1
|
Effect of Air Exposure-Induced Hypoxia on Neurotransmitters and Neurotransmission Enzymes in Ganglia of the Scallop Azumapecten farreri. Int J Mol Sci 2022; 23:ijms23042027. [PMID: 35216143 PMCID: PMC8878441 DOI: 10.3390/ijms23042027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
The nervous system expresses neuromolecules that play a crucial role in regulating physiological processes. Neuromolecule synthesis can be regulated by oxygen-dependent enzymes. Bivalves are a convenient model for studying air exposure-induced hypoxia. Here, we studied the effects of hypoxia on the expression and dynamics of neurotransmitters, and on neurotransmitter enzyme distribution, in the central nervous system (CNS) of the scallop Azumapecten farreri. We analyzed the expression of the neurotransmitters FMRFamide and serotonin (5-HT) and the choline acetyltransferase (CHAT) and universal NO-synthase (uNOS) enzymes during air exposure-induced hypoxia. We found that, in early-stage hypoxia, total serotonin content decreased in some CNS regions but increased in others. CHAT-lir cell numbers increased in all ganglia after hypoxia; CHAT probably appears de novo in accessory ganglia. Short-term hypoxia caused increased uNOS-lir cell numbers, while long-term exposure led to a reduction in their number. Thus, hypoxia weakly influences the number of FMRFamide-lir neurons in the visceral ganglion and does not affect peptide expression in the pedal ganglion. Ultimately, we found that the localization and level of synthesis of neuromolecules, and the numbers of cells expressing these molecules, vary in the scallop CNS during hypoxia exposure. This indicates their possible involvement in hypoxia resistance mechanisms.
Collapse
|
2
|
Li M, Wang M, Wang W, Wang L, Liu Z, Sun J, Wang K, Song L. The immunomodulatory function of invertebrate specific neuropeptide FMRFamide in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2019; 88:480-488. [PMID: 30877062 DOI: 10.1016/j.fsi.2019.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
As one of the most important neuropeptides identified only in invertebrates of Mollusca, Annelida and Arthropoda, FMRFamide (Phe-Met-Arg-Phe-NH2) involves in multiple physiological processes, such as mediating cardiac frequency and contraction of somatic and visceral muscles. However, its modulatory role in the immune defense has not been well understood. In the present study, an FMRFamide precursor (designed as CgFMRFamide) was identified in oyster Crassostrea gigas, which could be processed into nineteen FMRFamide peptides. Phylogenetic analysis revealed that CgFMRFamide shared high similarity with other identified FMRFamides in mollusks. The mRNA of CgFMRFamide was mainly concentrated in the tissues of visceral ganglia, hepatopancreas and hemocytes, and a consistent distribution of FMRFamide peptide was confirmed by immunohistochemistry and immunocytochemistry assays. The mRNA expression level of CgFMRFamide in hemocytes was significantly up-regulated after immune stimulation with lipopolysaccharide (LPS). After the concentration of FMRFamide was increased by exogenous injection, the in vivo expressions of pro-inflammatory cytokine CgIL17-5, as well as the apoptosis-related CgCaspase-1 and CgCaspase-3 in hemocytes were promptly increased (p < 0.05), but the concentration of signal molecule nitric oxide (NO) was significantly down-regulated (p < 0.05). Meanwhile, an increased phosphorylation of p38 MAP kinase in hemocytes was also detected after the FMRFamide injection. These results collectively demonstrated that the conserved FMRFamide could not only respond to immune stimulation, but also regulate the expression of immune effectors and apoptosis-related genes, which might be mediated by p38 MAP kinase pathway, thereby effectively involved in clearing pathogens and maintaining homeostasis in oysters.
Collapse
Affiliation(s)
- Meijia Li
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, 361102, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Min Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Kejian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, 361102, China
| | - Linsheng Song
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
3
|
Hillyer JF, Estévez-Lao TY, de la Parte LE. Myotropic effects of FMRFamide containing peptides on the heart of the mosquito Anopheles gambiae. Gen Comp Endocrinol 2014; 202:15-25. [PMID: 24747482 DOI: 10.1016/j.ygcen.2014.03.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/19/2014] [Accepted: 03/27/2014] [Indexed: 11/24/2022]
Abstract
FMRFamide-like peptides (FLPs) are produced by invertebrate and vertebrate animals, and regulate diverse physiological processes. In insects, several FLPs modulate heart physiology, with some increasing and others decreasing dorsal vessel contraction dynamics. Here, we describe the FMRFamide gene structure in the mosquito, Anopheles gambiae, quantify the developmental and spatial expression of FMRFamide and its putative receptor (FMRFamideR), and show that the peptides FMRFamide and SALDKNFMRFamide have complex myotropic properties. RACE sequencing showed that the FMRFamide gene encodes eight putative FLPs and is alternatively spliced. Of the eight FLPs, only one is shared by A. gambiae, Aedes aegypti and Culex quinquefasciatus: SALDKNFMRFamide. Quantitative PCR showed that peak expression of FMRFamide and FMRFamideR occurs in second instar larvae and around eclosion. In adults, FMRFamide is primarily transcribed in the head and thorax, and FMRFamideR is primarily transcribed in the thorax. Intravital video imaging of mosquitoes injected FMRFamide and SALDKNFMRFamide revealed that at low doses these peptides increase heart contraction rates. At high doses, however, these peptides decrease heart contraction rates and alter the proportional directionality of heart contractions. Taken altogether, these data describe the FMRFamide gene in A. gambiae, and show that FLPs are complex modulators of mosquito circulatory physiology.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Tania Y Estévez-Lao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
4
|
|
5
|
Abstract
In cephalopods, the endocrine optic glands on the optic tract control the maturation of the gonads. The glands are innervated by the optic gland nerve, which originates in the central nervous system. To explore the involvement of neuropeptides in the nervous control of the optic gland of Octopus vulgaris, the presence and distribution of Phe-Met-Arg-Phe-NH2 (FMRF-amide)-like and gonadotropin releasing homone (GnRH)-like peptides were examined in the central nervous system and optic gland by immunohistochemistry. For GnRH immunodetection, antibodies against four different forms of GnRH were used: cGnRH-I, cGnRH-II, sGnRH, and mGnRH. The optic gland nerve provides direct and indirect signals coming from the centres of integration of chemical, visual, and olfactive stimuli to modulate the glandular activity. In these centres, the subpedunculate area, the olfactory and optic lobes, and FMRF-amide-like and GnRH-like immunoreactivities were detected. The subpedunculate area seems to be the source of the FMRF-amide-like peptide, whereas the posterior olfactory lobule is the source of the GnRH-like peptide. The immunoreactive fibres for both neuropeptides leave their sources and directly enter the optic gland nerve. FMRF-amide- and GnRH-immunoreactive nerve endings are seen on the glandular cells. The evidence of a possible neuropeptidergic control of optic gland activity reinforces the analogies and the functional parallels in the octopus, insect, crustacean, and vertebrate hormonal systems.
Collapse
Affiliation(s)
- A Di Cosmo
- Department of Zoology, University of Naples, Italy.
| | | |
Collapse
|
6
|
Too CK, Croll RP. Detection of FMRFamide-like immunoreactivities in the sea scallop Placopecten magellanicus by immunohistochemistry and western blot analysis. Cell Tissue Res 1995; 281:295-304. [PMID: 7648623 DOI: 10.1007/bf00583398] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
FMRFamide-like immunoreactivity was detected histochemically in the sea scallop Placopecten magellanicus. Most immunoreactivity was concentrated in the cerebral, pedal, and parietovisceral ganglia, particularly in the cortical cell bodies and in their fibers which extend into the central neuropile. Whole-mount immunofluorescence studies were used to localize concentrations of immunoreactive cells on the dorsal and ventral surfaces of each ganglion. Immunoreactivity was also detected in nerves emanating from the ganglia. Strong immunoreactivity was localized in peripheral organs, including the gut and gills of juvenile and adult scallops. Weak immunoreactivity was detected in the gonads, heart, and adductor muscle of the adults. A broad FMRFamide-like immunoreactive band of 2.5-8.2 kDa was detected by Western blotting of acetone extracts of the parietovisceral ganglia. In the presence of protease inhibitors, two FMRFamide-like immunoreactive bands (7.2-8.2 kDa and > 17 kDa) were obtained. Neither of these bands comigrated with the FMRFamide standard. It is concluded that peptides of the FMRFamide family are probably regulators of numerous central and peripheral functions in P. magellanicus.
Collapse
Affiliation(s)
- C K Too
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
7
|
Abstract
The endocrine dorsal bodies (DB) of Helix aspersa are innervated by axons from the central nervous system, which establish synapse-like structures (SLS) with the DB cells. Previous immunocytochemical studies suggested the presence of FMRFa-like substances in nerves of the DB area and in SLS. This paper reports on biochemical attempts undertaken in order to investigate the nature of these substances: the use of HPLC and RIA confirms the presence of three FMRFa-like peptides in the DB-containing connective tissue among which one is probably the FMRFa itself.
Collapse
Affiliation(s)
- K Mounzih
- Laboratoire de Zoologie-Embryologie, UA CNRS 687, Faculté des Sciences et des Techniques, Besançon, France
| | | |
Collapse
|
8
|
Saleuddin A, Khan HR, Ashton ML, Griffond B. Immunocytochemical localization of FMRFamide in the central nervous system and the kidney of Helisoma duryi (Mollusca): Its possible antidiuretic role. Tissue Cell 1992; 24:179-89. [DOI: 10.1016/0040-8166(92)90091-k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1991] [Revised: 10/28/1991] [Indexed: 10/27/2022]
|
9
|
Griffond B, Mounzih K. Innervation of the dorsal body cells of Helix aspersa: Immunocytochemical evidence for the presence of FMRF amidelike substances in nerves and synapses. Tissue Cell 1990; 22:741-8. [DOI: 10.1016/0040-8166(90)90068-k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/1990] [Revised: 06/13/1990] [Indexed: 10/25/2022]
|
10
|
Griffond B, Mounzih K. In vitro inhibition of methionine incorporation in the dorsal bodies of Helix aspersa by synthetic FMRFamide. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1989; 92:45-9. [PMID: 2566442 DOI: 10.1016/0742-8413(89)90200-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. In in vitro conditions, synthetic FMRFamide was shown to inhibit the uptake of labelled methionine by the dorsal bodies (DB)-containing connective tissue of Helix aspersa. 2. This effect occurred at physiological concentrations and in a dose-dependent manner. 3. Among the different cell types of the explants, the DB cells preferentially incorporated the radioactive precursor. 4. These results suggest that FMRFamide plays a biological role in controlling the DB activity (protein synthesis) of Helix aspersa.
Collapse
Affiliation(s)
- B Griffond
- Laboratoire de Zoologie et Embryologie, UA CNRS 040687, Faculté des Sciences, Besançon, France
| | | |
Collapse
|
11
|
Le Gall S, Féral C, Van Minnen J, Marchand CR. Evidence for peptidergic innervation of the endocrine optic gland in Sepia by neurons showing FMRFamide-like immunoreactivity. Brain Res 1988; 462:83-8. [PMID: 3179738 DOI: 10.1016/0006-8993(88)90588-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The innervation of the endocrine optic gland of Sepia, which controls sexual maturation, was studied by immunocytochemistry. Anti-FMRFamide (Phe-Met-Arg-Phe-NH2) serum revealed immunoreactive neurons in the olfactory and basal-dorsal lobe of the supra-esophageal brain mass. The axons of these neurons form a network from which fibers run to the optic gland. The fibers form many varicosities on the glandular cells, indicating synaptic innervation. Apparently, the two brain lobes containing the immunopositive cells function as a unit where visual and olfactory cues are integrated to regulate the endocrine activity of the optic gland.
Collapse
Affiliation(s)
- S Le Gall
- Laboratoire de Biochimie Universitaire, CHU Côte de Nacre, France
| | | | | | | |
Collapse
|
12
|
Abstract
First purified 11 years ago from clam ganglia, FMRFamide (Phe-Met-Arg-Phe-NH2) was quickly demonstrated to be cardioactive in several molluscan species. Subsequent discovery that FMRFamide, or FMRFamide-related peptides (FaRPs), were present in mammalian central nervous system and gastrointestinal tract prompted investigations into the effect of FMRFamide on mammals. FMRFamide has now been shown to be cardioexcitatory in mammals, to inhibit morphine-induced antinociception, and to block morphine-, defeat-, and deprivation-induced feeding. It also inhibits colonic propulsive motility, induces behavioral effects when administered intrathecally, and has been reported to have amnesic effects in rodents. A proposal has arisen that a FMRFamide-like substance is an endogenous opioid antagonist and has stimulated a search for such a substance. However, FMRFamide has only weak affinity for opioid receptors and not all the actions of FMRFamide appear to be explained by actions at opioid receptors. Alternative mechanisms have been proposed which suggest that FMRFamide acts as a neuromodulator.
Collapse
Affiliation(s)
- R B Raffa
- Department of Biological Research, Janssen Research Foundation, Spring House, PA 19477-0776
| |
Collapse
|
13
|
Kobierski LA, Beltz BS, Trimmer BA, Kravitz EA. FMRFamidelike peptides of Homarus americanus: distribution, immunocytochemical mapping, and ultrastructural localization in terminal varicosities. J Comp Neurol 1987; 266:1-15. [PMID: 3323267 DOI: 10.1002/cne.902660102] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The distribution of FMRFamidelike peptides was studied in the nervous system of the lobster Homarus americanus by using immunocytochemical and radioimmunological techniques. By radioimmunoassay FMRFamidelike immunoreactivity (FLI) was found in low levels (ca. 1 pmol/mg protein) throughout the ventral nerve cord and in much higher amounts (60-100 pmol/mg protein) in the neurosecretory pericardial organs. Immunocytochemical studies showed FLI in approximately 300-350 cell bodies, and in distinct neuropil regions, neuronal fiber tracts, and varicose endings. Specificity of the immunostaining was tested by preabsorbing the antiserum with FMRFamide, with peptides having similar carboxyl termini to FMRFamide (Met-enkephalin-Arg-Phe, Phe-Met-Arg-Tyr-amide), with several amidated peptides (alpha-melanocyte-stimulating hormone, substance P, oxytocin), and with proctolin, a peptide found widely distributed in the lobster nervous system. Of these substances, only FMRFamide blocked the staining. In addition to the pericardial organs, significant levels of FLI were found in neurosecretory regions associated with thoracic second roots and in the connective tissue sheath that surrounds the ventral nerve cord. In all three regions, immunocytochemical studies showed the FLI to be localized to fine fibers and associated terminal varicosities lying close to the surface of the tissue, with no obvious target in their immediate vicinity. When examined at the ultrastructural level, the immunoreactive varicosities of the thoracic second roots and of the ventral nerve cord sheaths were found a few microns from the surface of the tissue and contained electron-dense granules. In the immunoreactive nerve cord sheath endings, in addition to the large, dense granules, small, clear vesicles were found. The appearance and location of these terminals suggest a neurohormonal role for FMRFamidelike peptides in lobsters. The observation that low levels of FLI are found in the hemolymph supports this suggestion. In addition, the localization of FLI to particular neuronal somata, fiber tracts, and neuropil regions suggests possible functional roles for these peptides in (1) integration of visual and olfactory information, (2) function of the anterior and posterior gut, and (3) the control of exoskeletal muscles.
Collapse
Affiliation(s)
- L A Kobierski
- Neurobiology Department, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
14
|
|
15
|
Brezina V, Eckert R, Erxleben C. Suppression of calcium current by an endogenous neuropeptide in neurones of Aplysia californica. J Physiol 1987; 388:565-95. [PMID: 2443695 PMCID: PMC1192566 DOI: 10.1113/jphysiol.1987.sp016632] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. Actions of the neuropeptide FMRFamide (Phe-Met-Arg-Phe-NH2) and its derivative YGG-FMRFamide (Tyr-Gly-Gly-Phe-Met-Arg-Phe-NH2) on Ca2+ current were examined in identified, voltage-clamped neurones in the abdominal ganglion of Aplysia californica. 2. 'Puffed' application of either peptide at concentrations of 1-50 microM was followed by a transient partial suppression of pharmacologically isolated inward Ca2+ current elicited by a depolarizing step. At 20 degrees C, suppression was maximal 10-25 s following the brief puff of peptide, and lasted up to 90 s. Bath application of peptide had a steady suppressing effect, showing little if any desensitization. 3. Alternative sources of inward current suppression were ruled out, indicating that application of FMRFamide or YGG-FMRFamide produces a true decrease in Ca2+ current, rather than enhancement of possible contaminating outward (K+, H+ or Cl-) currents. 4. FMRFamide and YGG-FMRFamide were equally effective in suppressing Ca2+ current (apparent dissociation constant, KD* approximately 10 microM). However, only 30-50% of the total Ca2+ current elicited by voltage steps to above +10 mV appeared to be susceptible to suppression by even saturating concentrations of peptide. This, as well as a reduced effect of the peptides on Ca2+ current which was observed at potentials below +10 mV, may perhaps result from the presence of more than one class of Ca2+ channels, only one of which is sensitive to FMRFamide. 5. FMRFamide eliminated a constant fraction of Ca2+ current at all potentials above +10 mV, and had no direct effect on activation or inactivation of the remaining current. This behaviour is consistent with reduction in the number of functional Ca2+ channels by the peptide. 6. Suppression of Ca2+ current produced a concomitant depression of Ca2+-dependent K+ current, which was shown previously to be insensitive to FMRFamide when activated by direct ionophoretic injection of Ca2+ into the cell. 7. The effect of FMRFamide on Ca2+ current was normal following interference with or activation of known second-messenger systems, those involving adenosine 3',5'-cyclic monophosphate (cyclic AMP), cyclic GMP, Ca2+, inositol trisphosphate and protein kinase C. 8. Suppression of Ca2+ current by FMRFamide appeared to be mediated by the same receptor as enhancement by the peptide of K+ current resembling IK(S) (K+ current suppressed by serotonin), an effect seen in most of the same cells. Both effects of FMRFamide were mimicked by injection of guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) into the cell, suggesting that the peptide may exert its effects by activating a guanosine 5'-triphosphate (GTP)-binding protein
Collapse
Affiliation(s)
- V Brezina
- Department of Biology, University of California, Los Angeles 90024
| | | | | |
Collapse
|
16
|
Localization and function of an FMRFamide-like substance in the aorta of Helix aspersa. Cell Tissue Res 1986. [DOI: 10.1007/bf00215892] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Ferrarese C, Iadarola MJ, Yang HY, Costa E. Peripheral and central origin of Phe-Met-Arg-Phe-amide immunoreactivity in rat spinal cord. REGULATORY PEPTIDES 1986; 13:245-52. [PMID: 3704197 DOI: 10.1016/0167-0115(86)90043-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phe-Met-Arg-Phe-amide immunoreactivity (FMRF-NH2-IR) is highly concentrated in the dorsal horn of rat spinal cord, and particularly in nerve terminals of lamina I. In order to establish the location of the cell bodies of the lamina I terminals containing FMRF-NH2-IR, we measured by radioimmunoassay the FMRF-NH2-IR in sensory ganglia and in spinal roots. FMRF-NH2-IR was found in both tissues, and reverse-phase HPLC analysis revealed that both tissues contain the same molecular forms that are also present in the spinal cord. Lumbo-sacral rhizotomy induced a 50% decrease of FMRF-NH2-IR in the lumbar segment of the spinal cord suggesting that at least a portion of the FMRF-NH2-IR present in this tissue is of peripheral origin. Transection of the spinal cord at the midthoracic level induced a 20-50% decrease of FMRF-NH2-IR in the lumbar segment of the spinal cord suggesting also the presence of FMRF-NH2-IR in descending pathways.
Collapse
|
18
|
Abstract
Electrophysiological and immunocytochemical techniques were used in the abdominal ganglion of Aplysia to identify neurons containing immunoreactive FMRFamide. Large numbers of neurons were immunoreactive for FMRFamide, including R2, L2, L3, L4, L5, L6, 2 cells tentatively identified as L12 and L13, and a previously unidentified cluster on the ventral surface of the right lower quadrant. There was also heavy labelling of fibers, often with beaded varicosities, throughout the neuropil, the cell layers, and the sheath overlying the ganglion. This data provides further evidence that FMRFamide is an important neurotransmitter in Aplysia. The demonstration of immunoreactive FMRFamide in the giant cholinergic neurons R2 and LP1(1) suggests that these well-studied and experimentally convenient cells use acetylcholine and an FMRFamide-like peptide as cotransmitters.
Collapse
|
19
|
Myers CM, Evans PD. The distribution of bovine pancreatic polypeptide/FMRFamide-like immunoreactivity in the ventral nervous system of the locust. J Comp Neurol 1985; 234:1-16. [PMID: 2579985 DOI: 10.1002/cne.902340102] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The distribution of bovine pancreatic polypeptide (BPP) FMRFamide-like immunoreactivity is described in the ganglia of the ventral nerve cord and in the peripheral median nervous system of the locust, Schistocerca gregaria. Immunoreactive cell bodies occur in three regions of the thoracic ganglia: 1) two pairs of cells lie in the anterior of the ganglion ventral to the root of nerve 1 and the anterior ventral association centre; 2) a group of cells lies in the ventral midline at the level at which nerves 3 and 4 leave the ganglion; 3) and two bilaterally symmetrical, posterior lateral groups lie between nerves 5 and 6 at the edge of the ganglion. Immunoreactive cell bodies in the suboesophageal and abdominal ganglia are confined to the midline and are distributed along the anterior-posterior axis both dorsally and ventrally. The processes of the posterior lateral groups have been traced into the neurohaemal organs of the median nerve and beyond. In the periphery such processes innervate the salivary glands and various muscles. The nature of the endogenous antigen contained in the immunoreactive cells has been investigated with the use of antisera against other peptides of the pancreatic polypeptide family, namely avian pancreatic polypeptide, neuropeptide Y, and peptide YY. In addition, BPP antisera not specific for the C terminal hexapeptide have been tested. Liquid preabsorption experiments with BPP and FMRFamide (the molluscan cardioacceleratory peptide) suggest that the endogenous peptide antigen contained in the stained neurones may belong to the pancreatic polypeptide family or to the FMRFamide family.
Collapse
|
20
|
Quackenbush LS, Fingerman M. Enzyme-linked immunosorbent assay of black pigment dispersing hormone from the fiddler crab, Uca pugilator. Gen Comp Endocrinol 1985; 57:438-44. [PMID: 3988026 DOI: 10.1016/0016-6480(85)90226-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An enzyme-linked immunosorbent assay was developed for black pigment dispersing hormone (BPDH) obtained from the fiddler crab, Uca pugilator. Immunoreactive BPDH, as high as 8.8 +/- 0.9 ng/50 microliters, was found in the hemolymph of crabs with dispersed black pigment. High potassium saline caused 4.5 +/- 0.4 ng immunoreactive BPDH to be released into the medium from isolated crab eyestalks in 5 min.
Collapse
|
21
|
Tang J, Yang HY, Costa E. Inhibition of spontaneous and opiate-modified nociception by an endogenous neuropeptide with Phe-Met-Arg-Phe-NH2-like immunoreactivity. Proc Natl Acad Sci U S A 1984; 81:5002-5. [PMID: 6589644 PMCID: PMC391621 DOI: 10.1073/pnas.81.15.5002] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In rats the antinociceptive actions of morphine (injected intraventricularly) or of [Met5]enkephalin-Arg6-Phe7 (YGGFMRF) (injected intrathecally) were attenuated by a pretreatment with 10 microliter of artificial cerebral spinal fluid containing 1 microM captopril/1 microM bestatin/2.5 microM Phe-Met-Arg-Phe-NH2 (FMRF-NH2) given 5 min earlier by the same route. A high molecular weight form of FMRF-NH2 purified from bovine brain attenuated the antinociceptive action of YGGFMRF. IgG, prepared from a specific FMRF-NH2 antiserum, elicited a moderate antinociception reversible by naloxone; in contrast, IgG prepared from control serum failed to change tail-flick latencies. In rats receiving morphine every 2 hr and anti-FMRF-NH2 IgG every 4 hr, the antinociceptive action was still evident after eight successive injections; in rats receiving only morphine, the antinociceptive action had disappeared after six successive injections. Morphine (1 microM) added to the perfusion fluid of the subarachnoidal spaces of rat spinal cord releases FMRF-NH2-like peptides in the perfusate.
Collapse
|
22
|
Abstract
It is commonly accepted that the basic physiological properties of the neurons as well as the nature of transmitter substances have remained relatively unchanged through evolution, while brain size and neuron number have greatly increased. Among invertebrates the molluscs, due to the large size of their neurons and lesser complexity of the neural networks controlling specific behavior, have proved to be especially useful for studying elementary properties of single neurons, network organization as well as various forms of learning and memory. The study of putative neurotransmitters has indicated that molluscs use the same low molecular-weight substances and peptides or their metabolites and cyclic nucleotides as transmitters and second messengers as the other species of various phyla. At the same time the receptors of neurotransmitters were found to have certain characteristic properties in the molluscs. The large molluscan neurons have permitted the isolation of individual identifiable nerve cells, and the subsequent analysis of quantities of the transmitters and their metabolic enzymes. These studies have demonstrated that single neurons frequently can contain more than one putative neurotransmitter. It can be expected that this model will contribute to an understanding of the role of multiple transmitters within a single neuron assuring the plasticity of the nervous system. The cellular mechanisms of plasticity have been demonstrated first in molluscan nervous systems. It was proved in identified Aplysia neurons that the same transmitter (ACh) can be released from an interneuron onto two or more follower neurons and can excite one and inhibit another or evoke a biphasic response on a third type of cell. The biphasic response of the molluscan neurons to neurotransmitters was the first demonstration of the plastic synaptic changes. The discovery of individual neurons with their groups of follower cells acting as chemical units has provided an insight into the organization of various behavioral acts. Study of the gastropod molluscs has also shown that the giant serotonergic cells can act as peripheral modulator neurons, as well as interneurons, and in this way they can affect their target organs at more than one level. The molluscan studies have provided more information on transmitter receptors as it was shown that molluscan neurons have at least six different 5HT receptors, three Ach receptors which can be separated pharmacologically. This type of study has led to the discovery of numerous new antagonists and poisons.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|