CD signal, intrinsic tryptophan fluorescence and bilirubin absorbance showed that the guanidine hydrochloride (GdnHCl)-induced unfolding of a multidomain protein, human serum albumin (HSA), followed a two-state process. However, using environment sensitive Nile red fluorescence, the unfolding and folding pathways of HSA were found to follow a three-state process and an intermediate was detected in the range 0.25-1.5 m GdnHCl. The intermediate state displayed 45% higher fluorescence intensity than that of the native state. The increase in the Nile red fluorescence was found to be due to an increase in the quantum yield of the HSA-bound Nile red. Low concentrations of GdnHCl neither altered the binding affinity of Nile red to HSA nor induced the aggregation of HSA. In addition, the secondary structure of HSA was not perturbed during the first unfolding transition (<1.5 m GdnHCl); however, the secondary structure was completely lost during the second transition. The data together showed that the half maximal loss of the tertiary structure occurred at a lower GdnHCl concentration than the loss of the secondary structure. Further kinetic studies of the refolding process of HSA using multiple spectroscopic techniques showed that the folding occurred in two phases, a burst phase followed by a slow phase. An intermediate with native-like secondary structure but only a partial tertiary structure was found to form in the burst phase of refolding. Then, the intermediate slowly folded into the native state. An analysis of the refolding data suggested that the folding of HSA could be best explained by the framework model.
Collapse
Affiliation(s)
- Manas Kumar Santra
- School of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
| | | | | | | | | |
Collapse
|
11
|
Ivankov DN, Garbuzynskiy SO, Alm E, Plaxco KW, Baker D, Finkelstein AV. Contact order revisited: influence of protein size on the folding rate. Protein Sci 2003; 12:2057-62. [PMID: 12931003 PMCID: PMC2324001 DOI: 10.1110/ps.0302503] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2003] [Revised: 05/23/2003] [Accepted: 05/28/2003] [Indexed: 10/27/2022]
Abstract
Guided by the recent success of empirical model predicting the folding rates of small two-state folding proteins from the relative contact order (CO) of their native structures, by a theoretical model of protein folding that predicts that logarithm of the folding rate decreases with the protein chain length L as L(2/3), and by the finding that the folding rates of multistate folding proteins strongly correlate with their sizes and have very bad correlation with CO, we reexamined the dependence of folding rate on CO and L in attempt to find a structural parameter that determines folding rates for the totality of proteins. We show that the Abs_CO = CO x L, is able to predict rather accurately folding rates for both two-state and multistate folding proteins, as well as short peptides, and that this Abs_CO scales with the protein chain length as L(0.70 +/- 0.07) for the totality of studied single-domain proteins and peptides.
Collapse
Affiliation(s)
- Dmitry N Ivankov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | | | | | | | | |
Collapse
|
12
|
Galzitskaya OV, Garbuzynskiy SO, Ivankov DN, Finkelstein AV. Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics. Proteins 2003; 51:162-6. [PMID: 12660985 DOI: 10.1002/prot.10343] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We demonstrate that chain length is the main determinant of the folding rate for proteins with the three-state folding kinetics. The logarithm of their folding rate in water (k(f)) strongly anticorrelates with their chain length L (the correlation coefficient being -0.80). At the same time, the chain length has no correlation with the folding rate for two-state folding proteins (the correlation coefficient is -0.07). Another significant difference of these two groups of proteins is a strong anticorrelation between the folding rate and Baker's "relative contact order" for the two-state folders and the complete absence of such correlation for the three-state folders.
Collapse
Affiliation(s)
- Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | | | |
Collapse
|
13
|
Jeong JK, Shin HJ, Kim JW, Lee CH, Kim HD, Lim WK. Fluorescence and folding properties of Tyr mutant tryptophan synthase alpha-subunits from Escherichia coli. Biochem Biophys Res Commun 2003; 300:29-35. [PMID: 12480516 DOI: 10.1016/s0006-291x(02)02769-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The fluorescence of tyrosine has been used to monitor a folding process of tryptophan synthase alpha-subunit from Escherichia coli, because this protein has 7 tyrosines, but not tryptophan. Here to assess the contribution of each Tyr to fluorescence properties of this protein during folding, mutant proteins in which Tyr was replaced with Phe were analyzed. The result shows that a change of Tyr fluorescence occurring during folding of this protein is contributed to approximately 40% each by Tyr(4) and Tyr(115), and to the remaining approximately 20% by Tyr(173) and Tyr(175). Y173F and Y175F mutant proteins showed an increase in their fluorescence intensity by approximately 40% and approximately 10%, respectively. These increases appear to be due to multiple effects of increased hydrophobicity, quenching effect of nearby residue Glu(49), and/or energy transfer between Tyrs. Two data for Y173F alpha-subunit of urea-induced unfolding equilibrium monitored by UV and fluorescence were different. This result, together with ANS binding and far UV CD, shows that folding intermediate(s) of Y173F alpha-subunit, contrary to that of wild-type, may contain self-inconsistent properties such as more buried hydrophobicity, highly quenched fluorescence, and different dependencies on urea of UV absorbance, suggesting an ensemble of heterogeneous structures.
Collapse
Affiliation(s)
- Jae Kap Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Keumjeong-district, 609-735, Busan, Republic of Korea
| | | | | | | | | | | |
Collapse
|
14
|
Wallace LA, Matthews CR. Sequential vs. parallel protein-folding mechanisms: experimental tests for complex folding reactions. Biophys Chem 2002; 101-102:113-31. [PMID: 12487994 DOI: 10.1016/s0301-4622(02)00155-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The recent emphasis on rough energy landscapes for protein folding reactions by theoreticians, and the many observations of complex folding kinetics by experimentalists provide a rationale for a brief literature survey of various empirical approaches for validating the underlying mechanisms. The determination of the folding mechanism is a key step in defining the energy surface on which the folding reactions occurs and in interpreting the effects of amino acid replacements on this reaction. Case studies that illustrate methods for differentiating between sequential and parallel channel folding mechanisms are presented. The ultimate goal of such efforts is to understand how the one-dimensional information contained in the amino acid sequence is rapidly and efficiently translated into three-dimensional structure.
Collapse
Affiliation(s)
- Louise A Wallace
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
15
|
Forsyth WR, Matthews CR. Folding mechanism of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus: a test of the conservation of folding mechanisms hypothesis in (beta(alpha))(8) barrels. J Mol Biol 2002; 320:1119-33. [PMID: 12126630 DOI: 10.1016/s0022-2836(02)00557-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As a test of the hypothesis that folding mechanisms are better conserved than sequences in TIM barrels, the equilibrium and kinetic folding mechanisms of indole-3-glycerol phosphate synthase (sIGPS) from the thermoacidophilic archaebacterium Sulfolobus solfataricus were compared to the well-characterized models of the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli. A multifaceted approach combining urea denaturation and far-UV circular dichroism, tyrosine fluorescence total intensity, and tyrosine fluorescence anisotropy was employed. Despite a sequence identity of only 13%, a stable intermediate (I) in sIGPS was found to be similar to a stable intermediate in alphaTS in terms of its thermodynamic properties and secondary structure. Kinetic experiments revealed that the fastest detectable folding event for sIGPS involves a burst-phase (<5ms) reaction that leads directly to the stable intermediate. The slower of two subsequent phases reflects the formation/disruption of an off-pathway dimeric form of I. The faster phase reflects the conversion of I to the native state and is limited by folding under marginally stable conditions and by isomerization or rearrangement under strongly folding conditions. By contrast, alphaTS is thought to fold via an off-pathway burst-phase intermediate whose unfolding controls access to a set of four on-pathway intermediates that comprise the stable equilibrium intermediate. At least three proline isomerization reactions are known to limit their interconversions and lead to a parallel channel mechanism. The simple sequential mechanism deduced for sIGPS reflects the dominance of the on-pathway burst-phase intermediate and the absence of prolyl residues that partition the stable intermediate into kinetically distinguishable species. Comparison of the results for sIGPS and alphaTS demonstrates that the thermodynamic properties and the final steps of the folding reaction are better conserved than the early events. The initial events in folding appear to be more sensitive to the sequence differences between the two TIM barrel proteins.
Collapse
Affiliation(s)
- William R Forsyth
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
16
|
Arai M, Kuwajima K. Role of the molten globule state in protein folding. ADVANCES IN PROTEIN CHEMISTRY 2000; 53:209-82. [PMID: 10751946 DOI: 10.1016/s0065-3233(00)53005-8] [Citation(s) in RCA: 355] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- M Arai
- Department of Physics, School of Science, University of Tokyo, Japan
| | | |
Collapse
|
17
|
Zitzewitz JA, Matthews CR. Molecular dissection of the folding mechanism of the alpha subunit of tryptophan synthase: an amino-terminal autonomous folding unit controls several rate-limiting steps in the folding of a single domain protein. Biochemistry 1999; 38:10205-14. [PMID: 10433729 DOI: 10.1021/bi9909041] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli is a 268-residue 8-stranded beta/alpha barrel protein. Two autonomous folding units, comprising the first six strands (residues 1-188) and the last two strands (residues 189-268), have been previously identified in this single structural domain protein by tryptic digestion [Higgins, W., Fairwell, T., and Miles, E. W. (1979) Biochemistry 18, 4827-4835]. The larger, amino-terminal fragment, alphaTS(1-188), was overexpressed and independently purified, and its equilibrium and kinetic folding properties were studied by absorbance, fluorescence, and near- and far-UV circular dichroism spectroscopies. The native state of the fragment unfolds cooperatively in an apparent two-state transition with a stability of 3.98 +/- 0.19 kcal mol(-1) in the absence of denaturant and a corresponding m value of 1.07 +/- 0.05 kcal mol(-1) M(-1). Similar to the full-length protein, the unfolding of the fragment shows two kinetic phases which arise from the presence of two discrete native state populations. Additionally, the fragment exhibits a significant burst phase in unfolding, indicating that a fraction of the folded state ensemble under native conditions has properties similar to those of the equilibrium intermediate populated at 3 M urea in full-length alphaTS. Refolding of alphaTS(1-188) is also complex, exhibiting two detectable kinetic phases and a burst phase that is complete within 5 ms. The two slowest isomerization phases observed in the refolding of the full-length protein are absent in the fragment, suggesting that these phases reflect contributions from the carboxy-terminal segment. The folding mechanism of alphaTS(1-188) appears to be a simplified version of the mechanism for the full-length protein [Bilsel, O., Zitzewitz, J. A., Bowers, K.E, and Matthews, C. R.(1999) Biochemistry 38, 1018-1029]. Four parallel channels in the full-length protein are reduced to a pair of channels that most likely reflect a cis/trans proline isomerization reaction in the amino-terminal fragment. The off- and on-pathway intermediates that exist for both full-length alphaTS and alphaTS(1-188) may reflect the preponderance of local interactions in the beta/alpha barrel motif.
Collapse
Affiliation(s)
- J A Zitzewitz
- Department of Chemistry, Life Sciences Consortium, Center for Biomolecular Structure and Function, The Pennsylvania State University, University Park 16802, USA
| | | |
Collapse
|
18
|
Gualfetti PJ, Bilsel O, Matthews CR. The progressive development of structure and stability during the equilibrium folding of the alpha subunit of tryptophan synthase from Escherichia coli. Protein Sci 1999; 8:1623-35. [PMID: 10452606 PMCID: PMC2144415 DOI: 10.1110/ps.8.8.1623] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The urea-induced equilibrium unfolding of the alpha subunit of tryptophan synthase (alphaTS), a single domain alpha/beta barrel protein, displays a stable intermediate at approximately 3.2 M urea when monitored by absorbance and circular dichroism (CD) spectroscopy (Matthews CR, Crisanti MM, 1981, Biochemistry 20:784-792). The same experiment, monitored by one-dimensional proton NMR, shows another cooperative process between 5 and 9 M urea that involves His92 (Saab-Rincón G et al., 1993, Biochemistry 32:13,981-13,990). To further test and quantify the implied four-state model, N <--> I1 <--> I2 <--> U, the urea-induced equilibrium unfolding process was followed by tyrosine fluorescence total intensity, tyrosine fluorescence anisotropy and far-UV CD. All three techniques resolve the four stable states, and the transitions between them when the FL total intensity and CD spectroscopy data were analyzed by the singular value decomposition method. Relative to U, the stabilities of the N, I1, and I2 states are 15.4, 9.4, and 4.9 kcal mol(-1), respectively. I2 partially buries one or more of the seven tyrosines with a noticeable restriction of their motion; it also recovers approximately 6% of the native CD signal. This intermediate, which is known to be stabilized by the hydrophobic effect, appears to reflect the early coalescence of nonpolar side chains without significant organization of the backbone. I1 recovers an additional 43% of the CD signal, further sequesters tyrosine residues in nonpolar environments, and restricts their motion to an extent similar to N. The progressive development of a higher order structure as the denaturant concentration decreases implies a monotonic contraction in the ensemble of conformations that represent the U, I2, I1, and N states of alphaTS.
Collapse
Affiliation(s)
- P J Gualfetti
- Department of Chemistry and Center for Biomolecular Structure and Function, The Pennsylvania State University, University Park 16802, USA
| | | | | |
Collapse
|
19
|
Lassalle MW, Hinz HJ. Refolding studies on the tetrameric loop deletion mutant RM6 of ROP protein. Biol Chem 1999; 380:459-72. [PMID: 10355632 DOI: 10.1515/bc.1999.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous DSC and X-ray studies on RM6, a loop deletion mutant of wtROP protein, have shown that removal of five amino acids from the loop causes a dramatic reorganization of the wild-type structure. The new tetrameric molecule exhibits a significantly higher stability (Lassalle, M.W. et al., J. Mol. Biol., 1998, 279, 987-1000) and unfolds in a second order reaction (Lassalle, M.W. and Hinz, H.-J., Biochemistry, 1998, 37, 8465-8472). In the present investigation we report extensive refolding studies of RM6 at different temperatures and GdnHCl concentrations monitored by CD and fluorescence to probe for changes in secondary and tertiary structure, respectively. The measurements permitted us to determine activation parameters as a function of denaturant concentration. The results demonstrate convincingly that the variation with GdnHCl concentration of the activation parameters deltaH#, deltaS# and deltaG# is very similar for unfolding and refolding. For both processes the activation properties approach a maximum in the vicinity of the denaturant concentration, c(K=1), where the equilibrium constant equals 1, i.e. deltaG0 equals zero. CD and fluorescence refolding kinetics are described by identical constants suggesting that the formation of secondary and tertiary structure occurs simultaneously. Refolding is, however, characterized by a more complex mechanism than unfolding. Although the general pattern is dominated by the sequence monomers to dimers to tetramers, parallel side reactions involving dimers and monomers have to be envisaged in the initial folding phase, supporting the view that the native state of RM6 can be reached by several rather than a single pathway.
Collapse
Affiliation(s)
- M W Lassalle
- Institut für Physikalische Chemie der Westfälischen Wilhelms-Universität, Münster, Germany
| | | |
Collapse
|
20
|
Bilsel O, Yang L, Zitzewitz JA, Beechem JM, Matthews CR. Time-resolved fluorescence anisotropy study of the refolding reaction of the alpha-subunit of tryptophan synthase reveals nonmonotonic behavior of the rotational correlation time. Biochemistry 1999; 38:4177-87. [PMID: 10194334 DOI: 10.1021/bi9829433] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Time-resolved fluorescence anisotropy of a bound extrinsic probe was studied in an effort to characterize dynamic properties of the transient partially folded forms that appear during the folding of the alpha-subunit of tryptophan synthase (alphaTS) from Escherichia coli. Previous studies have shown that alphaTS, a single structural domain, can be cleaved into autonomously folding amino- and carboxy-folding units comprising residues 1-188 and 189-268, respectively [Higgins, W., Fairwell, T., and Miles, E. W. (1979) Biochemistry 18, 4827-4835]. By use of a double-kinetic approach [Jones, B. E., Beechem, J. M., and Matthews, C. R. (1995) Biochemistry 34, 1867-1877], the rotational correlation time of 1-anilino-8-naphthalene sulfonate bound to nonpolar surfaces of folding intermediates was measured by time-correlated single photon counting at varying time delays following initiation of folding from the urea-denatured form by stopped-flow techniques. Comparison of the rotational correlation times for the full-length alphaTS and the amino-terminal fragment suggests that folding of the amino-terminal fragment and carboxy-terminal fragment is coordinated, not autonomous, on the milliseconds to seconds time scale. If a spherical shape is assumed, the apparent hydrodynamic radius of alphaTS after 5 ms is 26.8 A. The radius increases to 28.5 A by 1 s before decreasing to the radius for native alphaTS, 24.7 A, on a longer time scale (>25 s). Viewed within the context of the kinetic folding model of alphaTS [Bilsel, O., Zitzewitz, J. A., Bowers, K. E. , and Matthews, C. R. (1999) Biochemistry 38, 1018-1029], the initial collapse reflects the formation of an off-pathway burst-phase intermediate in which at least part of the carboxy folding unit interacts with the amino folding unit. The subsequent increase in rotational correlation time corresponds to the formation of an on-pathway intermediate that leads to the native conformation. The apparent increase in the radius for the on-pathway intermediate may reflect a change in the interaction of the two-folding units, thereby forming a direct precursor for the alpha/beta barrel structure.
Collapse
Affiliation(s)
- O Bilsel
- Department of Chemistry, Center for Biomolecular Structure and Function, The Pennsylvania State University, University Park 16802, USA
| | | | | | | | | |
Collapse
|
21
|
Bilsel O, Zitzewitz JA, Bowers KE, Matthews CR. Folding mechanism of the alpha-subunit of tryptophan synthase, an alpha/beta barrel protein: global analysis highlights the interconversion of multiple native, intermediate, and unfolded forms through parallel channels. Biochemistry 1999; 38:1018-29. [PMID: 9893998 DOI: 10.1021/bi982365q] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A variety of techniques have been used to investigate the urea-induced kinetic folding mechanism of the alpha-subunit of tryptophan synthase from Escherichia coli. A distinctive property of this 29 kDa alpha/beta barrel protein is the presence of two stable equilibrium intermediates, populated at approximately 3 and 5 M urea. The refolding process displays multiple kinetic phases whose lifetimes span the submillisecond to greater than 100 s time scale; unfolding studies yield two relaxation times on the order of 10-100 s. In an effort to understand the populations and structural properties of both the stable and transient intermediates, stopped-flow, manual-mixing, and equilibrium circular dichroism data were globally fit to various kinetic models. Refolding and unfolding experiments from various initial urea concentrations as well as forward and reverse double-jump experiments were critical for model discrimination. The simplest kinetic model that is consistent with all of the available data involves four slowly interconverting unfolded forms that collapse within 5 ms to a marginally stable intermediate with significant secondary structure. This early intermediate is an off-pathway species that must unfold to populate a set of four on-pathway intermediates that correspond to the 3 M urea equilibrium intermediate. Reequilibrations among these conformers act as rate-limiting steps in folding for a majority of the population. A fraction of the native conformation appears in less than 1 s at 25 degrees C, demonstrating that even large proteins can rapidly traverse a complex energy surface.
Collapse
Affiliation(s)
- O Bilsel
- Department of Chemistry, Center for Biomolecular Structure and Function, The Pennsylvania State University, University Park 16802, USA
| | | | | | | |
Collapse
|
22
|
Ogasahara K, Nakamura M, Nakura S, Tsunasawa S, Kato I, Yoshimoto T, Yutani K. The unusually slow unfolding rate causes the high stability of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus: equilibrium and kinetic studies of guanidine hydrochloride-induced unfolding and refolding. Biochemistry 1998; 37:17537-44. [PMID: 9860869 DOI: 10.1021/bi9814585] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To elucidate the energetic features of the anomalously high-level stabilization of a hyperthermophile pyrrolidone carboxyl peptidase (PfPCP) from a hyperthermophilic archaeon, Pyrococcus furiosus, equilibrium and kinetic studies of the guanidine hydrochloride (GuHCl)-induced unfolding and refolding were carried out with CD measurements at 220 nm in comparison with those from the mesophile homologue (BaPCP) from Bacillus amyloliquefaciens. The mutant protein of PfPCP substituted with Ser at both Cys142 and Cys188 (PfC142/188S) was used. The GuHCl unfolding for PfC142/188S and BaPCP was reversible. It was difficult to obtain the equilibrated unfolding curve of the hyperthermophile proteins at temperatures below 50 degreesC and pH 7, because of the remarkably slow rate of the unfolding. The unfolding for PfC142/188S attained equilibrium after 7 days at 60 degreesC, resulting in the coincidence between the unfolding and refolding curves. The Gibbs energy change of unfolding, DeltaGH2O (56.6 kJ/mol), for PfC142/188S at 60 degreesC and pH 7 was dramatically higher than that (7.6 kJ/mol) for BaPCP at 40 degreesC and pH 7. The unfolding and refolding kinetics for PfC142/188S and BaPCP at both 25 and 60 degreesC at pH 7 were approximated as a single exponential. The rate constant in water (kuH2O) of the unfolding reaction for PfC142/188S (1.6 x 10(-)15 s-1) at 25 degreesC and pH 7 was drastically reduced by 7 orders of magnitude compared to that (1.5 x 10(-)8 s-1) for BaPCP, whereas the refolding rates (krH2O) in water for PfC142/188S (9.3 x 10(-)2 s-1) and BaPCP (3.6 x 10(-)1 s-1) at 25 degreesC and pH 7 were similar. These results indicate that the greater stability of the hyperthermophile PCP was characterized by the drastically slow unfolding rate.
Collapse
Affiliation(s)
- K Ogasahara
- Institute for Protein Research, Osaka University, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Fan YX, Zhou JM, Kihara H, Tsou CL. Unfolding and refolding of dimeric creatine kinase equilibrium and kinetic studies. Protein Sci 1998; 7:2631-41. [PMID: 9865958 PMCID: PMC2143886 DOI: 10.1002/pro.5560071217] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Equilibrium and kinetic studies of the guanidine hydrochloride induced unfolding-refolding of dimeric cytoplasmic creatine kinase have been monitored by intrinsic fluorescence, far ultraviolet circular dichroism, and 1-anilinonaphthalene-8-sulfonate binding. The GuHCl induced equilibrium-unfolding curve shows two transitions, indicating the presence of at least one stable equilibrium intermediate in GuHCl solutions of moderate concentrations. This intermediate is an inactive monomer with all of the thiol groups exposed. The thermodynamic parameters obtained by analysis using a three-state model indicate that this intermediate is similar in energy to the fully unfolded state. There is a burst phase in the refolding kinetics due to formation of an intermediate within the dead time of mixing (15 ms) in the stopped-flow apparatus. Further refolding to the native state after the burst phase follows biphasic kinetics. The properties of the burst phase and equilibrium intermediates were studied and compared. The results indicate that these intermediates are similar in some respects, but different in others. Both are characterized by pronounced secondary structure, compact globularity, exposed hydrophobic surface area, and the absence of rigid side-chain packing, resembling the "molten globule" state. However, the burst phase intermediate shows more secondary structure, more exposed hydrophobic surface area, and more flexible side-chain packing than the equilibrium intermediate. Following the burst phase, there is a fast phase corresponding to folding of the monomer to a compact conformation. This is followed by rapid assembly to form the dimer. Neither of the equilibrium unfolding transitions are protein concentration dependent. The refolding kinetics are also not concentration dependent. This suggests that association of the subunits is not rate limiting for refolding, and that under equilibrium conditions, dissociation occurs in the region between the two unfolding transitions. Based upon the above results, schemes of unfolding and refolding of creatine kinase are proposed.
Collapse
Affiliation(s)
- Y X Fan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing, China
| | | | | | | |
Collapse
|
24
|
Lassalle MW, Hinz HJ. Unfolding of the tetrameric loop deletion mutant of ROP protein is a second-order reaction. Biochemistry 1998; 37:8465-72. [PMID: 9622498 DOI: 10.1021/bi9730691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Comprehensive kinetic studies were carried out on the unfolding properties of RM6 as a function of GdnHCl concentration and temperature. This protein is a mutant resulting from the dimeric wild-type CoLE1-ROP protein by deletion of 5 amino acids (Asp 30, Ala 31, Asp 32, Glu 33, Gln 34) in the loop of each monomer. The deletion has dramatic consequences. The dimeric 4-alpha-helix structure characteristic of the wild-type protein is completely reorganized and the RM6 structure can be described as a tetrameric alpha helix of extended monomers without loops. These extraordinary structural changes are accompanied by an enormous increase in transition temperature from 71 to 101 degreesC. These features have been discussed in a separate publication (1). The remarkable change in thermal stability of RM6 should be reflected in significant changes in the folding rate constants. This was observed in the present unfolding studies. Decay of tetrameric RM6 was monitored by circular dichroism (CD) and fluorescence to probe for changes in both secondary and tertiary structure, respectively. The identity of the kinetic parameters obtained from the two techniques supports the view that secondary and tertiary structure break down simultaneously. However, the most intriguing result is the finding that unfolding of tetrameric RM6 can be described very well by a second-order reaction. The magnitude of the second-order rate constant k2 varies dramatically with both temperature and denaturant concentration. At 25 degreesC and 6.5 M GdnHCl concentration k2 is 4200 L.(mol of dimer)-1.s-1, whereas at 4.4 M GdnHCl a value of k2 = 0.9 L.(mol of dimer)-1.s-1 is observed. Correspondingly, apparent activation enthalpies show a strong increase from DeltaH# = 29.1 kJ.mol-1 at 6. 5 M GdnHCl to Delta H# = 79.7 kJ.mol-1 at 4.4 M GdnHCl. A mechanism involving a dimeric intermediate is suggested which permits a consistent interpretation of the findings.
Collapse
Affiliation(s)
- M W Lassalle
- Institut für Physikalische Chemie der Westfälischen Wilhelms-Universität, Münster, Germany
| | | |
Collapse
|
25
|
Wu JW, Wang ZX, Zhou JM. Three-state kinetic analysis of Chinese hamster dihydrofolate reductase unfolding by guanidine hydrochloride. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1343:107-16. [PMID: 9428665 DOI: 10.1016/s0167-4838(97)00089-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The unfolding behavior of dihydrofolate reductase from Chinese hamster in solutions of guanidine hydrochloride (GdnHCl) was studied. The GdnHCl-induced unfolding of the dihydrofolate reductase monitored by intrinsic fluorescence shows a biphasic transition, while the change in the enzyme activity is a single exponential process. The rate constant of inactivation is consistent with that of the fast conformational change. Therefore, the kinetic intermediate of protein unfolding should be a partially folded and inactive form. On the basis of the kinetic equation of substrate reaction in the presence of GdnHCl, all microscopic kinetic constants for the free enzyme and enzyme-substrate complexes have been determined. Both substrates, NADPH and 7,8-dihydrofolate, protect dihydrofolate reductase against inactivation.
Collapse
Affiliation(s)
- J W Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing, People's Republic of China
| | | | | |
Collapse
|
26
|
Kelly SM, Price NC. The application of circular dichroism to studies of protein folding and unfolding. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1338:161-85. [PMID: 9128135 DOI: 10.1016/s0167-4838(96)00190-2] [Citation(s) in RCA: 362] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- S M Kelly
- Department of Biological and Molecular Sciences, University of Stirling, Scotland, UK
| | | |
Collapse
|
27
|
Ogasahara K, Yutani K. Equilibrium and kinetic analyses of unfolding and refolding for the conserved proline mutants of tryptophan synthase alpha subunit. Biochemistry 1997; 36:932-40. [PMID: 9020793 DOI: 10.1021/bi961660c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To elucidate the role of conserved proline residues of the tryptophan synthase alpha subunit from Escherichia coli in stability and folding, equilibrium and kinetic studies of the unfolding-refolding induced by guanidine hydrochloride for six mutant alpha subunits (Pro-->Ala) were carried out by peptidyl circular dichroism and aromatic fluorescence measurements at pH 7 and 25 degrees C. These results were analyzed assuming the presence of one intermediate (I) state in the denaturation process. (I) For all mutant and wild-type proteins, the Gibbs energy change (delta Gni(H2O)) in water between the native (N) and I states coincided with the difference (delta G++u(H2O)-delta G++r(H2O)) between the activation Gibbs energy changes in water for the unfolding (delta G++u(H2O) and refolding (delta G++r(H2O) reactions. This means that the early folding intermediate of the alpha subunit corresponds to the equilibrium intermediate. Delta Gni(H2O) values of all mutant proteins decreased compared with that of the wild-type protein. Gibbs energy change (delta Gid(H2O) in water between I and the denatured (D) states was not substantially affected by the substitutions. Delta G++u(H2O) and delta G++r(H2O) decreased and increased, respectively, for all mutant proteins. (2) Six conserved prolines played roles in stability and folding of the alpha subunit in a different manner: prolines 28 and 96 by stabilizing the N state and prolines 28, 96, 132, and 207 by destabilizing the I state. The contributions of prolines 57 and 62 to the stability were marginal. (3) Cis proline 28 was not the origin of the slow phase in the refolding kinetics assumed to arise from the cis-trans isomerization reaction of proline.
Collapse
Affiliation(s)
- K Ogasahara
- Institute for Protein Research, Osaka University, Japan
| | | |
Collapse
|
28
|
Otlewski J, Sywula A, Kolasinski M, Krowarsch D. Unfolding kinetics of bovine trypsinogen. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:601-7. [PMID: 9022687 DOI: 10.1111/j.1432-1033.1996.0601r.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The unfolding kinetics of bovine trypsinogen were studied by a fluorescence-detected stopped-flow technique at pH 5.8. Trypsinogen unfolding appeared to be a rather complex reaction. Two phases, fast (with a time constant in the millisecond range) and slow, were detected in the range 2-7 M guanidium chloride (GdmCl). The natural logarithm of the rate constant of the slow phase exhibited strong dependence on [GdmCl], changing from hundreds of seconds at low denaturant concentration to about 20 ms at 7 M GdmCl. The curvature of this dependence further suggests a complex mechanism of unfolding. Generally, similar kinetics were observed for the trypsinogen.Ca complex. Small differences could be noticed, however, for the fast phase. In agreement, Ca2+ influenced only this stage of the reaction. Analysis of the dependence of the time constant of the fast phase on [CaCl2] indicates that at 4 M GdmCl, trypsinogen.Ca unfolds about sixfold slower than free zymogen, and that native trypsinogen at 4 M GdmCl still exhibits high affinity for Ca2+. Limited data on trypsin unfolding show virtually an identical dependence of the slow phase on [GdmCl]; the fast phase, however was not observed. Moreover, in the 3-4.5 M GdmCl range, a separate phase was detected. It is postulated that this phase is a manifestation of the activation-domain unfolding. The Eyring plots for the fast phase of . trypsinogen and trypsinogen.Ca unfolding are linear, indicating little change in heat capacity for this stage of reaction. The slow step of unfolding, however, shows significant curvature which indicates a substantial increase in heat capacity.
Collapse
Affiliation(s)
- J Otlewski
- Institute of Biochemistry and Molecular Biology, University of Wroclaw, Poland
| | | | | | | |
Collapse
|
29
|
Saab-Rincón G, Gualfetti PJ, Matthews CR. Mutagenic and thermodynamic analyses of residual structure in the alpha subunit of tryptophan synthase. Biochemistry 1996; 35:1988-94. [PMID: 8639683 DOI: 10.1021/bi951726o] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The alpha subunit of tryptophan synthase from Escherichia coli has been previously shown to contain residual structure at 5 M urea, conditions where the secondary structure is entirely disrupted and the tyrosine residues are exposed to solvent [Saab-Rincón, G., Froebe, C. L., & Matthews, C. R. (1993) Biochemistry 32, 13981-13990]. The residual structure can be monitored by one-dimensional NMR spectroscopy studies of histidine 92 whose C epsilon proton is sensitive to the slow exchange between this form and the unfolded protein. The temperature dependence of the cooperative urea-induced unfolding transition between intermediate and unfolded forms demonstrates that this process involves negative values for both the enthalpy and entropy changes at 25 degrees C. The effects of replacements of several nonpolar side chains adjacent to histidine 92 on the slopes and midpoints of the unfolding transition curve show that these side chains participate in the residual structure. A 15-residue peptide spanning histidine 92 and the mutated residues, however, is not sufficient to define this structure. These results demonstrate that the residual structure in the alpha subunit is stabilized by the hydrophobic effect and may involve side chains which are distant in sequence to histidine 92.
Collapse
Affiliation(s)
- G Saab-Rincón
- Department of Chemistry, Pennsylvania State University, University Park 16802, USA
| | | | | |
Collapse
|
30
|
Choi SG, Hardman JK. Unfolding properties of tryptophan-containing alpha-subunits of the Escherichia coli tryptophan synthase. J Biol Chem 1995; 270:28177-82. [PMID: 7499309 DOI: 10.1074/jbc.270.47.28177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The urea-induced unfolding of the Escherichia coli tryptophan synthase alpha-subunit is examined via fluorescence measurements with tryptophan-containing alpha-subunit mutants, constructed by in vitro mutagenesis. Early unfolding studies with urea and guanidine suggested that the wild type protein unfolded in a two-step process with a stable intermediate composed of a native alpha-1 folding unit (residues 1-188) and a completely unfolded alpha-2 folding unit (residues 189-268). Recently, more detailed spectroscopic and calorimetric data from the Matthews and Yutani groups indicate that such a structure for the intermediates seems unlikely. Previously, we described the introduction of Trp residues as unfolding reporter groups separately into each of the folding domains and showed that these proteins are wild type enzymatically and in their stability to urea. The unfolding behavior of these alpha-subunits, monitored by fluorescence intensity changes at the discrete emission lambda max for each, in both equilibrium and kinetic experiments, suggest that: (a) both folding units commence unfolding simultaneously (near 2 M urea); (b) the larger alpha-1 unit unfolds in a multistep process, initially yielding a partially unfolded intermediate form which subsequently appears to unfold progressively to completion; and (c) the smaller alpha-2 unit unfolds in a single step event. These results are also clearly incompatible with the early proposals on the structure of the intermediate. It is suggested here that the intermediate is heterogeneous, consisting of a stable, partially unfolded form of alpha-1 attached to either a completely folded or completely unfolded form of alpha-2. These results are consistent with and provide an added dimension to the recent description of the proposed structure of the intermediate.
Collapse
Affiliation(s)
- S G Choi
- Department of Biological Sciences, University of Alabama, Tuscaloosa 35487, USA
| | | |
Collapse
|
31
|
Kalnin NN, Kuwajima K. Kinetic folding and unfolding of staphylococcal nuclease and its six mutants studied by stopped-flow circular dichroism. Proteins 1995; 23:163-76. [PMID: 8592698 DOI: 10.1002/prot.340230206] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Kinetics of refolding and unfolding of staphylococcal nuclease and its six mutants, each carrying single or double amino acid substitutions, are studied by stopped-flow circular dichroism measurements. A transient kinetic intermediate formed within 10 ms after refolding starts possesses a substantial part of the N-domain core beta-structure, whereas helices are formed at the later stages. The structure of the kinetic intermediate is less organized than the structure that is known to be formed by a nuclease 1-136 fragment. Only the refolding kinetics are affected by the mutations in all the mutants except two in which the mutations have changed the native structure. From this result and also from the locations of the mutation sites, the major N-terminal domain of the nuclease in the transition state of folding has a structure nearly identical to the native one. On the other hand, the minor C-terminal domain has previously been shown to be still disorganized in the transition state. The effects of the amino acid substitutions on the stability of the native and the transition states are in good agreement with the changes in the hydration free energy, expected for the corresponding amino acid replacements in the unfolded polypeptide. Since side chains of all the mutated residues are not accessible to solvent in the native structure, the result suggests that it is the unfolded state that is mainly affected by the mutations.
Collapse
Affiliation(s)
- N N Kalnin
- Department of Physics, School of Science, University of Tokyo, Japan
| | | |
Collapse
|
32
|
Choi SG, O'Donnell SE, Sarken KD, Hardman JK. Tryptophan-containing alpha-subunits of the Escherichia coli tryptophan synthase. Enzymatic and urea stability properties. J Biol Chem 1995; 270:17712-5. [PMID: 7629069 DOI: 10.1074/jbc.270.30.17712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Early studies suggested that the Escherichia coli tryptophan synthase alpha-subunit unfolded in a two-step process in which there was a stable intermediate composed of a native alpha-1 folding unit (residues 1-188) and a completely unfolded alpha-2 folding unit (residues 189-268). More recent evidence has indicated that such a structure for the intermediate seems unlikely. In this report, single Trp residues (absent in the wild-type alpha-subunit) are substituted separately for Phe residues at positions 139 (in alpha-1) and 258 (in alpha-2) to produce the F139W, F258W, and F139W/F258W mutant alpha-subunits. The UV absorbance and fluorescence properties of the F139W/F258W double mutant are identical with those of equimolar mixtures of the single mutants, suggesting that the Trp residue at each position can independently report the behavior of its respective folding unit. Each mutant alpha-subunit is wild-type enzymatically, and when UV absorbance is monitored, the urea-induced unfolding of the three tryptophan-containing alpha-subunits is virtually identical to the wild-type protein. These wild-type properties make these proteins attractive candidates for a fluorescence examination of the behavior of the individual folding units and the structure of potential intermediate(s) and as host proteins for the insertion of our existing destabilizing and/or stabilizing mutational alterations.
Collapse
Affiliation(s)
- S G Choi
- Department of Biological Sciences, University of Alabama, Tuscaloosa 35487, USA
| | | | | | | |
Collapse
|
33
|
Loh SN, Kay MS, Baldwin RL. Structure and stability of a second molten globule intermediate in the apomyoglobin folding pathway. Proc Natl Acad Sci U S A 1995; 92:5446-50. [PMID: 7777528 PMCID: PMC41711 DOI: 10.1073/pnas.92.12.5446] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Apomyoglobin folding proceeds through a molten globule intermediate (low-salt form; I1) that has been characterized by equilibrium (pH 4) and kinetic (pH 6) folding experiments. Of the eight alpha-helices in myoglobin, three (A, G, and H) are structured in I1, while the rest appear to be unfolded. Here we report on the structure and stability of a second intermediate, the trichloroacetate form of the molten globule intermediate (I2), which is induced either from the acid-unfolded protein or from I1 by > or = 5 mM sodium trichloroacetate. Circular dichroism measurements monitoring urea- and acid-induced unfolding indicate that I2 is more highly structured and more stable than I1. Although I2 exhibits properties closer to those of the native protein, one-dimensional NMR spectra show that it maintains the lack of fixed side-chain structure that is the hallmark of a molten globule. Amide proton exchange and 1H-15N two-dimensional NMR experiments are used to identify the source of the extra helicity observed in I2. The results reveal that the existing A, G, and H helices present in I1 have become more stable in I2 and that a fourth helix--the B helix--has been incorporated into the molten globule. Available evidence is consistent with I2 being an on-pathway intermediate. The data support the view that apomyoglobin folds in a sequential fashion through a single pathway populated by intermediates of increasing structure and stability.
Collapse
Affiliation(s)
- S N Loh
- Department of Biochemistry, Stanford University Medical Center, CA 94305-5307, USA
| | | | | |
Collapse
|