1
|
Hassan OI, Takamiya S, Asgarihafshejani A, Fehlings MG. Bridging the gap: a translational perspective in spinal cord injury. Exp Biol Med (Maywood) 2024; 249:10266. [PMID: 39391076 PMCID: PMC11464315 DOI: 10.3389/ebm.2024.10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating and complex condition to treat with no curative options. In the past few decades, rapid advancements in our understanding of SCI pathophysiology as well as the mergence of new treatments has created more optimism. Focusing on clinical translation, this paper provides a comprehensive overview of SCI through its epidemiology, pathophysiology, currently employed management strategies, and emerging therapeutic approaches. Additionally, it emphasizes the importance of addressing the heavy quality of life (QoL) challenges faced by SCI patients and their desires, providing a basis to tailor patient-centric forms of care. Furthermore, this paper discusses the frequently encountered barriers in translation from preclinical models to clinical settings. It also seeks to summarize significant completed and ongoing SCI clinical trials focused on neuroprotective and neuroregenerative strategies. While developing a cohesive regenerative treatment strategy remains challenging, even modest improvements in sensory and motor function can offer meaningful benefits and motivation for patients coping with this highly debilitating condition.
Collapse
Affiliation(s)
- Omar Imad Hassan
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Soichiro Takamiya
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Azam Asgarihafshejani
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Liu S, Yang H, Chen D, Xie Y, Tai C, Wang L, Wang P, Wang B. Three-dimensional bioprinting sodium alginate/gelatin scaffold combined with neural stem cells and oligodendrocytes markedly promoting nerve regeneration after spinal cord injury. Regen Biomater 2022; 9:rbac038. [PMID: 35801010 PMCID: PMC9255276 DOI: 10.1093/rb/rbac038] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/03/2022] Open
Abstract
Accumulating research has indicated that the transplantation of combined stem cells and scaffolds is an effective method for spinal cord injury (SCI). The development of three-dimensional (3D) bioprinting technology can make the 3D scaffolds combined with cells more accurate and effective for SCI treatment. However, unmyelinated newborn nerve fibers have no nerve signaling conduction, hampering recovery of motor function. In this study, we designed and printed a type of sodium alginate/gelatin scaffold loaded with neural stem cells and oligodendrocytes, which were involved in the formation of the myelin sheaths of neural cell axons. In order to observe the effectiveness of this 3D bioprinting scaffold, we transplanted it into the completely transected rat spinal cord, and then immunofluorescence staining, hematoxylin–eosin staining and behavioral assessment were performed. The results showed that this 3D bioprinting scaffold markedly improved the hindlimb motor function and promoted nerve regeneration. These findings suggested that this novel 3D bioprinting scaffold was a good carrier for cells transplantation, thereby enhancing spinal cord repair following injury.
Collapse
Affiliation(s)
- Shuo Liu
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School Clinical Stem Cell Center, , Nanjing, Jiangsu Province, China
| | - Hui Yang
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School Clinical Stem Cell Center, , Nanjing, Jiangsu Province, China
| | - Dong Chen
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School Clinical Stem Cell Center, , Nanjing, Jiangsu Province, China
| | - Yuanyuan Xie
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School Clinical Stem Cell Center, , Nanjing, Jiangsu Province, China
| | - ChenXu Tai
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School Clinical Stem Cell Center, , Nanjing, Jiangsu Province, China
| | - Liudi Wang
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School Clinical Stem Cell Center, , Nanjing, Jiangsu Province, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School , Nanjing, Jiangsu Province, China
| | - Bin Wang
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School Clinical Stem Cell Center, , Nanjing, Jiangsu Province, China
| |
Collapse
|
4
|
Wang R, Zhou R, Chen Z, Gao S, Zhou F. The Glial Cells Respond to Spinal Cord Injury. Front Neurol 2022; 13:844497. [PMID: 35599739 PMCID: PMC9120539 DOI: 10.3389/fneur.2022.844497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
It is been over 100 years since glial cells were discovered by Virchow. Since then, a great deal of research was carried out to specify these further roles and properties of glial cells in central nervous system (CNS). As it is well-known that glial cells, such as astrocytes, microglia, oligodendrocytes (OLs), and oligodendrocyte progenitor cells (OPCs) play an important role in supporting and enabling the effective nervous system function in CNS. After spinal cord injury (SCI), these glial cells play different roles in SCI and repair. In this review, we will discuss in detail about the role of glial cells in the healthy CNS and how they respond to SCI.
Collapse
|
5
|
Sardella-Silva G, Mietto BS, Ribeiro-Resende VT. Four Seasons for Schwann Cell Biology, Revisiting Key Periods: Development, Homeostasis, Repair, and Aging. Biomolecules 2021; 11:1887. [PMID: 34944531 PMCID: PMC8699407 DOI: 10.3390/biom11121887] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/28/2023] Open
Abstract
Like the seasons of the year, all natural things happen in stages, going through adaptations when challenged, and Schwann cells are a great example of that. During maturation, these cells regulate several steps in peripheral nervous system development. The Spring of the cell means the rise and bloom through organized stages defined by time-dependent regulation of factors and microenvironmental influences. Once matured, the Summer of the cell begins: a high energy stage focused on maintaining adult homeostasis. The Schwann cell provides many neuron-glia communications resulting in the maintenance of synapses. In the peripheral nervous system, Schwann cells are pivotal after injuries, balancing degeneration and regeneration, similarly to when Autumn comes. Their ability to acquire a repair phenotype brings the potential to reconnect axons to targets and regain function. Finally, Schwann cells age, not only by growing old, but also by imposed environmental cues, like loss of function induced by pathologies. The Winter of the cell presents as reduced activity, especially regarding their role in repair; this reflects on the regenerative potential of older/less healthy individuals. This review gathers essential information about Schwann cells in different stages, summarizing important participation of this intriguing cell in many functions throughout its lifetime.
Collapse
Affiliation(s)
- Gabriela Sardella-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Guerra Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias 25255-030, RJ, Brazil
| | - Bruno Siqueira Mietto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil;
| | - Victor Túlio Ribeiro-Resende
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Guerra Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias 25255-030, RJ, Brazil
| |
Collapse
|
6
|
Chen CZ, Neumann B, Förster S, Franklin RJM. Schwann cell remyelination of the central nervous system: why does it happen and what are the benefits? Open Biol 2021; 11:200352. [PMID: 33497588 PMCID: PMC7881176 DOI: 10.1098/rsob.200352] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Myelin sheaths, by supporting axonal integrity and allowing rapid saltatory impulse conduction, are of fundamental importance for neuronal function. In response to demyelinating injuries in the central nervous system (CNS), oligodendrocyte progenitor cells (OPCs) migrate to the lesion area, proliferate and differentiate into new oligodendrocytes that make new myelin sheaths. This process is termed remyelination. Under specific conditions, demyelinated axons in the CNS can also be remyelinated by Schwann cells (SCs), the myelinating cell of the peripheral nervous system. OPCs can be a major source of these CNS-resident SCs-a surprising finding given the distinct embryonic origins, and physiological compartmentalization of the peripheral and central nervous system. Although the mechanisms and cues governing OPC-to-SC differentiation remain largely undiscovered, it might nevertheless be an attractive target for promoting endogenous remyelination. This article will (i) review current knowledge on the origins of SCs in the CNS, with a particular focus on OPC to SC differentiation, (ii) discuss the necessary criteria for SC myelination in the CNS and (iii) highlight the potential of using SCs for myelin regeneration in the CNS.
Collapse
Affiliation(s)
| | | | | | - Robin J. M. Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| |
Collapse
|
7
|
Garcia-Diaz B, Baron-Van Evercooren A. Schwann cells: Rescuers of central demyelination. Glia 2020; 68:1945-1956. [PMID: 32027054 DOI: 10.1002/glia.23788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 12/31/2022]
Abstract
The presence of peripheral myelinating cells in the central nervous system (CNS) has gained the neurobiologist attention over the years. Despite the confirmed presence of Schwann cells in the CNS in pathological conditions, and the long list of their beneficial effects on central remyelination, the cues that impede or allow Schwann cells to successfully conquer and remyelinate central axons remain partially undiscovered. A better knowledge of these factors stands out as crucial to foresee a rational therapeutic approach for the use of Schwann cells in CNS repair. Here, we review the diverse origins of Schwann cells into the CNS, both peripheral and central, as well as the CNS components that inhibit Schwann survival and migration into the central parenchyma. Namely, we analyze the astrocyte- and the myelin-derived components that restrict Schwann cells into the CNS. Finally, we highlight the unveiled mode of invasion of these peripheral cells through the central environment, using blood vessels as scaffolds to pave their ways toward demyelinated lesions. In short, this review presents the so far uncovered knowledge of this complex CNS-peripheral nervous system (PNS) relationship.
Collapse
Affiliation(s)
- Beatriz Garcia-Diaz
- Unidad de Gestión Clínica de Neurociencias, IBIMA, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain.,Institut du Cerveau et de la Moelle Epinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM, U1127, CNRS, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Paris, France
| | - Anne Baron-Van Evercooren
- Institut du Cerveau et de la Moelle Epinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM, U1127, CNRS, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Paris, France
| |
Collapse
|
8
|
Paschon V, Morena BC, Correia FF, Beltrame GR, Dos Santos GB, Cristante AF, Kihara AH. VDAC1 is essential for neurite maintenance and the inhibition of its oligomerization protects spinal cord from demyelination and facilitates locomotor function recovery after spinal cord injury. Sci Rep 2019; 9:14063. [PMID: 31575916 PMCID: PMC6773716 DOI: 10.1038/s41598-019-50506-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/04/2019] [Indexed: 02/08/2023] Open
Abstract
During the progression of the neurodegenerative process, mitochondria participates in several intercellular signaling pathways. Voltage-dependent anion-selective channel 1 (VDAC1) is a mitochondrial porin involved in the cellular metabolism and apoptosis intrinsic pathway in many neuropathological processes. In spinal cord injury (SCI), after the primary cell death, a secondary response that comprises the release of pro-inflammatory molecules triggers apoptosis, inflammation, and demyelination, often leading to the loss of motor functions. Here, we investigated the functional role of VDAC1 in the neurodegeneration triggered by SCI. We first determined that in vitro targeted ablation of VDAC1 by specific morpholino antisense nucleotides (MOs) clearly promotes neurite retraction, whereas a pharmacological blocker of VDAC1 oligomerization (4, 4′-diisothiocyanatostilbene-2, 2′-disulfonic acid, DIDS), does not cause this effect. We next determined that, after SCI, VDAC1 undergoes conformational changes, including oligomerization and N-terminal exposition, which are important steps in the triggering of apoptotic signaling. Considering this, we investigated the effects of DIDS in vivo application after SCI. Interestingly, blockade of VDAC1 oligomerization decreases the number of apoptotic cells without interfering in the neuroinflammatory response. DIDS attenuates the massive oligodendrocyte cell death, subserving undisputable motor function recovery. Taken together, our results suggest that the prevention of VDAC1 oligomerization might be beneficial for the clinical treatment of SCI.
Collapse
Affiliation(s)
- Vera Paschon
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.
| | - Beatriz Cintra Morena
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Felipe Fernandes Correia
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Giovanna Rossi Beltrame
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Gustavo Bispo Dos Santos
- Instituto de Ortopedia e Traumatologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexandre Fogaça Cristante
- Instituto de Ortopedia e Traumatologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexandre Hiroaki Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.
| |
Collapse
|
9
|
Pukos N, Goodus MT, Sahinkaya FR, McTigue DM. Myelin status and oligodendrocyte lineage cells over time after spinal cord injury: What do we know and what still needs to be unwrapped? Glia 2019; 67:2178-2202. [PMID: 31444938 DOI: 10.1002/glia.23702] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/04/2023]
Abstract
Spinal cord injury (SCI) affects over 17,000 individuals in the United States per year, resulting in sudden motor, sensory and autonomic impairments below the level of injury. These deficits may be due at least in part to the loss of oligodendrocytes and demyelination of spared axons as it leads to slowed or blocked conduction through the lesion site. It has long been accepted that progenitor cells form new oligodendrocytes after SCI, resulting in the acute formation of new myelin on demyelinated axons. However, the chronicity of demyelination and the functional significance of remyelination remain contentious. Here we review work examining demyelination and remyelination after SCI as well as the current understanding of oligodendrocyte lineage cell responses to spinal trauma, including the surprisingly long-lasting response of NG2+ oligodendrocyte progenitor cells (OPCs) to proliferate and differentiate into new myelinating oligodendrocytes for months after SCI. OPCs are highly sensitive to microenvironmental changes, and therefore respond to the ever-changing post-SCI milieu, including influx of blood, monocytes and neutrophils; activation of microglia and macrophages; changes in cytokines, chemokines and growth factors such as ciliary neurotrophic factor and fibroblast growth factor-2; glutamate excitotoxicity; and axon degeneration and sprouting. We discuss how these changes relate to spontaneous oligodendrogenesis and remyelination, the evidence for and against demyelination being an important clinical problem and if remyelination contributes to motor recovery.
Collapse
Affiliation(s)
- Nicole Pukos
- Neuroscience Graduate Program, Ohio State University, Columbus, Ohio.,Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio
| | - Matthew T Goodus
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio.,Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, Ohio
| | - Fatma R Sahinkaya
- Neuroscience Graduate Program, Ohio State University, Columbus, Ohio
| | - Dana M McTigue
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio.,Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, Ohio
| |
Collapse
|
10
|
Oligodendrogliogenesis and Axon Remyelination after Traumatic Spinal Cord Injuries in Animal Studies: A Systematic Review. Neuroscience 2019; 402:37-50. [PMID: 30685542 DOI: 10.1016/j.neuroscience.2019.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
Extensive oligodendrocyte death after acute traumatic spinal cord injuries (TSCI) leads to axon demyelination and subsequently may leave axons vulnerable to degeneration. Despite the present evidence showing spontaneous remyelination after TSCI the cellular origin of new myelin and the time course of the axon ensheathment/remyelination remained controversial issue. In this systematic review the trend of oligodendrocyte death after injury as well as the extent and the cellular origin of oligodendrogliogenesis were comprehensively evaluated. The study design was based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)-guided systematic review. PubMed and EMBASE were searched with no temporal or linguistic restrictions. Also, hand-search was performed in the bibliographies of relevant articles. Non-interventional animal studies discussing different types of myelinating cells including oligodendrocytes, Schwann cells and oligodendrocyte progenitor cells (OPCs) were evaluated. The extent of oligodendrocyte death, oligodendrocyte differentiation and remyelination were the pathophysiological outcome measures. We found 12,359 studies, 34 of which met the inclusion criteria. The cumulative evidence shows extensive oligodendrocytes cell death during the first week post-injury (pi). OPCs and peripheral invading Schwann cells are the dominant cells contributing in myelin formation. The maximum OPC proliferation was observed at around 2 weeks pi and oligodendrogliogenesis continues at later stages until the number of oligodendrocytes return to normal tissue by one month pi. Taken together, the evidence in animals reveals the potential role for endogenous myelinating cells in the axon ensheathment/remyelination after TSCI and this can be the target of pharmacotherapy to induce oligodendrocyte differentiation and myelin formation post-injury.
Collapse
|
11
|
Abstract
Recent advances in neuroscience and devices are ushering in a new generation of medical treatments. Engineered biodevices are demonstrating the potential to create long-term changes in neural circuits, termed neuroplasticity. Thus, the approach of engineering neuroplasticity is rapidly expanding, building on recent demonstrations of improved quality of life for people with movement disorders, epilepsy, and spinal cord injury. In addition, discovering the fundamental mechanisms of engineered neuroplasticity by leveraging anatomically well-documented systems like the spinal cord is likely to provide powerful insights into solutions for other neurotraumas, such as stroke and traumatic brain injury, as well as neurodegenerative disorders, such as Alzheimer's, Parkinson disease, and multiple sclerosis. Now is the time for advancing both the experimental neuroscience, device development, and pioneering human trials to reap the benefits of engineered neuroplasticity as a therapeutic approach for improving quality of life after spinal cord injury.
Collapse
Affiliation(s)
- Chet T Moritz
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA.
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, USA.
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
- UW Institute of Neuroengineering (UWIN), University of Washington, Seattle, WA, USA.
- Washington Spinal Cord Injury Consortium, University of Washington, Seattle, WA, USA.
- Center for Sensorimotor Neural Engineering, Seattle, WA, USA.
- Department of Electrical Engineering, University of Washington , Box 356490, Seattle, WA, 98195, USA.
| |
Collapse
|
12
|
Kondiles BR, Horner PJ. Myelin plasticity, neural activity, and traumatic neural injury. Dev Neurobiol 2017; 78:108-122. [PMID: 28925069 DOI: 10.1002/dneu.22540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/01/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
The possibility that adult organisms exhibit myelin plasticity has recently become a topic of great interest. Many researchers are exploring the role of myelin growth and adaptation in daily functions such as memory and motor learning. Here we consider evidence for three different potential categories of myelin plasticity: the myelination of previously bare axons, remodeling of existing sheaths, and the removal of a sheath with replacement by a new internode. We also review evidence that points to the importance of neural activity as a mechanism by which oligodendrocyte precursor cells (OPCs) are cued to differentiate into myelinating oligodendrocytes, which may potentially be an important component of myelin plasticity. Finally, we discuss demyelination in the context of traumatic neural injury and present an argument for altering neural activity as a potential therapeutic target for remyelination following injury. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 108-122, 2018.
Collapse
Affiliation(s)
- Bethany R Kondiles
- Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Avenue, MSR10-112, Houston, Texas.,Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Philip J Horner
- Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Avenue, MSR10-112, Houston, Texas
| |
Collapse
|
13
|
Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury. Exp Mol Med 2017; 49:e361. [PMID: 28751784 PMCID: PMC5565952 DOI: 10.1038/emm.2017.106] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/07/2017] [Accepted: 02/14/2017] [Indexed: 01/27/2023] Open
Abstract
Remyelination via the transplantation of oligodendrocyte precursor cells (OPCs) has been considered as a strategy to improve the locomotor deficits caused by traumatic spinal cord injury (SCI). To date, enormous efforts have been made to derive OPCs from human pluripotent stem cells (hPSCs), and significant progress in the transplantation of such cells in SCI animal models has been reported. The current methods generally require a long period of time (>2 months) to obtain transplantable OPCs, which hampers their clinical utility for patients with SCI. Here we demonstrate a rapid and efficient method to differentiate hPSCs into neural progenitors that retain the features of OPCs (referred to as OPC-like cells). We used cell sorting to select A2B5-positive cells from hPSC-derived neural rosettes and cultured the selected cells in the presence of signaling cues, including sonic hedgehog, PDGF and insulin-like growth factor-1. This method robustly generated neural cells positive for platelet-derived growth factor receptor-α (PDGFRα) and NG2 (~90%) after 4 weeks of differentiation. Behavioral tests revealed that the transplantation of the OPC-like cells into the spinal cords of rats with contusive SCI at the thoracic level significantly improved hindlimb locomotor function. Electrophysiological assessment revealed enhanced neural conduction through the injury site. Histological examination showed increased numbers of axon with myelination at the injury site and graft-derived myelin formation with no evidence of tumor formation. Our method provides a cell source from hPSCs that has the potential to recover motor function following SCI.
Collapse
|
14
|
Longitudinal enlargement of the lesion after spinal cord injury in the rat: a consequence of malignant edema? Spinal Cord 2016; 55:255-263. [PMID: 27645264 DOI: 10.1038/sc.2016.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/29/2016] [Accepted: 07/19/2016] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN Experimental animal study. OBJECTIVES Quantitative analysis of secondary changes in lesion size after experimental spinal cord injury (SCI) in the rat, with special emphasis to the formation of dorsal column lesions. SETTING Slovakia. METHODS After SCI in the rat, animals survived for different periods ranging from 5 min to 7 days. Their whole spinal cords were cut transversally into 1 mm thick slabs. On each slab, the lesion profile was outlined. The overall shape of the lesion was reconstructed from a series of consecutive profiles and its length was measured. RESULTS Immediately after injury, a spindle-shaped hemorrhagic contusive lesion was observed, with the length of ~15 mm. After a quiescent phase lasting for at least 1 h, there was a dramatic secondary enlargement of the lesion and its length increased up to 40 mm between 1 and 48 h. The fully developed lesion consisted of the spindle-shaped epicenter and long cranial and caudal protrusions located in the midline between dorsal columns. CONCLUSION We propose that secondary enlargement of the lesion can be explained by posttraumatic swelling. The expanding tissues are pushed out in longitudinal axis along the mechanically weakest parts of the spinal cord. Additional data that support this hypothesis are presented. Our findings indicate that malignant posttraumatic edema might have an important role in pathomechanisms of secondary injury after SCI.
Collapse
|
15
|
Abstract
Research over the past decade has demonstrated that, under some circumstances, structural reorganization of the CNS, including the spinal cord, can occur after injury, raising hopes that spinal cord repair associated with functional recovery, although a daunting goal, may not be an unreachable one. This brief review dis cusses recent approaches to this problem: use of neurotrophins and the rerouting of axons within the transected spinal cord from white matter to gray matter through nerve grafts, and the transplantation of exogenous myelin-forming glial cells to spinal cord tracts in which myelin has been lost. Results available to date indicate that, in models mimicking some aspects of human spinal cord injury, these approaches may yield anatomical repair that is associated with partial restoration of physiological and behavioral func tion. Many important questions remain unanswered. Nevertheless, although the clinical goal of repairing spinal cords in humans is a very challenging one, results in animal models suggest that spinal cord repair is a realistic objective and provide a glimpse of what is likely to be a period of rapid progress. NEURO SCIENTIST 3:263-269, 1997
Collapse
Affiliation(s)
- Stephen G. Waxman
- Department of Neurology Yale University School of Medicine
New Haven, Connecticut PVAlEPVA Center for Neuroscience Veterans Administration
Medical Center West Haven, Connecticut
| | - Jeffery D. Kocsis
- Department of Neurology Yale University School of Medicine
New Haven, Connecticut PVAlEPVA Center for Neuroscience Veterans Administration
Medical Center West Haven, Connecticut
| |
Collapse
|
16
|
Li N, Leung GKK. Oligodendrocyte Precursor Cells in Spinal Cord Injury: A Review and Update. BIOMED RESEARCH INTERNATIONAL 2015; 2015:235195. [PMID: 26491661 PMCID: PMC4600489 DOI: 10.1155/2015/235195] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition to individuals, families, and society. Oligodendrocyte loss and demyelination contribute as major pathological processes of secondary damages after injury. Oligodendrocyte precursor cells (OPCs), a subpopulation that accounts for 5 to 8% of cells within the central nervous system, are potential sources of oligodendrocyte replacement after SCI. OPCs react rapidly to injuries, proliferate at a high rate, and can differentiate into myelinating oligodendrocytes. However, posttraumatic endogenous remyelination is rarely complete, and a better understanding of OPCs' characteristics and their manipulations is critical to the development of novel therapies. In this review, we summarize known characteristics of OPCs and relevant regulative factors in both health and demyelinating disorders including SCI. More importantly, we highlight current evidence on post-SCI OPCs transplantation as a potential treatment option as well as the impediments against regeneration. Our aim is to shed lights on important knowledge gaps and to provoke thoughts for further researches and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Ning Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Gilberto K. K. Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| |
Collapse
|
17
|
Electrophysiological characterization of spontaneous recovery in deep dorsal horn interneurons after incomplete spinal cord injury. Exp Neurol 2015; 271:468-78. [DOI: 10.1016/j.expneurol.2015.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/25/2015] [Accepted: 07/04/2015] [Indexed: 11/23/2022]
|
18
|
Abstract
Spinal cord injury is a major cause of disability with devastating neurological outcomes and limited therapeutic opportunities, even though there are thousands of publications on spinal cord injury annually. There are two major types of spinal cord injury, transaction of the spinal cord and spinal cord contusion. Both can theoretically be treated, but there is no well documented treatment in human being. As for spinal cord contusion, we have developed an operation with fabulous result.
Collapse
Affiliation(s)
- Gong Ju
- Institute of Neurosciences, Department of Neurobiology, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jian Wang
- Institute of Neurosciences, Department of Neurobiology, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yazhou Wang
- Institute of Neurosciences, Department of Neurobiology, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xianghui Zhao
- Institute of Neurosciences, Department of Neurobiology, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
19
|
Nichols NL, Punzo AM, Duncan ID, Mitchell GS, Johnson RA. Cervical spinal demyelination with ethidium bromide impairs respiratory (phrenic) activity and forelimb motor behavior in rats. Neuroscience 2012; 229:77-87. [PMID: 23159317 DOI: 10.1016/j.neuroscience.2012.10.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/13/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Although respiratory complications are a major cause of morbidity/mortality in many neural injuries or diseases, little is known concerning mechanisms whereby deficient myelin impairs breathing, or how patients compensate for such changes. Here, we tested the hypothesis that respiratory and forelimb motor functions are impaired in a rat model of focal dorsolateral spinal demyelination (ethidium bromide, EB). Ventilation, phrenic nerve activity and horizontal ladder walking were performed 7-14 days post-C2 injection of EB or vehicle (SHAM). EB caused dorsolateral demyelination at C2-C3 followed by significant spontaneous remyelination at 14 days post-EB. Although ventilation did not differ between groups, ipsilateral integrated phrenic nerve burst amplitude was significantly reduced versus SHAM during chemoreceptor activation at 7 days post-EB but recovered by 14 days. The ratio of ipsi- to contralateral phrenic nerve amplitude correlated with cross-sectional lesion area. This ratio was significantly reduced 7 days post-EB versus SHAM during baseline conditions, and versus SHAM and 14-day groups during chemoreceptor activation. Limb function ipsilateral to EB was impaired 7 days post-EB and partially recovered by 14 days post-EB. EB provides a reversible model of focal, spinal demyelination, and may be a useful model to study mechanisms of functional impairment and recovery via motor plasticity, or the efficacy of new therapeutic interventions to reduce severity or duration of disease.
Collapse
Affiliation(s)
- N L Nichols
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, United States.
| | | | | | | | | |
Collapse
|
20
|
Schaal SM, Garg MS, Ghosh M, Lovera L, Lopez M, Patel M, Louro J, Patel S, Tuesta L, Chan WM, Pearse DD. The therapeutic profile of rolipram, PDE target and mechanism of action as a neuroprotectant following spinal cord injury. PLoS One 2012; 7:e43634. [PMID: 23028463 PMCID: PMC3446989 DOI: 10.1371/journal.pone.0043634] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/24/2012] [Indexed: 01/08/2023] Open
Abstract
The extent of damage following spinal cord injury (SCI) can be reduced by various neuroprotective regimens that include maintaining levels of cyclic adenosine monophosphate (cyclic AMP), via administration of the phosphodiesterase 4 (PDE4) inhibitor Rolipram. The current study sought to determine the optimal neuroprotective dose, route and therapeutic window for Rolipram following contusive SCI in rat as well as its prominent PDE target and putative mechanism of protection. Rolipram or vehicle control (10% ethanol) was given subcutaneously (s.c.) daily for 2 wk post-injury (PI) after which the preservation of oligodendrocytes, neurons and central myelinated axons was stereologically assessed. Doses of 0.1 mg/kg to 1.0 mg/kg (given at 1 h PI) increased neuronal survival; 0.5 mg to 1.0 mg/kg protected oligodendrocytes and 1.0 mg/kg produced optimal preservation of central myelinated axons. Ethanol also demonstrated significant neuronal and oligo-protection; though the preservation provided was significantly less than Rolipram. Subsequent use of this optimal Rolipram dose, 1.0 mg/kg, via different routes (i.v., s.c. or oral, 1 h PI), demonstrated that i.v. administration produced the most significant and consistent cyto- and axo- protection, although all routes were effective. Examination of the therapeutic window for i.v. Rolipram (1.0 mg/kg), when initiated between 1 and 48 h after SCI, revealed maximal neuroprotection at 2 h post-SCI, although the protective efficacy of Rolipram could still be observed when administration was delayed for up to 48 h PI. Importantly, use of the optimal Rolipram regimen significantly improved locomotor function after SCI as measured by the BBB score. Lastly we show SCI-induced changes in PDE4A, B and D expression and phosphorylation as well as cytokine expression and immune cell infiltration. We demonstrate that Rolipram abrogates SCI-induced PDE4B1 and PDE4A5 production, PDE4A5 phosphorylation, MCP-1 expression and immune cell infiltration, while preventing post-injury reductions in IL-10. This work supports the use of Rolipram as an acute neuroprotectant following SCI and defines an optimal administration protocol and target for its therapeutic application.
Collapse
Affiliation(s)
- Sandra Marie Schaal
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- The Neuroscience Program, University of Miami, Miami, Florida, United States of America
| | - Maneesh Sen Garg
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Lilie Lovera
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Michael Lopez
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Monal Patel
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jack Louro
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Samik Patel
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Luis Tuesta
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Wai-Man Chan
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Damien Daniel Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- The Neuroscience Program, University of Miami, Miami, Florida, United States of America
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
21
|
Pathological changes in the white matter after spinal contusion injury in the rat. PLoS One 2012; 7:e43484. [PMID: 22952690 PMCID: PMC3430695 DOI: 10.1371/journal.pone.0043484] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/20/2012] [Indexed: 11/21/2022] Open
Abstract
It has been shown previously that after spinal cord injury, the loss of grey matter is relatively faster than loss of white matter suggesting interventions to save white matter tracts offer better therapeutic possibilities. Loss of white matter in and around the injury site is believed to be the main underlying cause for the subsequent loss of neurological functions. In this study we used a series of techniques, including estimations of the number of axons with pathology, immunohistochemistry and mapping of distribution of pathological axons, to better understand the temporal and spatial pathological events in white matter following contusion injury to the rat spinal cord. There was an initial rapid loss of axons with no detectable further loss beyond 1 week after injury. Immunoreactivity for CNPase indicated that changes to oligodendrocytes are rapid, extending to several millimetres away from injury site and preceding much of the axonal loss, giving early prediction of the final volume of white matter that survived. It seems that in juvenile rats the myelination of axons in white matter tracts continues for some time, which has an important bearing on interpretation of our, and previous, studies. The amount of myelin debris and axon pathology progressively decreased with time but could still be observed at 10 weeks after injury, especially at more distant rostral and caudal levels from the injury site. This study provides new methods to assess injuries to spinal cord and indicates that early interventions are needed for the successful sparing of white matter tracts following injury.
Collapse
|
22
|
Axonal thinning and extensive remyelination without chronic demyelination in spinal injured rats. J Neurosci 2012; 32:5120-5. [PMID: 22496557 DOI: 10.1523/jneurosci.0002-12.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Remyelination following spinal cord injury (SCI) is thought to be incomplete; demyelination is reported to persist chronically and is proposed as a compelling therapeutic target. Yet most reports do not distinguish between the myelin status of intact axons and injury-severed axons whose proximal stumps persist but provide no meaningful function. We previously found full remyelination of spared, intact rubrospinal axons caudal to the lesion in chronic mouse SCI. However, the clinical concept of chronically demyelinated spared axons remains controversial. Since mouse models may have limitations in clinical translation, we asked whether the capacity for full remyelination is conserved in clinically relevant chronic rat SCI. We determined myelin status by examining paranodal protein distribution on anterogradely labeled, intact corticospinal and rubrospinal axons throughout the extent of the lesion. Demyelination was evident on proximal stumps of severed axons, but not on intact axons. For the first time, we demonstrate that a majority of intact axons exhibit remyelination (at least one abnormally short internode, <100 μm). Remarkably, shortened internodes were significantly concentrated at the lesion epicenter and individual axons were thinned by 23% compared with their rostral and caudal zones. Mathematical modeling predicted a 25% decrease in conduction velocity at the lesion epicenter due to short internodes and axonal thinning. In conclusion, we do not find a large chronically demyelinated population to target with remyelination therapies. Interventions may be better focused on correcting structural or molecular abnormalities of regenerated myelin.
Collapse
|
23
|
Hampton DW, Innes N, Merkler D, Zhao C, Franklin RJ, Chandran S. Focal Immune-Mediated White Matter Demyelination Reveals an Age-Associated Increase in Axonal Vulnerability and Decreased Remyelination Efficiency. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1897-905. [DOI: 10.1016/j.ajpath.2012.01.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 01/18/2023]
|
24
|
Mekhail M, Almazan G, Tabrizian M. Oligodendrocyte-protection and remyelination post-spinal cord injuries: a review. Prog Neurobiol 2012; 96:322-39. [PMID: 22307058 DOI: 10.1016/j.pneurobio.2012.01.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 12/28/2022]
Abstract
In the past four decades, the main focus of investigators in the field of spinal cord regeneration has been to devise therapeutic measures that enhance neural regeneration. More recently, emphasis has been placed on enhancing remyelination and providing oligodendrocyte-protection after a spinal cord injury (SCI). Demyelination post-SCI is part of the cascading secondary injury that takes place immediately after the primary insult; therefore, therapeutic measures are needed to reduce oligodendrocyte death and/or enhance remyelination during the acute stage, preserving neurological functions that would be lost otherwise. In this review a thorough investigation of the oligodendrocyte-protective and remyelinative molecular therapies available to date is provided. The advent of new biomaterials shown to promote remyelination post-SCI is discussed mainly in the context of a combinatorial approach where the biomaterial also provides drug delivery capabilities. The aim of these molecular and biomaterial-based therapies is twofold: (1) oligodendrocyte-protective therapy, which involves protecting already existing oligodendrocytes from undergoing apoptosis/necrosis; and (2) inductive remyelination, which involves harnessing the remyelinative capabilities of endogenous oligodendrocyte precursor cells (OPCs) at the lesion site by providing a suitable environment for their migration, survival, proliferation and differentiation. From the evidence reported in the literature, we conclude that the use of a combinatorial approach including biomaterials and molecular therapies would provide advantages such as: (1) sustained release of the therapeutic molecule, (2) local delivery at the lesion site, and (3) an environment at the site of injury that promotes OPC migration, differentiation and remyelination.
Collapse
Affiliation(s)
- Mina Mekhail
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
25
|
Yasuda A, Tsuji O, Shibata S, Nori S, Takano M, Kobayashi Y, Takahashi Y, Fujiyoshi K, Hara CM, Miyawaki A, Okano HJ, Toyama Y, Nakamura M, Okano H. Significance of Remyelination by Neural Stem/Progenitor Cells Transplanted into the Injured Spinal Cord. Stem Cells 2011; 29:1983-94. [DOI: 10.1002/stem.767] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Matrix metalloproteinase-9 controls proliferation of NG2+ progenitor cells immediately after spinal cord injury. Exp Neurol 2011; 231:236-46. [PMID: 21756907 DOI: 10.1016/j.expneurol.2011.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/17/2011] [Accepted: 06/23/2011] [Indexed: 01/09/2023]
Abstract
We have demonstrated that overcoming matrix metalloproteinase (MMP)-mediated suppression of glial proliferation stimulates axonal regeneration in the peripheral nervous system. The regenerative capacity of the adult CNS in response to injury and demyelination depends on the ability of multipotent glial NG2+ progenitor cells to proliferate and mature, mainly into oligodendrocytes. Herein, we have established the important role of MMPs, specifically MMP-9, in regulation of NG2+ cell proliferation in injured spinal cord. Targeting transiently induced MMP-9 using acute MMP-9/2 inhibitor (SB-3CT) therapy for two days after T9-10 spinal cord dorsal hemisection produced a significant increase in mitosis (assessed by bromodeoxyuridine incorporation) of NG2+ cells but not GFAP+astrocytes and Iba-1+ microglia and/or macrophages. Acute MMP-9/2 blockade reduced the shedding of the NG2 proteoglycan and of the NR1 subunit of the N-methyl D-aspartate (NMDA) receptor, whose decline is believed to accompany NG2+ cell maturation into OLs. Increase in post-mitotic oligodendrocytes during remyelination and improved myelin neuropathology in the hemisected spinal cord were accompanied by locomotion and somatosensory recovery after acute MMP-9/2 inhibition. Collectively, these data establish a novel role for MMPs in regulation of NG2+ cell proliferation in the damaged CNS, and a long-term benefit of acute MMP-9 block after SCI.
Collapse
|
27
|
Lee KH, Kim UJ, Park YG, Won R, Lee H, Lee BH. Optical Imaging of Somatosensory Evoked Potentials in the Rat Cerebral Cortex after Spinal Cord Injury. J Neurotrauma 2011; 28:797-807. [DOI: 10.1089/neu.2010.1492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan, Korea
| | - Un Jeng Kim
- Department of Physiology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Gou Park
- Department of Neurosurgery, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ran Won
- Department of Biomedical Laboratory Science, Division of Health Science, Dongseo University, Busan, Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, Korea
| | - Bae Hwan Lee
- Department of Physiology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
28
|
Abstract
Oligodendrocytes (OLs) are particularly susceptible to the toxicity of the acute lesion environment after spinal cord injury (SCI). They undergo both necrosis and apoptosis acutely, with apoptosis continuing at chronic time points. Loss of OLs causes demyelination and impairs axon function and survival. In parallel, a rapid and protracted OL progenitor cell proliferative response occurs, especially at the lesion borders. Proliferating and migrating OL progenitor cells differentiate into myelinating OLs, which remyelinate demyelinated axons starting at 2 weeks post-injury. The progression of OL lineage cells into mature OLs in the adult after injury recapitulates development to some degree, owing to the plethora of factors within the injury milieu. Although robust, this endogenous oligogenic response is insufficient against OL loss and demyelination. First, in this review we analyze the major spatial-temporal mechanisms of OL loss, replacement, and myelination, with the purpose of highlighting potential areas of intervention after SCI. We then discuss studies on OL protection and replacement. Growth factors have been used both to boost the endogenous progenitor response, and in conjunction with progenitor transplantation to facilitate survival and OL fate. Considerable progress has been made with embryonic stem cell-derived cells and adult neural progenitor cells. For therapies targeting oligogenesis to be successful, endogenous responses and the effects of the acute and chronic lesion environment on OL lineage cells must be understood in detail, and in relation, the optimal therapeutic window for such strategies must also be determined.
Collapse
Affiliation(s)
- Akshata Almad
- Neuroscience Graduate Studies Program, Ohio State University, Columbus, Ohio 43210 USA
- Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, Ohio 43210 USA
| | - F. Rezan Sahinkaya
- Neuroscience Graduate Studies Program, Ohio State University, Columbus, Ohio 43210 USA
- Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, Ohio 43210 USA
| | - Dana M. McTigue
- Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, Ohio 43210 USA
- Department of Neuroscience, Ohio State University, 788 Biomedical Research Tower, 460 W. 12th Ave, Columbus, Ohio 43210 USA
| |
Collapse
|
29
|
Early microvascular reactions and blood-spinal cord barrier disruption are instrumental in pathophysiology of spinal cord injury and repair: novel therapeutic strategies including nanowired drug delivery to enhance neuroprotection. J Neural Transm (Vienna) 2010; 118:155-76. [PMID: 21161717 DOI: 10.1007/s00702-010-0514-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 10/15/2010] [Indexed: 01/19/2023]
Abstract
Spinal cord injury (SCI) is a devastating disease that leads to permanent disability of victims for which no suitable therapeutic intervention has been achieved so far. Thus, exploration of novel therapeutic agents and nano-drug delivery to enhance neuroprotection after SCI is the need of the hour. Previous research on SCI is largely focused to improve neurological manifestations of the disease while ignoring spinal cord pathological changes. Recent studies from our laboratory have shown that pathological recovery of SCI appears to be well correlated with the improvement of sensory motor functions. Thus, efforts should be made to reduce or minimize spinal cord cell pathology to achieve functional and cellular recovery to enhance the quality of lives of the victims. While treating spinal cord disease, recovery of both neuronal and non-neuronal cells, e.g., endothelia and glial cells are also necessary to maintain a healthy spinal cord function after trauma. This review focuses effects of novel therapeutic strategies on the role of spinal cord microvascular reactions and endothelia cell functions, i.e., blood-spinal cord barrier (BSCB) in SCI and repair mechanisms. Thus, new therapeutic approach to minimize spinal cord pathology after trauma using antibodies to various neurotransmitters and/or drug delivery to the cord directly by topical application to maintain strong localized effects on the injured cells are discussed. In addition, the use of nanowired drugs to affect remote areas of the cord after their application on the injured spinal cord in thwarting the injury process rapidly and to enhance the neuroprotective effects of the parent compounds are also described in the light of current knowledge and our own investigations. It appears that local treatment with new therapeutic agents and nanowired drugs after SCI are needed to enhance neurorepair leading to improved spinal cord cellular functions and the sensory motor performances.
Collapse
|
30
|
Ward RE, Huang W, Curran OE, Priestley JV, Michael-Titus AT. Docosahexaenoic acid prevents white matter damage after spinal cord injury. J Neurotrauma 2010; 27:1769-80. [PMID: 20698757 DOI: 10.1089/neu.2010.1348] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have previously shown that the omega-3 fatty acid docosahexaenoic acid (DHA) significantly improves several histological and behavioral measures after spinal cord injury (SCI). White matter damage plays a key role in neurological outcome following SCI. Therefore, we examined the effects of the acute intravenous (IV) administration of DHA (250 nmol/kg) 30 min after thoracic compression SCI in rats, alone or in combination with a DHA-enriched diet (400 mg/kg/d, administered for 6 weeks post-injury), on white matter pathology. By 1 week post-injury, the acute IV DHA injection led to significantly reduced axonal dysfunction, as indicated by accumulation of β-amyloid precursor protein (-55% compared to vehicle-injected controls) in the dorsal columns. The loss of cytoskeletal proteins following SCI was also significantly reduced. There were 43% and 73% more axons immunoreactive for non-phosphorylated 200-kD neurofilament in the ventral white matter and ventrolateral white matter, respectively, in animals receiving DHA injections than vehicle-injected rats. The acute DHA treatment also led to a significant improvement in microtubule-associated protein-2 immunoreactivity. By 6 weeks, damage to myelin and serotonergic fibers was also reduced. For some of the parameters measured, the combination of DHA injection and DHA-enriched diet led to greater neuroprotection than DHA injection alone. These findings demonstrate the therapeutic potential of DHA in SCI, and clearly indicate that this fatty acid confers significant protection to the white matter.
Collapse
Affiliation(s)
- Rachael E Ward
- Centre for Neuroscience and Trauma, The Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
31
|
Wu B, Ren X. Promoting Axonal Myelination for Improving Neurological Recovery in Spinal Cord Injury. J Neurotrauma 2009; 26:1847-56. [PMID: 19785544 DOI: 10.1089/neu.2008.0551] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Bo Wu
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
- Department of Orthopedics, 88th Hospital, Taian, Shangdong, China
| | - Xianjun Ren
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
32
|
Muttikkal TJE, Ashebu SD, Ben-Nakhi A, Pulikkottil MP, Sheikh M. Isolated bilateral pyramidal tract lesions? An unusual case of demyelination following trauma. A case report. Neuroradiol J 2009; 21:817-23. [PMID: 24257051 DOI: 10.1177/197140090802100611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 10/26/2008] [Indexed: 11/17/2022] Open
Abstract
This paper describes the case of a young woman who developed quadriparesis due to isolated bilateral pyramidal tract lesions suggestive of demyelination following trauma.
Collapse
|
33
|
Obermair FJ, Schröter A, Thallmair M. Endogenous neural progenitor cells as therapeutic target after spinal cord injury. Physiology (Bethesda) 2008; 23:296-304. [PMID: 18927205 DOI: 10.1152/physiol.00017.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Growing knowledge about the role of neural progenitor cells supports the hope that stem cell-based therapeutic approaches aimed at restoring function in the lesioned central nervous system can be established. Possible therapies for promoting recovery after spinal cord injury include stimulating the formation of neurons and glial cells by endogenous progenitor cells. This article reviews the current knowledge about the nature of adult progenitor cells in the intact and injured spinal cord and summarizes possibilities and limitations of cellular replacement strategies based on manipulations of endogenous spinal cord progenitor cells and their environment.
Collapse
Affiliation(s)
- Franz-Josef Obermair
- Brain Research Institute, University of Zurich, and Department of Neuromorphology, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
34
|
No evidence for chronic demyelination in spared axons after spinal cord injury in a mouse. J Neurosci 2008; 28:3887-96. [PMID: 18400887 DOI: 10.1523/jneurosci.4756-07.2008] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The pattern of remyelination after traumatic spinal cord injury remains elusive, with animal and human studies reporting partial to complete demyelination followed by incomplete remyelination. In the present study, we found that spared rubrospinal tract (RST) axons of passage traced with actively transported dextrans and examined caudally to the lesion 12 weeks after mouse spinal cord contusion injury were fully remyelinated. Spared axons exhibited a marginally reduced myelin thickness and significantly shorter internodes. CASPR (contactin-associated protein) and K(v)1.2 channels were used to identify internodes and paranodal protein distribution properties were used as an index of myelin integrity. This is the first time the CNS myelin internode length was measured in a mouse. To better understand the significance of shortened internodes and thinner myelin in spared axons, we modeled conduction properties using McIntyre's et al. model of myelinated axons. Mathematical modeling predicted a 21% decrease in the conduction velocity of remyelinated RST axons attributable to shortened internodes. To determine whether demyelination could be present on axons exhibiting a pathological transport system, we used the retroviral reporter system. Virally delivered green fluorescent protein unveiled a small population of dystrophic RST axons that persist chronically with evident demyelination or abnormal remyelination. Collectively, these data show that lasting demyelination in spared axons is rare and that remyelination of axons of passage occurs in the chronically injured mouse spinal cord.
Collapse
|
35
|
Abstract
Fampridine-SR is a sustained-release tablet form of the K(+) channel-blocking compound 4-aminopyridine that has been shown to restore conduction in focally demyelinated axons, to enhance synaptic transmission in many types of neurons and to potentiate muscle contraction. The present review describes the mechanism of action and chemistry of Fampridine-SR, its pharmacokinetics and safety, and the outcomes of clinical trials of its safety and efficacy for enhancing neuromuscular function in patients with multiple sclerosis or spinal cord injury. Randomized clinical trials completed to date indicate that this form of K(+) channel blockade may be useful for the improvement of walking ability in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Keith C Hayes
- The University of Western Ontario, Department of Physical Medicine & Rehabilitation, London, Ontario, Canada.
| |
Collapse
|
36
|
Budde MD, Kim JH, Liang HF, Schmidt RE, Russell JH, Cross AH, Song SK. Toward accurate diagnosis of white matter pathology using diffusion tensor imaging. Magn Reson Med 2007; 57:688-95. [PMID: 17390365 DOI: 10.1002/mrm.21200] [Citation(s) in RCA: 318] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diffusion tensor imaging (DTI) has been widely applied to investigate injuries in the central nervous system (CNS) white matter (WM). However, the underlying pathological correlates of diffusion changes have not been adequately determined. In this study the coregistration of histological sections to MR images and a pixel-based receiver operating characteristic (ROC) analysis were used to compare the axial (lambda( parallel)) and radial (lambda( perpendicular)) diffusivities derived from DTI and histological markers of axon (phosphorylated neurofilament, SMI-31) and myelin (Luxol fast blue (LFB)) integrity, respectively, in two different patterns of injury to mouse spinal cord (SC) WM. In contusion SC injury (SCI), a decrease in lambda( parallel) matched the pattern of axonal damage with high accuracy, but lambda( perpendicular) did not match the pattern of demyelination detected by LFB. In a mouse model of multiple sclerosis (MS), lambda( perpendicular) and lambda( parallel) did not match the patterns of demyelination or axonal damage, respectively. However, a region of interest (ROI) analysis suggested that lambda( perpendicular)-detected demyelination paralleled that observed with LFB, and lambda( parallel) decreased in both regions of axonal damage and normal-appearing WM (NAWM) as visualized by SMI-31. The results suggest that directional diffusivities may reveal abnormalities that are not obvious with SMI-31 and LFB staining, depending on the type of injury.
Collapse
Affiliation(s)
- Matthew D Budde
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Ibanez C, Ito D, Zawadzka M, Jeffery ND, Franklin RJM. Calponin is expressed by fibroblasts and meningeal cells but not olfactory ensheathing cells in the adult peripheral olfactory system. Glia 2007; 55:144-51. [PMID: 17078028 DOI: 10.1002/glia.20443] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Olfactory ensheathing cells (OECs), the principal glial cells of the peripheral olfactory system, have many phenotypic similarities with Schwann cells of the peripheral nervous system. This makes reliably distinguishing these two cells types difficult, especially following transplantation into areas of injury in the central nervous system. In an attempt to identify markers by which these two cells types can be distinguished, a recent proteomic analysis of fetal OECs and adult Schwann cells identified the actin-binding protein calponin as a potential marker expressed by OECs but not Schwann cells. Since many studies designed with the translational goal of autologous transplantation in mind have used adult OECs, this study examined the expression of calponin by adult OECs, both in vivo within the peripheral olfactory system and in vitro. Calponin colocalized with strongly fibronectin positive fibroblasts in the olfactory mucosa (OM) and meningeal cells in the olfactory bulb (OB) but not with S100beta or neuropeptide-Y positive OECs. In tissue culture, calponin was strongly expressed by fibronectin-expressing fibroblasts from OM, sciatic nerve and skin and by meningeal cells from the OB, but not by p75(NTR)- and S100beta-expressing OECs. These data, supported by Western blotting, indicate that calponin can not be used to distinguish adult OECs and Schwann cells.
Collapse
Affiliation(s)
- Chrystelle Ibanez
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
Yang H, Lu P, McKay HM, Bernot T, Keirstead H, Steward O, Gage FH, Edgerton VR, Tuszynski MH. Endogenous neurogenesis replaces oligodendrocytes and astrocytes after primate spinal cord injury. J Neurosci 2006; 26:2157-66. [PMID: 16495442 PMCID: PMC6674802 DOI: 10.1523/jneurosci.4070-05.2005] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neurogenesis has been described in various regions of the CNS throughout life. We examined the extent of natural cell division and replacement from 7 weeks to 7 months after cervical spinal cord injury in four adult rhesus monkeys. Bromodeoxyuridine (BrdU) injections revealed an increase of >80-fold in the number of newly divided cells in the primate spinal cord after injury, with an average of 725,000 BrdU-labeled cells identified per monkey in the immediate injury zone. By 7 months after injury, 15% of these new cells expressed mature markers of oligodendrocytes and 12% expressed mature astrocytic markers. Newly born oligodendrocytes were present in zones of injury-induced demyelination and appeared to ensheath or remyelinate host axons. Thus, cell replacement is an extensive natural compensatory response to injury in the primate spinal cord that contributes to neural repair and is a potential target for therapeutic enhancement.
Collapse
|
39
|
Gaviria M, Bonny JM, Haton H, Jean B, Teigell M, Renou JP, Privat A. Time course of acute phase in mouse spinal cord injury monitored by ex vivo quantitative MRI. Neurobiol Dis 2006; 22:694-701. [PMID: 16545959 DOI: 10.1016/j.nbd.2006.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 12/23/2005] [Accepted: 01/19/2006] [Indexed: 10/24/2022] Open
Abstract
During the acute phase of spinal cord injury (SCI), major alterations of white and grey matter are a key issue, which determine the neurological outcome. The present study with ex vivo quantitative high-field magnetic resonance microimaging (MRI) was intended in order to identify sensitive parameters of tissue disruption in a well-controlled mouse model of ischemic SCI. MR imaging evidenced changes as early as the second hour after the lesion in the dorsal horns, which appear swollen. After 4 h, alterations of the white matter of dorsal and lateral funiculi were reflected by a progressive loss of white/grey matter contrast with further ventral extension by the 24th hour. Diffusion tensor imaging and multi-exponential T2 measurements permitted to quantify these physicochemical, time-related, alterations during the 24-h period. This characterization of spatial and temporal evolution of SCI will contribute to better define both the most appropriate targets for future therapies and more accurate therapeutic windows. Upcoming directions include the use of these parameters on in vivo animal models and their application to clinics. Indeed, magnetic resonance techniques appear now as a major non-invasive translation tool in CNS pathologies based on the development of more appropriate pre-clinical models.
Collapse
Affiliation(s)
- Manuel Gaviria
- Neuréva Inc.-INM, CHU St Eloi, 80 rue Augustin Fliche, 34295 Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
40
|
Hofstetter CP, Holmström NAV, Lilja JA, Schweinhardt P, Hao J, Spenger C, Wiesenfeld-Hallin Z, Kurpad SN, Frisén J, Olson L. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 2005; 8:346-53. [PMID: 15711542 DOI: 10.1038/nn1405] [Citation(s) in RCA: 483] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/21/2005] [Indexed: 12/23/2022]
Abstract
Several studies have reported functional improvement after transplantation of neural stem cells into injured spinal cord. We now provide evidence that grafting of adult neural stem cells into a rat thoracic spinal cord weight-drop injury improves motor recovery but also causes aberrant axonal sprouting associated with allodynia-like hypersensitivity of forepaws. Transduction of neural stem cells with neurogenin-2 before transplantation suppressed astrocytic differentiation of engrafted cells and prevented graft-induced sprouting and allodynia. Transduction with neurogenin-2 also improved the positive effects of engrafted stem cells, including increased amounts of myelin in the injured area, recovery of hindlimb locomotor function and hindlimb sensory responses, as determined by functional magnetic resonance imaging. These findings show that stem cell transplantation into injured spinal cord can cause severe side effects and call for caution in the consideration of clinical trials.
Collapse
|
41
|
Totoiu MO, Keirstead HS. Spinal cord injury is accompanied by chronic progressive demyelination. J Comp Neurol 2005; 486:373-83. [PMID: 15846782 DOI: 10.1002/cne.20517] [Citation(s) in RCA: 298] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Preceding the development of therapeutic strategies for spinal cord injury is an identification of those pathological processes that might serve as therapeutic targets. Although demyelination has been documented as a secondary degenerative component of spinal cord injury in several species including humans, the extent of demyelination and its functional consequence remain unknown. In this report, we document the extent of demyelination and remyelination up to 450 days following contusive spinal cord injury in adult rats. The overall number of demyelinated axons peaked at 1 day post injury, declined by 7-14 days post injury, and then progressively increased up to 450 days post injury. Oligodendrocyte and Schwann cell remyelinated axons appeared by 14 days post injury. Although remyelinated axons were present from 14 to 450 days post injury, remyelination was incomplete, as indicated by the presence of demyelinated axons at every time point examined. These studies demonstrate for the first time that spinal cord injury is accompanied by chronic progressive demyelination, and they substantiate demyelination as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Minodora O Totoiu
- Reeve-Irvine Research Center, Department of Anatomy and Neurobiology, University of California at Irvine, 92697-4292, USA
| | | |
Collapse
|
42
|
Park E, Velumian AA, Fehlings MG. The Role of Excitotoxicity in Secondary Mechanisms of Spinal Cord Injury: A Review with an Emphasis on the Implications for White Matter Degeneration. J Neurotrauma 2004; 21:754-74. [PMID: 15253803 DOI: 10.1089/0897715041269641] [Citation(s) in RCA: 396] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Following an initial impact after spinal cord injury (SCI), there is a cascade of downstream events termed 'secondary injury', which culminate in progressive degenerative events in the spinal cord. These secondary injury mechanisms include, but are not limited to, ischemia, inflammation, free radical-induced cell death, glutamate excitotoxicity, cytoskeletal degradation and induction of extrinsic and intrinsic apoptotic pathways. There is emerging evidence that glutamate excitotoxicity plays a key role not only in neuronal cell death but also in delayed posttraumatic spinal cord white matter degeneration. Importantly however, the differences in cellular composition and expression of specific types of glutamate receptors in grey versus white matter require a compartmentalized approach to understand the mechanisms of secondary injury after SCI. This review examines mechanisms of secondary white matter injury with particular emphasis on glutamate excitotoxicity and the potential link of this mechanism to apoptosis. Recent studies have provided new insights into the mechanisms of glutamate release and its potential targets, as well as the downstream pathways associated with glutamate receptor activation in specific types of cells. Evidence from molecular and functional expression of glutamatergic AMPA receptors in white matter glia (and possibly axons), the protective effects of AMPA/kainate antagonists in posttraumatic white matter axonal function, and the vulnerability of oligodendrocytes to excitotoxic cell death suggest that glutamate excitotoxicity is associated with oligodendrocyte apoptosis. The latter mechanism appears key to glutamatergic white matter degeneration after SCI and may represent an attractive therapeutic target.
Collapse
Affiliation(s)
- Eugene Park
- Division of Neurosurgery and Institute of Medical Science, University of Toronto, and Division of Cell and Molecular Biology, Toronto Western Research Institute, Toronto Western Hospital, University Health Network, Ontario, Canada
| | | | | |
Collapse
|
43
|
Karimi-Abdolrezaee S, Eftekharpour E, Fehlings MG. Temporal and spatial patterns of Kv1.1 and Kv1.2 protein and gene expression in spinal cord white matter after acute and chronic spinal cord injury in rats: implications for axonal pathophysiology after neurotrauma. Eur J Neurosci 2004; 19:577-89. [PMID: 14984408 DOI: 10.1111/j.0953-816x.2004.03164.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
After spinal cord injury (SCI), surviving white matter axons display axonal dysfunction associated with demyelination and altered K+ channel activity. To clarify the molecular basis of posttraumatic axonal pathophysiology after SCI, we investigated the changes in expression and distribution of the axonal K+ channel subunits Kv1.1 and Kv1.2 in spinal cord white matter after in vivo SCI in the rat. Using Western blot analysis, we found an increased expression of Kv1.1 and Kv1.2 at 2 and 6 weeks after SCI. By real-time PCR we observed an increase in Kv1.1 and Kv1.2 mRNA levels 1 day after SCI, which persisted until 6 weeks. Confocal immunohistochemistry showed a markedly dispersed labelling of Kv1.1 and Kv1.2 along the injured axons, in contrast to the tight localization of these channels to the juxtaparanodes of noninjured axons. This redistribution of Kv1.1 and Kv1.2 occurred as early as 1 h postinjury along some injured axons, and persisted at 6 weeks postinjury. In parallel with the redistribution of Kv1.1 and 1.2, contactin-associated protein (Caspr), which is normally confined to a paranodal location, also displayed a more diffuse distribution along the injured spinal cord axons. Our results suggest that the increased expression of Kv1.1 and Kv1.2 proteins is transcriptionally regulated. In contrast, the redistribution of the axonal K+ channel subunits occurs very early postinjury and probably reflects a disruption of the juxtaparanodal axonal region due to physical trauma, as shown by altered localization of Caspr.
Collapse
Affiliation(s)
- Soheila Karimi-Abdolrezaee
- Division of Neurosurgery, Toronto Western Research Institute, Krembil Neuroscience Center, University of Toronto, Toronto, Ontario, Canada M5T 2S8
| | | | | |
Collapse
|
44
|
Molina AI, Cristante AF, Barros Filho TEPD. Análise comparativa da avaliação funcional realizada na lesão medular em animais. ACTA ORTOPEDICA BRASILEIRA 2004. [DOI: 10.1590/s1413-78522004000100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A avaliação comportamental após, a contusão da medula espinhal, enfocou por um tempo a locomoção em campo aberto usando uma escala de classificação desenvolvida por Tarlov et al.(18). Tarlov(17) realizou estudos experimentais em cães, produzindo compressão medular com atribuição de zero a cinco para graduação dos movimentos do animal. Contudo, esta escala tem sido modificada por pesquisadores e suas alterações feitas por vários grupos tornaram as comparações das medidas do resultado locomotor difíceis. Um aspecto crítico da pesquisa utilizando lesão medular em animais é a padronização da avaliação da recuperação locomotora. A escala desenvolvida por Tator(19) é simples e de fácil utilização, porém pode não analisar todos os aspectos necessários . Basso, Beattie e Bresnahan(2,3) apresentaram uma escala de classificação com índice de recuperação locomotora em ratos que sofreram lesão medular produzida em laboratório. Os dados indicam que a escala BBB é uma medida válida para a recuperação locomotora capaz de distinguir os resultados comportamentais em função de ferimentos diferentes e para prever alterações anatômicas no centro da lesão. O propósito deste estudo foi analisar e comparar escalas de classificação locomotora sem ambigüidade, eficientes e expandida para se padronizar as medidas resultantes nos laboratórios.
Collapse
|
45
|
Abstract
Oligodendrocytes, myelin-forming glial cells of the central nervous system, are vulnerable to damage in a variety of neurologic diseases. Much is known of primary myelin injury, which occurs in settings of genetic dysmyelination or demyelinating disease. There is growing awareness that oligodendrocytes are also targets of injury in acute ischemia. Recognition of oligodendrocyte damage in animal models of ischemia requires attention to their distinct histologic features or use of specific immunocytochemical markers. Like neurons, oligodendrocytes are highly sensitive to injury by oxidative stress, excitatory amino acids, trophic factor deprivation, and activation of apoptotic pathways. Understanding mechanisms of oligodendrocyte death may suggest new therapeutic strategies to preserve or restore white matter function and structure after ischemic insults.
Collapse
Affiliation(s)
- Deborah Dewar
- Division of Clinical Neuroscience, University of Glasgow, Wellcome Surgical Institute, Garscube Estate, Bearsden Road, Glasgow C61 1QH, Scotland, UK.
| | | | | |
Collapse
|
46
|
|
47
|
Lipson AC, Horner PJ. Potent possibilities: endogenous stem cells in the adult spinal cord. PROGRESS IN BRAIN RESEARCH 2002; 137:283-97. [PMID: 12440374 DOI: 10.1016/s0079-6123(02)37022-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Adam C Lipson
- Department of Neurological Surgery, University of Washington, Harborview Medical Center, 325 Ninth Avenue, Box 359655, Seattle, WA 98104-2499, USA
| | | |
Collapse
|
48
|
Schwartz G, Fehlings MG. Secondary injury mechanisms of spinal cord trauma: a novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. PROGRESS IN BRAIN RESEARCH 2002; 137:177-90. [PMID: 12440368 DOI: 10.1016/s0079-6123(02)37016-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Traumatic spinal cord injury is a consequence of a primary mechanical insult and a sequence of progressive secondary pathophysiological events that confound efforts to mitigate neurological deficits. Pharmacotherapy aimed at reducing the secondary injury is limited by a narrow therapeutic window. Thus, novel drug strategies must target early pathological mechanisms in order to realize the promise of efficacy for this form of neurotrauma. Research has shown that an accumulation of intracellular sodium as a result of trauma-induced perturbation of voltage-sensitive sodium channel activity is a key early mechanism in the secondary injury cascade. As such, voltage-sensitive sodium channels are an important therapeutic target for the treatment of spinal cord trauma. This review describes the evolution of acute spinal cord injury and provides a rationale for the clinical utility of sodium channel blockers, particularly riluzole, in the management of spinal cord trauma.
Collapse
Affiliation(s)
- Gwen Schwartz
- Toronto Western Research Institute, Division of Cell and Molecular Biology, Division of Neurosurgery, University of Toronto, Toronto, Canada
| | | |
Collapse
|
49
|
Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J Neurosci 2002. [PMID: 12196576 DOI: 10.1523/jneurosci.22-17-07526.2002] [Citation(s) in RCA: 351] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inflammation in general and proteinases generated as a result are likely mediators of early secondary pathogenesis after spinal cord injury. We report that matrix metalloproteinase-9 (MMP-9) plays an important role in blood-spinal cord barrier dysfunction, inflammation, and locomotor recovery. MMP-9 was present in the meninges and neurons of the uninjured cord. MMP-9 increased rapidly after a moderate contusion spinal cord injury, reaching a maximum at 24 hr, becoming markedly reduced by 72 hr, and not detectable at 7 d after injury. It was seen in glia, macrophages, neutrophils, and vascular elements in the injured spinal cord at 24 hr after injury. The natural tissue inhibitors of MMPs were unchanged over this time course. MMP-9-null mice exhibited significantly less disruption of the blood-spinal cord barrier, attenuation of neutrophil infiltration, and significant locomotor recovery compared with wild-type mice. Similar findings were observed in mice treated with a hydroxamic acid MMP inhibitor from 3 hr to 3 d after injury, compared with the vehicle controls. Moreover, the area of residual white matter at the lesion epicenter was significantly greater in the inhibitor-treated group. This study provides evidence that MMP-9 plays a key role in abnormal vascular permeability and inflammation within the first 3 d after spinal cord injury, and that blockade of MMPs during this critical period attenuates these vascular events and leads to improved locomotor recovery. Our findings suggest that early inhibition of MMPs may be an efficacious strategy for the spinal cord-injured patient.
Collapse
|
50
|
McDonald JW, Becker D, Sadowsky CL, Jane JA, Conturo TE, Schultz LM. Late recovery following spinal cord injury. Case report and review of the literature. J Neurosurg 2002; 97:252-65. [PMID: 12296690 DOI: 10.3171/spi.2002.97.2.0252] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The authors of this prospective, single-case study evaluated the potential for functional recovery from chronic spinal cord injury (SCI). The patient was motor complete with minimal and transient sensory perception in the left hemibody. His condition was classified as C-2 American Spinal Injury Association (ASIA) Grade A and he had experienced no substantial recovery in the first 5 years after traumatic SCI. Clinical experience and evidence from the scientific literature suggest that further recovery would not take place. When the study began in 1999, the patient was tetraplegic and unable to breathe without assisted ventilation; his condition classification persisted as C-2 ASIA Grade A. Magnetic resonance imaging revealed severe injury at the C-2 level that had left a central fluid-filled cyst surrounded by a narrow donutlike rim of white matter. Five years after the injury a program known as "activity-based recovery" was instituted. The hypothesis was that patterned neural activity might stimulate the central nervous system to become more functional, as it does during development. Over a 3-year period (5-8 years after injury), the patient's condition improved from ASIA Grade A to ASIA Grade C, an improvement of two ASIA grades. Motor scores improved from 0/100 to 20/100, and sensory scores rose from 5-7/112 to 58-77/112. Using electromyography, the authors documented voluntary control over important muscle groups, including the right hemidiaphragm (C3-5), extensor carpi radialis (C-6), and vastus medialis (L2-4). Reversal of osteoporosis and an increase in muscle mass was associated with this recovery. Moreover, spasticity decreased, the incidence of medical complications fell dramatically, and the incidence of infections and use of antibiotic medications was reduced by over 90%. These improvements occurred despite the fact that less than 25 mm2 of tissue (approximately 25%) of the outer cord (presumably white matter) had survived at the injury level. The primary novelty of this report is the demonstration that substantial recovery of function (two ASIA grades) is possible in a patient with severe C-2 ASIA Grade A injury, long after the initial SCI. Less severely injured (lower injury level, clinically incomplete lesions) individuals might achieve even more meaningful recovery. The role of patterned neural activity in regeneration and recovery of function after SCI therefore appears a fruitful area for future investigation.
Collapse
Affiliation(s)
- John W McDonald
- Department of Neurology and Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri 63108, USA.
| | | | | | | | | | | |
Collapse
|