1
|
Zhang J, Yang Z, Zhao Z, Zhang N. Structural and pharmacological insights into cordycepin for neoplasms and metabolic disorders. Front Pharmacol 2024; 15:1367820. [PMID: 38953102 PMCID: PMC11215060 DOI: 10.3389/fphar.2024.1367820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Cytotoxic adenosine analogues were among the earliest chemotherapeutic agents utilised in cancer treatment. Cordycepin, a natural derivative of adenosine discovered in the fungus Ophiocordyceps sinensis, directly inhibits tumours not only by impeding biosynthesis, inducing apoptosis or autophagy, regulating the cell cycle, and curtailing tumour invasion and metastasis but also modulates the immune response within the tumour microenvironment. Furthermore, extensive research highlights cordycepin's significant therapeutic potential in alleviating hyperlipidaemia and regulating glucose metabolism. This review comprehensively analyses the structure-activity relationship of cordycepin and its analogues, outlines its pharmacokinetic properties, and strategies to enhance its bioavailability. Delving into the molecular biology, it explores the pharmacological mechanisms of cordycepin in tumour suppression and metabolic disorder treatment, thereby underscoring its immense potential in drug development within these domains and laying the groundwork for innovative treatment strategies.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Gastroenterology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ziling Yang
- Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhuo Zhao
- Department of Gastroenterology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Nan Zhang
- Department of Gastroenterology, First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
2
|
Zhang R, Yong VW, Xue M. Revisiting Minocycline in Intracerebral Hemorrhage: Mechanisms and Clinical Translation. Front Immunol 2022; 13:844163. [PMID: 35401553 PMCID: PMC8993500 DOI: 10.3389/fimmu.2022.844163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/24/2022] [Indexed: 01/31/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is an important subtype of stroke with an unsatisfactory prognosis of high mortality and disability. Although many pre-clinical studies and clinical trials have been performed in the past decades, effective therapy that meaningfully improve prognosis and outcomes of ICH patients is still lacking. An active area of research is towards alleviating secondary brain injury after ICH through neuroprotective pharmaceuticals and in which minocycline is a promising candidate. Here, we will first discuss new insights into the protective mechanisms of minocycline for ICH including reducing iron-related toxicity, maintenance of blood-brain barrier, and alleviating different types of cell death from preclinical data, then consider its shortcomings. Finally, we will review clinical trial perspectives for minocycline in ICH. We hope that this summary and discussion about updated information on minocycline as a viable treatment for ICH can facilitate further investigations.
Collapse
Affiliation(s)
- Ruiyi Zhang
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - V. Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Translation Inhibitors Activate Autophagy Master Regulators TFEB and TFE3. Int J Mol Sci 2021; 22:ijms222112083. [PMID: 34769510 PMCID: PMC8584619 DOI: 10.3390/ijms222112083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
The autophagy-lysosome pathway is a major protein degradation pathway stimulated by multiple cellular stresses, including nutrient or growth factor deprivation, hypoxia, misfolded proteins, damaged organelles, and intracellular pathogens. Recent studies have revealed that transcription factor EB (TFEB) and transcription factor E3 (TFE3) play a pivotal role in the biogenesis and functions of autophagosome and lysosome. Here we report that three translation inhibitors (cycloheximide, lactimidomycin, and rocaglamide A) can facilitate the nuclear translocation of TFEB/TFE3 via dephosphorylation and 14-3-3 dissociation. In addition, the inhibitor-mediated TFEB/TFE3 nuclear translocation significantly increases the transcriptional expression of their downstream genes involved in the biogenesis and function of autophagosome and lysosome. Furthermore, we demonstrated that translation inhibition increased autophagosome biogenesis but impaired the degradative autolysosome formation because of lysosomal dysfunction. These results highlight the previously unrecognized function of the translation inhibitors as activators of TFEB/TFE3, suggesting a novel biological role of translation inhibition in autophagy regulation.
Collapse
|
4
|
Sakellari M, Chondrogianni N, Gonos ES. Protein synthesis inhibition induces proteasome assembly and function. Biochem Biophys Res Commun 2019; 514:224-230. [PMID: 31029420 DOI: 10.1016/j.bbrc.2019.04.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/15/2019] [Indexed: 10/26/2022]
Abstract
Protein synthesis and degradation balance have a crucial role in maintenance of cellular homeostasis and function. The ubiquitin-proteasome system is one of the major cellular proteolytic machineries responsible for the removal of normal, abnormal, denatured or in general damaged proteins. Proteasome is a multisubunit enzyme that consists of the 20S core and the 19S regulatory complexes giving rise to multiple active forms. In the present study we investigated the crosstalk between protein synthesis and proteasome-mediated protein degradation. Pharmacological protein synthesis inhibition led to increased proteasome function and assembly of 30S/26S proteasome complexes, in human primary embryonic fibroblasts. The enhancement in proteasome function counted for the degradation of ubiquitinated, misfolded and oxidized proteins. Additionally, it was found that heat shock proteins 70 and 90 are probably involved in the elevated proteasome assembly. Our results provide an insight on how the mechanisms of protein synthesis, protein degradation and heat shock protein chaperones machinery interact under various cellular conditions.
Collapse
Affiliation(s)
- Marianthi Sakellari
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece; Örebro University, Medical School, Örebro, 701 82, Sweden
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece; Örebro University, Medical School, Örebro, 701 82, Sweden.
| |
Collapse
|
5
|
Bobinger T, Burkardt P, B Huttner H, Manaenko A. Programmed Cell Death after Intracerebral Hemorrhage. Curr Neuropharmacol 2018; 16:1267-1281. [PMID: 28571544 PMCID: PMC6251052 DOI: 10.2174/1570159x15666170602112851] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 06/01/2017] [Indexed: 01/01/2023] Open
Abstract
Background: Intracerebral hemorrhage (ICH) accounts for up to 15% of all strokes and is characterized by high rates of mortality and morbidity. The post-ICH brain injury can be distinguished in 1) primary, which are caused by disrup-tion and mechanical deformation of brain tissue due to hematoma growth and 2) secondary, which are induced by microglia activation, mitochondrial dysfunction, neurotransmitter and inflammatory mediator release. Although these events typically lead to necrosis, the occurrence of programmed cell death has also been reported after ICH. Methods: We reviewed recent publications describing advance in pre- and clinic ICH research. Results: At present, treatment of ICH patients is based on oral anticoagulant reversal, management of blood pressure and other medical complications. Several pre-clinical studies showed promising results and demonstrated that anti-oxidative and anti-inflammatory treatments reduced neuronal cell death, however, to date, all of these attempts have failed in randomized controlled clinical trials. Yet, the time frame of administration may be crucial in translation from animal to clinical studies. Furthermore, the latest pre-clinical research points toward the existence of other, apoptosis-unrelated forms kinds of pro-grammed cell death. Conclusion: Our review summarizes current knowledge of pathways leading to programmed cell death after ICH in addition to data from clinical trials. Some of the pre-clinical results have not yet demonstrated clinical confirmation, however they sig-nificantly contribute to our understanding of post-ICH pathology and can contribute to development of new therapeutic ap-proaches, decreasing mortality and improving ICH patients’ quality of life.
Collapse
Affiliation(s)
- Tobias Bobinger
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Petra Burkardt
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Hagen B Huttner
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Anatol Manaenko
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen 91054, Germany
| |
Collapse
|
6
|
|
7
|
|
8
|
Tessitore L, Tomasi C, Greco M. Fasting-induced apoptosis in rat liver is blocked by cycloheximide. Eur J Cell Biol 1999; 78:573-9. [PMID: 10494864 DOI: 10.1016/s0171-9335(99)80023-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The effect of cycloheximide (CH) on the fasting-induced changes of rat liver cell and protein turnover has been investigated. Late starvation phase (3-4-day-fasting period) was characterised by a decrease in liver weight and protein and DNA content. The loss of DNA was not related to liver cell necrosis but due not only to depression of cell proliferation as shown by the drop in the labelling index but also induction of apoptosis. This type of apoptosis was documented by the increase in the apoptotic index (cells labelled by TUNEL) and transglutaminase activity as well as by DNA fragmentation. The liver cells of fasted rats appeared smaller as shown by the higher cell density and DNA/protein ratio than in controls. Females were more resistant to fasting-induced apoptosis than males. A single dose of CH, a drug primary known as inhibitor of protein synthesis, induced or enhanced apoptosis in fed and 2-days fasted male rats, respectively, without any sign of cell necrosis. On the contrary, the administration of repeated doses of CH blocked apoptosis induced by fasting. CH "froze" protein and DNA content as well as apoptotic process at the level of 2 days-fasted rats. While fasting-induced liver protein loss resulted from a marked reduction in protein synthesis with a slight decrease in degradation, repeated treatment with CH virtually blocked protein loss by abolishing protein catabolism. These data suggest a direct relationship between the catabolic side of protein turnover and the apoptotic process.
Collapse
Affiliation(s)
- L Tessitore
- Dipartimento di Scienze Mediche, Università del Piemonte Orientale, Novara, Italy
| | | | | |
Collapse
|
9
|
Zhukov A, Ingelman-Sundberg M. Selective fast degradation of cytochrome P-450 2E1 in serum-deprived hepatoma cells by a mechanism sensitive to inhibitors of vesicular transport. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:37-43. [PMID: 9249006 DOI: 10.1111/j.1432-1033.1997.00037.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cytochrome P-450 2E1 (CYP2E1) is characterized by a rapid turnover in the liver and some cell lines and the ability of substrates and heme iron ligands to inhibit significantly enzyme degradation. In the Fao hepatoma cell line, CYP2E1 was found to be fairly stable (half-life of 26 h), but serum withdrawal resulted in its rapid disappearance from the microsomal fraction (half-life of about 7 h) as evaluated using cycloheximide chase. The effect of serum withdrawal could be partially reversed by the addition of albumin to the culture medium, whereas insulin and the insulin-like growth factor IGF-I had no additional effect. The effect of serum withdrawal was specific for CYP2E1 since (a) no concomitant fast degradation of CYP2B1 and NADPH-cytochrome P-450 reductase was observed and (b) the CYP2E1 ligands ethanol and imidazole prevented the fast degradation of the enzyme. The lysosomotropic agent ammonium chloride and the inhibitor of autophagocytosis 3-methyladenine slowed down CYP2E1 degradation by about 30%, while leupeptin had no effect. Under the same conditions, the degradation of total long-lived cell protein showed the same sensitivity to ammonium chloride, but was significantly less sensitive to 3-methyladenine and serum and not sensitive to ethanol and imidazole. CYP2E1 degradation was inhibited by combined treatment with brefeldin A and nocodazole, which blocks both anterograde and retrograde vesicular transport between endoplasmic reticulum and the Golgi apparatus. The data point to the existence of a selective mechanism for the degradation of membrane proteins in serum-deprived cells in addition to nonselective autophagocytosis. The selective degradation of CYP2E1 may be attained by means of its selective vesicular transport to an acidic post-endoplasmic reticulum compartment.
Collapse
Affiliation(s)
- A Zhukov
- Institute of Environmental Medicine, Division of Molecular Toxicology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
10
|
Agarraberes FA, Terlecky SR, Dice JF. An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 1997; 137:825-34. [PMID: 9151685 PMCID: PMC2139836 DOI: 10.1083/jcb.137.4.825] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/1995] [Revised: 03/12/1997] [Indexed: 02/04/2023] Open
Abstract
Previous studies have implicated the heat shock cognate (hsc) protein of 73 kD (hsc73) in stimulating a lysosomal pathway of proteolysis that is selective for particular cytosolic proteins. This pathway is activated by serum deprivation in confluent cultured human fibroblasts. We now show, using indirect immunofluorescence and laser scanning confocal microscopy, that a heat shock protein (hsp) of the 70-kD family (hsp70) is associated with lysosomes (ly-hsc73). An mAb designated 13D3 specifically recognizes hsc73, and this antibody colocalizes with an antibody to lgp120, a lysosomal marker protein. Most, but not all, lysosomes contain ly-hsc73, and the morphological appearance of these organelles dramatically changes in response to serum withdrawal; the punctate lysosomes fuse to form tubules. Based on susceptibility to digestion by trypsin and by immunoblot analysis after two-dimensional electrophoresis of isolated lysosomes and isolated lysosomal membranes, most ly-hsc73 is within the lysosomal lumen. We determined the functional importance of the ly-hsc73 by radiolabeling cellular proteins with [3H]leucine and then allowing cells to endocytose excess mAb 13D3 before measuring protein degradation in the presence and absence of serum. The increased protein degradation in response to serum deprivation was completely inhibited by endocytosed mAb 13D3, while protein degradation in cells maintained in the presence of serum was unaffected. The intralysosomal digestion of endocytosed [3H]RNase A was not affected by the endocytosed mAb 13D3. These results suggest that ly-hsc73 is required for a step in the degradative pathway before protein digestion within lysosomes, most likely for the import of substrate proteins.
Collapse
Affiliation(s)
- F A Agarraberes
- Sackler School of Graduate Biomedical Sciences, Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
11
|
Affiliation(s)
- G E Mortimore
- Department of Cellular and Molecular Physiology, Hershey Medical Center, Pennsylvania State University, Hershey 17033, USA
| | | | | | | |
Collapse
|
12
|
Evans PJ. Protein degradation in kidney proximal tubule cell monolayers. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1221:243-9. [PMID: 8167145 DOI: 10.1016/0167-4889(94)90247-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Isolated proximal tubule cells have been labelled with L-[4,5-3H]leucine prior to cell division. Histochemical staining demonstrated the purity of the cultures. The bicarbonate ion or a collagen support was required for cell growth. Different culture growth rates were established by varying these parameters. The proximal tubule marker enzyme, gamma-glutamyl transpeptidase, was expressed throughout the culture period (7-10 days) and the cells undergo a glycolytic shift, shown by an increase in the levels of lactate dehydrogenase. The specific activities of these enzymes were related to the growth conditions. Exponential rates of protein degradation were observed. The uptake of labelled exogenous hepatocyte proteins in proximal tubule cell cultures was completely suppressed in the presence of serum (10%, v/v) showing that endocytosis did not contribute to the observed measurements of intracellular protein degradation. The increased growth rates seen in cultures were accompanied by decreased rates of protein degradation. Use of the inhibitors of proteolysis, leupeptin and ammonium chloride, showed that the decrease was at the lysosomal level. The results suggest that targeting of inhibitors of lysosomal proteolysis, via low-molecular-weight proteins, may be useful in stimulating tubular regeneration in kidney disease.
Collapse
Affiliation(s)
- P J Evans
- School of Pure and Applied Biology, University of Wales College of Cardiff, UK
| |
Collapse
|
13
|
Welshons WV, Grady LH, Judy BM, Jordan VC, Preziosi DE. Subcellular compartmentalization of MCF-7 estrogen receptor synthesis and degradation. Mol Cell Endocrinol 1993; 94:183-94. [PMID: 8224522 DOI: 10.1016/0303-7207(93)90167-i] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Turnover of the estrogen receptor protein was studied by using enucleation of human breast cancer-derived MCF-7 cells, to examine receptor synthesis and receptor degradation in the separated cytoplasmic compartment (cytoplasts) and nuclear compartment (nucleoplasts). Cytoplasts synthesized estrogen receptors as measured by both hormone-binding and immunoassay, while estrogen receptors (but not progesterone or glucocorticoid receptors) were rapidly degraded in nucleoplasts with a half-life of 3-4 h. Little or no degradation of estrogen receptors in cytoplasts was observed under several conditions. Interestingly, MCF-7 cytoplasts contained approximately 15% of the cell's estrogen receptors, which were not 'translocated' by treatment with 17 beta-estradiol before enucleation. We conclude that the estrogen receptor can be synthesized at least to a hormone binding form in the cytoplasm alone without requiring processing in the nucleus, while the nucleus (or perinuclear cytoplasm) is the primary site of degradation of the estrogen receptor protein. In addition, the presence of a population of estrogen receptors that is cytoplasmic but nontranslocatable may need to be considered in the subcellular localization and actions of steroid receptors.
Collapse
Affiliation(s)
- W V Welshons
- Department of Veterinary Biomedical Sciences, University of Missouri-Columbia 65211
| | | | | | | | | |
Collapse
|
14
|
Min KS, Nakatsubo T, Fujita Y, Onosaka S, Tanaka K. Degradation of cadmium metallothionein in vitro by lysosomal proteases. Toxicol Appl Pharmacol 1992; 113:299-305. [PMID: 1561639 DOI: 10.1016/0041-008x(92)90128-f] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of various protease inhibitors on the degradation of cadmium metallothionein (Cd-MT) by lysosomal proteases were studied in vitro. Degradation of Cd-MT was observed after incubation with the lysosomal extracts, but not after incubation with the cytosol or heat-treated lysosomal extracts. After incubation of [35S]-Cd-MT or 109Cd-MT with lysosomal extracts, 35S and 109Cd radioactivity in the MT fraction decreased, while the low molecular weight (LM) fraction increased with time (half life; 3 hr). When EDTA was added to this incubation mixture, most of the MT was degraded within 30 min. Cd in the LM fraction, produced after the incubation of Cd-MT with the lysosomal extracts, was moved to the high molecular weight fraction by the addition of cytosol. Both leupeptin and E-64, which reduced cathepsin B (cysteine protease) activity, inhibited the degradation of Cd-MT by the lysosomal extracts. But pepstatin A, a specific inhibitor of cathepsin D, did not inhibit this degradation. E-64 inhibited degradation, as well as inhibiting cathepsin B activity, in accordance with its concentration in the incubation mixture. The incubation of Cd-MT with purified cathepsin B resulted in its degradation which was inhibited by E-64. These results suggest that Cd-MT may be broken down by the cysteine protease in lysosomes and that the released Cd bound low molecular weight fragment(s) was subsequently transferred to the high molecular weight protein in cytosol.
Collapse
Affiliation(s)
- K S Min
- Department of Nutrition, Kobe-Gakuin University, Japan
| | | | | | | | | |
Collapse
|
15
|
Evans PJ. Selective inhibition of the synthesis of phosphoenolpyruvate carboxykinase in freshly isolated proximal tubule cells. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1133:255-60. [PMID: 1737058 DOI: 10.1016/0167-4889(92)90045-d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The behaviour of renal phosphoenolpyruvate carboxykinase (PEPCK) in non-growing kidney cell suspension culture was investigated. In heterogeneous kidney cells, glomeruli-proximal tubule mixtures and purified proximal tubule fragments, the enzyme activity fell with a t1/2 of 3.3 h. Hormonal additions did not modify the process. The fall was also observed in cells prepared from animals preinduced with dexamethasone. The in vitro response of PEPCK is tissue specific. The decline was not the result of a decrease in cell viability, enzyme leakage nor due to the mitochondrial translocation of cytosolic PEPCK. The response observed is due to the selective inhibition of the synthesis of the enzyme and its destruction by non-lysosomal mechanisms. Acute and chronic acidification do not affect PEPCK activity. However, the degradation of PEPCK is temperature dependent and is greatly accelerated by glutathione.
Collapse
Affiliation(s)
- P J Evans
- School of Pure and Applied Biology, University of Wales College of Cardiff, U.K
| |
Collapse
|
16
|
Avila JL. Intracellular digestion of endocytosed proteins as a source of amino acids for protein synthesis in Trypanosoma cruzi. Subcell Biochem 1992; 18:189-234. [PMID: 1485352 DOI: 10.1007/978-1-4899-1651-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- J L Avila
- Instituto of Biomedicina, Caracas, Venezuela
| |
Collapse
|
17
|
Taylor A, Berger JJ, Reddan J, Zuliani A. Effects of aging in vitro on intracellular proteolysis in cultured rabbit lens epithelial cells in the presence and absence of serum. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1991; 27A:287-92. [PMID: 1856154 DOI: 10.1007/bf02630905] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alterations in proteolytic capabilities have been associated with abnormalities in the aged eye lens, but in vivo tests of this hypothesis have been difficult to pursue. To simulate aging, we cultured cells from an 8-yr-old rabbit to early (population-doubling level 20 to 30) and late (population-doubling level greater than 125) passage. Long-lived (t1/2 greater than 10 h) and short-lived (t1/2 less than 10 h) intracellular proteins were labeled with [3H]leucine, and the ability of the cells to mount a proteolytic response to the stress of serum withdrawal was determined. For early passage cells, the average t1/2 of long-lived proteins in the presence and absence of serum was 62 and 39 h, respectively. For late-passage cells, the average t1/2 of long-lived proteins in the presence and absence of serum was 58 and 43 h, respectively. The net increase in intracellular proteolysis in the absence of serum was 59 and 35% for early and late-passage cells, respectively. Thus, in vitro-aged rabbit lens epithelial cells amount only 60% the proteolytic response to serum removal shown in "younger" cells. The enhanced ability of early passage cells to respond to serum removal seems to involve lower homeostatic levels of proteolysis in the presence of serum and greater enhancement of proteolysis in the absence of serum. Less than 2% of the protein is in the pool of short-lived proteins. Rates of proteolysis of short-lived proteins in the presence and absence of serum were indistinguishable. With respect to basal proteolytic rates in the presence of serum and ability to mount a proteolytic response upon serum withdrawal, these rabbit lens epithelial cells are similar to bovine lens epithelial cells and fibroblasts.
Collapse
Affiliation(s)
- A Taylor
- Laboratory for Nutrition and Cataract Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111
| | | | | | | |
Collapse
|
18
|
Podolin PL, Prystowsky MB. The kinetics of vimentin RNA and protein expression in interleukin 2-stimulated T lymphocytes. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67678-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Dionyssiou-Asteriou A. Postnatal changes of cathepsin D activity in rat liver and brain. Cell Biochem Funct 1990; 8:141-5. [PMID: 2397561 DOI: 10.1002/cbf.290080303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Total and specific activity of cathepsin D (EC. 3.4.23.5) were measured in rat liver and brain from 1 to 98 days of age. The activity of cathepsin D in the liver of adult and newborn rats was the same while in the rat brain it was higher in adult than in newborn rats. In the liver maximum specific activity of cathepsin D occurred on the 10th postnatal day and minimum on the fourth day of age. In the brain maximum specific activity of the enzyme occurred on the 14th postnatal day. Total activity of cathepsin D increased after birth in rat liver and brain. These results are discussed in relation to the functional role of cathepsin D in the rat liver and the brain.
Collapse
|
20
|
Rodemann HP. Differential degradation of intracellular proteins in human skin fibroblasts of mitotic and mitomycin-C (MMC)-induced postmitotic differentiation states in vitro. Differentiation 1989; 42:37-43. [PMID: 2620784 DOI: 10.1111/j.1432-0436.1989.tb00605.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rates of degradation of short- and long-lived proteins were analysed in homogeneous fibroblast cultures of mitotic or mitomycin C (MMC)-induced postmitotic states. When the highly mitotic MFII type cells--the major cell type of so called "early passage" or "young" fibroblasts--differentiate into MFIII type cells, the last mitotic fibroblast type, and further into MMC-induced postmitotic fibroblasts, the degradation of short-lived proteins increases by a factor of 1.4, resulting in significantly reduced half-lives of these proteins in the postmitotic fibroblasts. From the highly mitotic MFII to the final postmitotic PMFVI-type cells via the intermediates MFIII, PMFIV and PMFV, the half lives (t1/2) of short-lived proteins decrease by a total of 122 min in average, from 362 to 240 min. Degradation of long-lived proteins did not change significantly from cell type MFII to PMFVI. As analysed by two-dimensional (2D)-gel electrophoresis the half-lives of the mitotic and postmitotic cell-type-specific proteins except one, protein PIVa (33 kDa; Pi 5.0), range between 33.2 h and 62.9 h. Protein PIVa, the first protein specific for postmitotic cells, is initially expressed 18 h after the induction of the postmitotic state by mitomycin C (MMC) and has a half-life of approximately 66 min. This may indicate that protein PIVa could function as one possible regulatory factor controlling the postmitotic differentiation state.
Collapse
Affiliation(s)
- H P Rodemann
- Developmental Biology Unit, University of Bielefeld, Federal Republic of Germany
| |
Collapse
|
21
|
Abstract
Although most eukaryotic proteins are synthesized in the cytoplasm from mRNAs originating in the nucleus, many function in specialized compartments and must be specifically translocated co- or post-translationally. A variety of signals contained within the amino acid sequence guide these processes as well as direct turnover by different proteolytic schemes. Several properties of the mature protein are determined as a result of translocation and can serve as predictors of cellular localization.
Collapse
|
22
|
Knecht E, Vargas JL, Aniento F, Cervera J, Grisolía S. Effects of centrifugation on the degradation of short-lived proteins in exponentially growing cultured cells. Exp Cell Res 1989; 182:307-20. [PMID: 2721584 DOI: 10.1016/0014-4827(89)90236-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The degradation mechanisms of short-lived proteins in cultured cells are unknown, probably due to the lack of procedures which specifically affect the degradation of these proteins. We found that centrifugation of cultured cells, growing either in monolayer or in suspension, between 5000 and 25,000g for 30 min, inhibits (more than 50%) the degradation of short-lived proteins but not of long-lived proteins. Protein synthesis or cell viability is not affected. Centrifugation also disorganizes the Golgi apparatus, as checked by routine electron microscopy, and inhibits the degradation of endocytosed proteins (a lysosomal process which is controlled by the Golgi apparatus). Using different centrifugation speeds, a good correlation was found between alteration of the Golgi apparatus and inhibition of protein degradation.
Collapse
Affiliation(s)
- E Knecht
- Instituto de Investigaciones Citológicas de la Caja de Ahorros de Valencia, Spain
| | | | | | | | | |
Collapse
|
23
|
Knowles SE, Hopgood MF, Ballard FJ. Effects of inhibitors on aldolase breakdown after its microinjection into HeLa cells. Biochem J 1989; 259:27-33. [PMID: 2655577 PMCID: PMC1138468 DOI: 10.1042/bj2590027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. The regulation of protein breakdown as well as the generation of intermediates in the pathway from intact protein to amino acids was investigated by using 3H-labelled N-ethylmaleimide-modified aldolase (NEM-aldolase) as an indicator protein after its microinjection into HeLa cells. 2. NEM-aldolase degradation to acid-soluble products proceeded at a slower rate than that of endogenously labelled total cell protein, and was inhibited to a greater extent by 3-methyladenine, leupeptin and NH4Cl. The combination of leupeptin plus NH4Cl was particularly effective, decreasing the NEM-aldolase breakdown rate by 90%. 3. Measurements of the loss of radioactivity from the aldolase band located from fluorograms after SDS/polyacrylamide-gel electrophoresis showed that NEM-aldolase breakdown was much more rapid when measured by this method. The effects of insulin, 3-methyladenine, leupeptin and NH4Cl on this breakdown were also substantial. 4. Substantial amounts of peptide intermediates in the breakdown pathway of NEM-aldolase accumulated in cells. The production of small intermediates (less than 30 kDa) accounted for approx. 40% of the NEM-aldolase degraded in control cultures. Addition of NH4Cl increased the proportion of these intermediates. Large intermediates, between 31 and 38 kDa, were particularly evident in the presence of the cysteine proteinase inhibitor leupeptin, but almost no small intermediates were detected. 5. The results are best explained by the degradation of NEM-aldolase being predominantly a lysosomal process, with cysteine proteinases involved in early proteolytic steps and other proteinases that have acid pH optima required for the complete catabolism of small intermediates.
Collapse
Affiliation(s)
- S E Knowles
- CSIRO Division of Human Nutrition, Adelaide, Australia
| | | | | |
Collapse
|
24
|
Rogers SW, Rechsteiner M. Degradation of structurally characterized proteins injected into HeLa cells. Effects of intracellular location and the involvement of lysosomes. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77712-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
25
|
Berger JJ, Eisenhauer DA, Taylor A. Intracellular protein degradation in cultured bovine lens epithelial cells. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1988; 24:990-4. [PMID: 3053598 DOI: 10.1007/bf02620871] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although several proteases have been identified in homogenates of cultured epithelial cells of the eye lens and in lens tissues, there is little information regarding intracellular protein degradation in intact lens cells in vitro. Cultured lens cells may be useful in the study of intracellular protein degradation in the lens, a tissue with a wide range of protein half-lives. This is of interest because alterations in protein turnover in the lens have been implicated in cataract formation. This study examines intracellular protein degradation in cultured bovine lens epithelial cells (BLEC). Cell cultures were incubated with radiolabeled leucine to label intracellular proteins. Protein degradation was measured by monitoring the release of trichloroacetic-acid-soluble radioactivity into the culture medium. The average half-life of long-lived proteins (half-life greater than 50 h) was typically about 57 h in serum-supplemented medium. Average rates of degradation of long-lived proteins increased by up to 73% when fetal bovine serum was withdrawn from the culture medium. Serum had no effect on the degradation of short-lived proteins (half-life less than 10 h). Degradation of long-lived proteins in the presence and absence of serum was further studied in cultured BLEC from population doubling level (PDL) 2 to 43. Average half-life of proteins in serum-supplemented medium was 52 to 58 h and did not vary significantly as a function of PDL. Degradation rates in serum-free medium increased approximately twofold up to PDL 7, but returned by PDL 25 to original levels, which were maintained through PDL 43.
Collapse
Affiliation(s)
- J J Berger
- Laboratory for Nutrition and Cataract Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111
| | | | | |
Collapse
|
26
|
Kreisel W, Hanski C, Tran-Thi TA, Katz N, Decker K, Reutter W, Gerok W. Remodeling of a rat hepatocyte plasma membrane glycoprotein. De- and reglycosylation of dipeptidyl peptidase IV. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37845-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
|
28
|
Leonard DA, Chen HW. An ATP-dependent system specific for degradation of long-lived proteins in permeabilized cells. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 968:269-74. [PMID: 3345314 DOI: 10.1016/0167-4889(88)90017-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have characterized a digitonin-permeabilized cell system for the ATP-dependent degradation of endogenous long-lived proteins. Proteolysis requires Mg2+ and ATP hydrolysis. Other nucleotide triphosphates (CTP, UTP) can partially replace the ATP requirement. The enhanced rate of degradation of long-lived proteins in response to serum starvation is maintained in the permeabilized cell system and can be partially inhibited by lysosomal inhibitors. The maintenance of intracellular architecture and ease of manipulation of soluble components make the permeabilized cell system ideal for studying the proteolysis of both endogenous and exogenous substrates.
Collapse
Affiliation(s)
- D A Leonard
- Du Pont Experimental Station, Medical Products Department, E.I. du Pont de Nemours and Company, Wilmington, DE
| | | |
Collapse
|
29
|
Flückiger J, Christen P. Degradation of the precursor of mitochondrial aspartate aminotransferase in chicken embryo fibroblasts. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68899-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Olbricht CJ. Effect of glomerular proteinuria on the activities of lysosomal proteases in isolated segments of rat proximal tubule. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 240:283-91. [PMID: 3072846 DOI: 10.1007/978-1-4613-1057-0_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- C J Olbricht
- Abteilung Nephrologie, Medizinische Hochschule, Hannover, Federal Republic of Germany
| |
Collapse
|
31
|
|
32
|
Dahlmann B, Kuehn L, Kopp F, Reinauer H, Stauber WT. Non-lysosomal, high-molecular-mass cysteine proteinases from rat skeletal muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 240:215-23. [PMID: 3245491 DOI: 10.1007/978-1-4613-1057-0_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- B Dahlmann
- Biochemische Abteilung, Diabetes Forschungsinstitut, Düsseldorf, F.R.G
| | | | | | | | | |
Collapse
|
33
|
Kovács J, László L, Kovács AL. Regression of autophagic vacuoles in pancreatic acinar, seminal vesicle epithelial, and liver parenchymal cells: a comparative morphometric study of the effect of vinblastine and leupeptin followed by cycloheximide treatment. Exp Cell Res 1988; 174:244-51. [PMID: 3335225 DOI: 10.1016/0014-4827(88)90158-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Treatment of mice with both leupeptin (0.06 mg/g body wt) and vinblastine (0.05 mg/g body wt) for 2 h caused a many-fold enlargement of the autophagic-lysosomal compartment of pancreatic acinar, seminal vesicle epithelial, and liver parenchymal cells. In all three types of cells a predominance of large, dense bodies was seen after leupeptin treatment and that of typical autophagic vacuoles were seen after vinblastine treatment. An exponential decrease of the volume fraction of autophagic vacuoles was observed in leupeptin-treated cells after the administration of cycloheximide (0.2 mg/g body wt). The half-life of autophagic vacuoles estimated from the decay curve was 5.3, 5.7, and 6.6 min for pancreatic, seminal vesicle, and liver cells, respectively. Our data suggest that sequestered cytoplasmic material rapidly enters the lysosomes in leupeptin-treated cells and accumulates in this compartment. In contrast, no regression of the autophagic vacuole compartment of pancreatic and seminal vesicle cells was observed after the administration of cycloheximide to animals pretreated with vinblastine, and only a slight decrease was seen in liver cells. These observations show that the lifetime of autophagic vacuoles is prolonged by vinblastine resulting in their accumulation in the cells. However, our measurements also lend support to the view that in addition to the accumulatory effect on undegraded cytoplasmic material, stimulation of sequestration may play a role in the enlargement of the autophagic lysosomal compartment after treatment with leupeptin as well as with vinblastine in all three types of cells investigated.
Collapse
Affiliation(s)
- J Kovács
- Department of General Zoology, ELTE University, Budapest, Hungary
| | | | | |
Collapse
|
34
|
Knowles SE, Hopgood MF, Ballard FJ. Degradation of horseradish peroxidase after microinjection into mammalian cells. Exp Cell Res 1988; 174:266-78. [PMID: 2826195 DOI: 10.1016/0014-4827(88)90160-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Horseradish peroxidase (HRP) has been microinjected into mammalian cells in tissue culture by the erythrocyte ghost-mediated technique. This protein was selected because it can be localized and quantified after injection by cytochemical and spectrophotometric methods. HRP labeled by reductive methylation retained full catalytic activity, was efficiently loaded into erythrocyte ghosts, and did not associate to a significant degree with ghost membranes. A combination of cytochemical staining and autoradiography established that HRP injected into rat L6 myoblasts, HE(39)L human diploid fibroblasts, or HeLa cells was intracellular and uniformly distributed throughout the cell, while cell lysis techniques showed that the catalytically active HRP was not membrane bound. Inactivation of labeled HRP after injection paralleled the disappearance of the 40-kDa polypeptide, and was always more rapid than its overall degradation. This difference was associated with a pool of water-insoluble radioactivity in the injected cells. This material was of smaller molecular size than the native protein: many labeled peptides were detected in the range of 10 to 38 kDa. By the use of inhibitors of autophagic proteolysis or lysosomal function it was established that HRP degradation was not subjected quantitatively to the same regulatory processes as the average endogenous protein labeled in the same cultures.
Collapse
Affiliation(s)
- S E Knowles
- CSIRO (Australia) Division of Human Nutrition, Adelaide
| | | | | |
Collapse
|
35
|
Otto AM, Smith C, Jimenez de Asua L. Stimulation of DNA replication by growth factor and hormones in Swiss 3T3 cells: comparison of the rate of entry into S phase with in vitro DNA synthesis and DNA polymerase alpha activity. J Cell Physiol 1988; 134:57-66. [PMID: 3275679 DOI: 10.1002/jcp.1041340107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An approach to the investigation how growth factors and hormones regulate mammalian cell proliferation is to study the activity of enzymes involved in DNA replication. Quiescent cultures of Swiss mouse 3T3 cells were stimulated with prostaglandin F2 alpha, insulin, and/or hydrocortisone for a time at which less than 50% of the cells had initiated DNA synthesis. Such cells were lysed with a Ca++-containing hypotonic buffer and incubated with a nucleotide mixture including [3H]thymidine-triphosphate for 1 hr at 37 degrees C. The amount of radioactive label incorporated into the trichloroacetic acid (TCA)-precipitate and the percentage of labeled nuclei correlated with the in vivo stimulation. Analysis of radioactively and density-labeled DNA in sucrose and CsC gradients indicated that the incorporation of label reflected semiconservative replication. DNA polymerase activities were assayed in supernatants from whole-cell lysates prepared with a hypotonic buffer not containing Ca++. Using various templates, it was shown that the increase in activity of DNA polymerase alpha correlated with the percentage of cells in S phase upon the different stimulation, while DNA polymerase beta activity after various times of stimulation showed that this activity increased only when cells began to enter S phase, regardless of the combination of growth factor and hormones.
Collapse
Affiliation(s)
- A M Otto
- Friedrich Miescher Institut, Basel, Switzerland
| | | | | |
Collapse
|
36
|
Kovács J, Fellinger E, Kárpáti AP, Kovács AL, László L, Réz G. Morphometric evaluation of the turnover of autophagic vacuoles after treatment with Triton X-100 and vinblastine in murine pancreatic acinar and seminal vesicle epithelial cells. VIRCHOWS ARCHIV. B, CELL PATHOLOGY INCLUDING MOLECULAR PATHOLOGY 1987; 53:183-90. [PMID: 2888237 DOI: 10.1007/bf02890242] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Large numbers of autophagic vacuoles were found in murine pancreatic acinar and seminal vesicle epithelial cells following the administration of Triton X-100 or vinblastine for 4 h. The autophagic vacuoles disappeared rapidly from the cells after the administration of cycloheximide to animals pretreated with Triton X-100. The decay in seminal vesicle cells appeared to follow first-order kinetics with an estimated t1/2 of 8.7 min. The regression in pancreatic cells was equally rapid and less than half the initial volume of autophagic vacuoles was found at the 12th min after cycloheximide injection. This time, the decay curve appeared to be linear rather than exponential. Our data, together with the work of others, support the view that the average half-life of autophagic vacuoles is a fairly constant parameter kept within the range of 6-9 min in various types of mouse and rat cell when the late steps of autophagocytosis (i.e. the fusion of autophagosomes and lysosomes and the degradation within lysosomes) are not affected. The regression of autophagic vacuoles was slow in mice pretreated with vinblastine (t1/2 of about 27-30 min) suggesting that this drug slows down the turnover of autophagic vacuoles. Morphometric evaluation of the regression of the autophagic vacuole compartment after cycloheximide treatment can be used as a tool to distinguish between treatments which elevate the amount of autophagic vacuoles within the cells by increasing the rate of sequestration from those which expand the autophagic vacuole compartment by causing accumulation of autophagic vacuoles as a result of blockade of the late steps of the autophagic process.
Collapse
|
37
|
van Roon MA, Charles R, Lamers WH. Synthesis, accumulation and turnover of carbamoylphosphate synthetase and phosphoenolpyruvate carboxykinase in cultures of embryonic rat hepatocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 165:229-34. [PMID: 2436910 DOI: 10.1111/j.1432-1033.1987.tb11216.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glucocorticosteroid, thyroid hormones and cyclic AMP can induce the synthesis of carbamoylphosphate synthetase and phosphoenolpyruvate carboxykinase in cultures of hepatocytes as soon as these cells differentiate from the embryonic foregut. The low levels of both enzymes that can accumulate in such still protodifferentiated hepatocytes are due to low levels of enzyme synthesis. In cultures, the rate of synthesis of both enzymes increases continually in the presence of hormones, showing that maturation of the capacity for synthesis towards the postnatal, fully differentiated situation is occurring in these cells. The turnover rate of both enzymes in embryonic hepatocytes is lower in the presence of hormones than in the absence, but does not change during the culture period. In the presence of hormones the turnover rate is comparable to that found in adult rat liver in vivo. The development of the capacity to accumulate organ-specific enzymes in vitro (and hence the rate of enzyme synthesis) is found to be comparable to that in utero.
Collapse
|
38
|
DONOHUE TERRENCEM, PARR JOHNM, SORRELL MICHAELF, TUMA DEANJ, ZETTERMAN ROWENK. Hepatic Protein Catabolism During Chronic Ethanol Administration. Ann N Y Acad Sci 1987. [DOI: 10.1111/j.1749-6632.1987.tb48677.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Gaskell MJ, Heinrich PC, Mayer RJ. Mechanisms of intracellular protein catabolism. Intracellular fate of microinjected polypeptides translated in vitro. Biochem J 1987; 241:817-25. [PMID: 3593224 PMCID: PMC1147635 DOI: 10.1042/bj2410817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Erythrocyte-mediated microinjection was used to introduce [35S]polypeptides translated in vitro into 3T3-L1 cells. Such [35S]polypeptides are not degraded after loading into erythrocytes and are stable for the first 2 h after microinjection into growing 3T3-L1 cells. Similarly, little or no degradation of microinjected [35S]polypeptides is observed in either growing or confluent 3T3-L1 cells over a 70 h period. Microinjection of reticulocyte lysate alone does not affect the rate of degradation of long-lived endogenous protein. Reductively [3H]methylated lysate haemoglobin is degraded after microinjection by a cytosolic mechanism. Microinjected 125I-labelled bovine serum albumin is rapidly degraded by a cytosolic mechanism at the same rate in the absence or presence of reticulocyte lysate. The data do not support the notion that the observed lack of degradation of microinjected [35S]polypeptides translated in vitro is due to the presence of proteolytic inhibitors in reticulocyte lysates which can inhibit the degradation of microinjected or cellular proteins.
Collapse
|
40
|
Berger JJ, Dice JF. Proteolysis in cultured cells during prolonged serum deprivation and replacement. THE AMERICAN JOURNAL OF PHYSIOLOGY 1986; 251:C748-53. [PMID: 3535530 DOI: 10.1152/ajpcell.1986.251.5.c748] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cells in culture show a series of changes in intracellular protein degradation in response to serum deprivation and replacement that are similar to alterations in degradation in tissues of starved and refed animals. Rates of intracellular protein degradation are increased in confluent cultures of IMR-90 human diploid fibroblasts when deprived of serum, but this enhanced proteolysis is transient. By 24-48 h, rates of protein degradation decline to values comparable to or below those for cells incubated in the presence of serum. Longer serum deprivation leads to further reductions in proteolysis. The reduced proteolysis after long-term deprivation cannot be explained by experimental artifacts or by gradual depletion of glucocorticoids or thyroid hormones from cells. Readdition of serum to deprived cells that are still in the enhanced phase of proteolysis restores degradation rates to values comparable to those in nondeprived cells. However, in cells deprived of serum for 24-48 h or longer, readdition of serum to the medium results in a marked reduction in proteolysis to rates below those observed in nondeprived cells. These responses of cultured cells to long-term serum deprivation and readdition may be of considerable physiological importance in that the proteolytic responses of tissues in starved and refed animals may be at least partially due to mechanisms operating at the cellular level.
Collapse
|
41
|
Backer JM, Dice JF. Covalent linkage of ribonuclease S-peptide to microinjected proteins causes their intracellular degradation to be enhanced during serum withdrawal. Proc Natl Acad Sci U S A 1986; 83:5830-4. [PMID: 3526340 PMCID: PMC386389 DOI: 10.1073/pnas.83.16.5830] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The amino-terminal 20 amino acids are required for microinjected ribonuclease A (RNase A) to be taken up by lysosomes and degraded at an enhanced rate during serum withdrawal. We used water-soluble carbodiimides to covalently attach the RNase S-peptide (residues 1-20) to [3H]RNase S-protein (residues 21-124) at unspecified locations. We then measured catabolism of the [3H]S-protein-S-peptide conjugate after its microinjection into human diploid fibroblasts. The attached S-peptide caused the degradation of S-protein to be enhanced 2-fold in the absence of serum. Control experiments showed that degradation of [3H]RNase S-protein remained unresponsive to serum after conjugation with the inactive fragment, RNase S-peptide (residues 1-10). Covalent attachment of RNase S-peptide had a similar effect on the catabolism of two other proteins. Degradation rates of microinjected 125I-labeled lysozyme and 125I-labeled insulin A chain are normally unresponsive to serum withdrawal. However, breakdown rates of microinjected 125I-labeled lysozyme-S-peptide and 125I-labeled insulin A chain-S-peptide conjugates were increased 2-fold during serum deprivation. We suggest that RNase S-peptide acts as a "single sequence" that directs cytosolic proteins to lysosomes through a pathway that is activated by deprivation conditions.
Collapse
|
42
|
Wharton SA, Riley PA. The suppression of endogenous protein degradation by fractions of foetal calf serum: dialysed serum is less able to suppress degradation in aged cells. Cell Biochem Funct 1986; 4:189-95. [PMID: 3731396 DOI: 10.1002/cbf.290040305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have studied the effect of various fractions of foetal bovine serum upon the endogenous degradation of long labelled proteins in cultured MRC5 cells, and upon other cellular functions. Only heat-inactivated serum was capable of suppressing protein degradation to a similar extent to complete serum. Acid-treated and delipidized sera were moderately effective. Albumin on its own was able to replace 40 per cent of the effect of serum, indicating the exogenous protein might compete with endogenous protein for degradation in lysosomes. Albumin was not capable of supporting DNA synthesis. Dialysed serum showed an age-related effect suppressing protein degradation to a lesser extent and being less effective in supporting DNA synthesis or cellular proliferation in aged cells. All the effects noted were related to lysosomal protein degradation. Serum diffusate did not suppress protein degradation.
Collapse
|
43
|
Baracos V, Greenberg RE, Goldberg AL. Influence of calcium and other divalent cations on protein turnover in rat skeletal muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1986; 250:E702-10. [PMID: 3521317 DOI: 10.1152/ajpendo.1986.250.6.e702] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
When rat muscles were incubated in Ca2+-free media, their rates of protein break-down were significantly lower than in complete medium (2.58 mM Ca2+). Dantrolene and 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester, inhibitors of Ca2+ release from the sarcoplasmic reticulum, also reduced muscle proteolysis. When Ca2+ was added (up to 5.16 mM), proteolysis increased progressively up to 70% in the intact soleus and extensor digitorum longus muscles and up to 300% in the cut diaphragm preparation. Addition of Ca2+ did not affect the muscles' ATP or phosphocreatine content and increased protein synthesis slightly or not at all. Sr2+, Ba2+, and Mn2+ also increased proteolysis, but were less effective than Ca2+. Mg2+ inhibited the enhancement of proteolysis by Ca2+. This stimulation by Ca2+ was not affected by inhibitors of voltage-dependent Ca2+ channels, calmodulin, metalloendoproteases, microfilament or microtubule formation, or mersalyl. High Ca2+ levels also increased prostaglandin (PG) E2 production, although a rise in PGE2 did not appear essential for the increased proteolysis. The proteolysis induced by Ca2+ was prevented in muscles treated with Ep-475 or leupeptin. By contrast, these inhibitors of thiol proteases did not affect protein breakdown in Ca2+-free medium. Thus extracellular Ca2+ activates and Mg2+ inhibits a proteolytic pathway involving thiol proteases.
Collapse
|
44
|
Regulation of catabolism of microinjected ribonuclease A. Identification of residues 7-11 as the essential pentapeptide. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)62694-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Amenta JS, Brocher SC, Mehta J, Manjunath D, Baccino FM. Evidence for a special relationship between proteolysis and single cell necrosis. Toxicol Pathol 1986; 14:335-41. [PMID: 3787116 DOI: 10.1177/019262338601400308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A high rate of single cell necrosis is a common phenomenon in neoplastic and preneoplastic lesions, accounting for growth rates that are significantly less than the cell birth rate. We present data relating the process of protein turnover to single cell necrosis. Cells were labeled with 3H-leucine and 14C-thymidine; the loss of radioactivity from the cell protein and DNA was then measured for 3-6 days. Preliminary experiments showed that cell necrosis by freeze-thawing cells did not significantly contribute to the degradation of cell proteins. Similar results were observed with dying 3T3-SV40 cells at high density. L-cells, however, showed a progressive increase in cell loss as higher cell densities were attained on the monolayer. Although proteolysis remained constant in the culture, analysis of the cells recovered from the high density monolayers showed little loss of labeled protein after adjustment for loss of label in the DNA. Three possible explanations are proposed: DNA turns over with cell protein (unlikely), single cell necrosis involves a special mechanism that facilitates reutilization of amino acids, or single cell necrosis includes only cells that are selectively involved in protein turnover. A unique relationship between single cell necrosis and proteolysis is suggested.
Collapse
|
46
|
Ohkuma S, Chudzik J, Poole B. The effects of basic substances and acidic ionophores on the digestion of exogenous and endogenous proteins in mouse peritoneal macrophages. J Cell Biol 1986; 102:959-66. [PMID: 3949884 PMCID: PMC2114118 DOI: 10.1083/jcb.102.3.959] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Basic substances and acidic ionophores that increase the lysosomal pH in cultured macrophages (Ohkuma, S., and B. Poole, 1978, Proc. Natl. Acad. Sci. USA., 75:3327-3331; Poole, B., and S. Ohkuma, 1981, J. Cell Biol., 90:665-669) inhibited the digestion of heat-denatured acetylated bovine serum albumin (BSA) taken up by the cells. For several substances, the shift in pH sufficed to explain the inhibition of proteolysis. Additional effects, presumably on enzyme activities, have to be postulated for tributylamine, amantadine, and chloroquine. Sodium fluoride (10 mM) had no significant effect on the breakdown of BSA by macrophages. The breakdown of endogenous macrophage proteins, whether short lived or long lived, was inhibited approximately 40% by 10 mM NaF and 30%, or sometimes less in the case of long-lived proteins, by 100 microM chloroquine. When the cells were supplied with BSA, a mixture of cell proteins, or even inert endocytosible materials, the breakdown of endogenous long-lived proteins and the inhibitory effect of chloroquine on this process were selectively reduced. Inhibition of endocytosis by cytochalasins B or D did not affect the chloroquine-sensitive breakdown of endogenous proteins, indicating that the proteins degraded by this process were truly endogenous and not taken in from the outside by cellular cannibalism. On the other hand, when macrophage proteins were supplied extracellularly, their breakdown occurred at the same rate for short-lived and long-lived proteins, and it was strongly inhibited by chloroquine and not by NaF. It is concluded from these results that the breakdown of endogenous proteins, both short-lived and long-lived, probably takes place partly (approximately 30%) in lysosomes and partly through one or more nonlysosomal mechanism(s) unaffected by chloroquine and presumably susceptible to inhibition by fluoride. A difference must exist between short-lived and long-lived proteins in the manner in which they reach lysosomes or are handled by these organelles; this difference would account for the selective effect of the supply of endocytosible materials on the lysosomal processing of long-lived proteins.
Collapse
|
47
|
Abstract
The ciliate Tetrahymena thermophila is usually grown in a medium containing proteose peptone and yeast extract as organic nutrients. When the ciliate is transferred to step-down conditions, i.e., an inorganic medium, it is shown that the cells respond by rapidly and drastically increasing their rate of protein degradation. A method for measuring the response to step-down conditions is presented, and the response is characterized. The types of proteinases involved are indicated by the use of specific inhibitors. It is concluded that Tetrahymena reacts in much the same way as mammalian cells, and provides a suitable system for investigating the regulation of protein degradation.
Collapse
|
48
|
Hare JF, Huston M. Degradation of exogenous membrane proteins implanted into the plasma membrane of cultured hepatoma cells. Exp Cell Res 1985; 161:331-41. [PMID: 2998835 DOI: 10.1016/0014-4827(85)90090-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The degradation of radiolabeled red cell band 3 and Sendai envelope proteins was studied after band 3 virosomes were fused with hepatoma cells as previously described (Hare, J E & Huston, M, Exp cell res 161 (1986) 317) [26]. 125I-band 3 (T1/2 = 13-14 h), Sendai HN (T1/2 = 37-40 h), and F (T1/2 = 21-23 h) envelope proteins were degraded by an apparent first-order process that was greater than 90% sensitive to 20 mM NH4Cl. 125I-Sendai envelope proteins were degraded at approximately similar rates when hepatoma cells were fused with intact virus, isolated viral membrane, or band 3 virosomes. There thus appears to be distinct heterogeneity among the degradation rates of implanted polypeptides dependent on structural aspects of each. To identify the subcellular site of membrane protein degradation, band 3 was labeled with membrane impermeant [14C]sucrose and implanted into hepatoma plasma membranes. After replating, trichloroacetic acid (TCA)-soluble label was found to accumulate in the lysosomal compartment of fractionated cells. The results identify the lysosome as the ultimate site of plasma membrane protein degradation, but suggest that plasma membrane proteins are selectively rather than non-selectively delivered to this compartment.
Collapse
|
49
|
Chandler CS, Ballard FJ. Distribution and degradation of biotin-containing carboxylases in human cell lines. Biochem J 1985; 232:385-93. [PMID: 2868710 PMCID: PMC1152891 DOI: 10.1042/bj2320385] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Incubation of cultured cells with [3H]biotin leads to the labelling of acetyl-CoA carboxylase, pyruvate carboxylase, propionyl-CoA carboxylase and methylcrotonyl-CoA carboxylase. The biotin-containing subunits of the last two enzymes from rat cell lines are not separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, but adequate separation is achieved with the enzymes from human cells. Since incorporated biotin is only released upon complete protein breakdown, the loss of radioactivity from gel slices coinciding with fluorograph bands was used to quantify degradation rates for each protein. In HE(39)L diploid human fibroblasts, the degradation rate constants are 0.55, 0.40, 0.31 and 0.19 day-1 for acetyl-CoA carboxylase, pyruvate carboxylase, methylcrotonyl-CoA carboxylase and propionyl-CoA carboxylase respectively. A similar series of rate constants is found for AG2804 transformed fibroblasts. The degradation rate constants are decreased by 31-67% in the presence of 50 micrograms of leupeptin/ml plus 5 mM-NH4Cl. Although the largest percentage effect was noted with the most stable enzyme, propionyl-CoA carboxylase, the absolute change in rate constant produced by the lysosomotropic inhibitors was similar for the three mitochondrial carboxylases, but greater for the cytosolic enzyme acetyl-CoA carboxylase. The heterogeneity in degradation rate constants for the mitochondrial carboxylases indicates that only part of their catabolism can occur via the autophagy-mediated unit destruction of mitochondria. Calculations showed that the autophagy-linked process had degradation rate constants of 0.084 and 0.102 day-1 respectively in HE(39)L and AG2804 cells. It accounted for two-thirds of the catabolic rate of propionyl-CoA carboxylase and a lesser proportion for the other enzymes.
Collapse
|
50
|
McElligott MA, Miao P, Dice JF. Lysosomal degradation of ribonuclease A and ribonuclease S-protein microinjected into the cytosol of human fibroblasts. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)38974-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|