1
|
Faroon OM, Mehendale HM. Bromotrichloromethane Hepatotoxicity. The Role of Stimulated Hepatocellular Regeneration in Recovery: Biochemical and Histopathological Studies in Control and Chlordecone Pretreated Male Rats. Toxicol Pathol 2016. [DOI: 10.1177/01926233900184p205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has been shown that BrCCl3 is a more potent hepatotoxin than CCl4. Pretreatment with nontoxic dietary levels of chlordecone (CD) results in amplification of BrCCl3 hepatotoxicity. The objective of this research was to investigate and compare the histopathological alterations during a time course after a low dose of BrCCl3 alone and in combination with dietary CD. Male Sprague-Dawley rats were maintained on 10 ppm dietary CD or normal diet for 15 days. On day 16, they received a single ip dose (30 μ1/kg) of BrCCl3 in corn oil (CO) vehicle or corn oil alone. Blood and liver samples were collected at 0, 3, 6, 12, 24, 36, 48, 72, 96, and 120 hr for serum enzymes and histopathological examination, respectively. Serum enzymes (SDH, ALT, AST) were significantly ( p < 0.05) elevated in rats receiving the CD + BrCCl3 combination in comparison to BrCCl3 alone. For 48 hr, a continuous increase in serum enzyme activities was detected in rats treated with CD + BrCCl3 combination, but not in the rats receiving other treatments (ND + BrCCl3, ND + CO, or CD + CO). The most extensive hepatolobular necrosis was observed in rats treated with the CD + BrCCl3 combination. Thirty-six hr after the administration of BrCCl3 to rats maintained on normal diet, high mitotic activity was observed, which continued through 72 hr resulting in complete restoration of hepatolobular structure. In contrast, rats receiving the combination of CD + BrCCl3 exhibited minimal and belated hepatomitotic activity for a short period of time, resulting in progressive hepatic failure, culminating in animal death. In conclusion, hepatotoxicity of a low dose of BrCCl3 alone appeared to be overcome via stimulated hepatocellular regeneration and hepatolobular restoration. CD appears to amplify BrCCl3 hepatotoxicity via interference with this hormetic mechanism, permitting a progressive and continued hepatic injury leading to complete hepatic failure, culminating in animal death.
Collapse
Affiliation(s)
- Obaid M. Faroon
- Department of Pharmacology and Toxicology, University of Mississippi Medical
Center, Jackson, Mississippi 39216-4505
| | - Harihara M. Mehendale
- Department of Pharmacology and Toxicology, University of Mississippi Medical
Center, Jackson, Mississippi 39216-4505
| |
Collapse
|
2
|
Yeh YL, Ting WJ, Kuo WW, Hsu HH, Lin YM, Shen CY, Chang CH, Padma VV, Tsai Y, Huang CY. San Huang Shel Shin Tang beta-cyclodextrin complex augmented the hepatoprotective effects against carbon tetrachloride-induced acute hepatotoxicity in rats. Altern Ther Health Med 2016; 16:150. [PMID: 27234802 PMCID: PMC4884430 DOI: 10.1186/s12906-016-1127-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/15/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND San Huang Shel Shin Tang (SHSST) is a traditional herbal decoction used as a hepato-protective agent and is composed of Rheum officinale Baill, Scutellaria baicalnsis Geprgi and Coptis chinensis Franch (2:1:1 w/w). Beta-cyclodextrin (β-CD) modification may potentially increase the solubility and spectral properties of SHSST. METHODS In this research, the hepato-protective effects of unmodified SHSST, β-CD modified SHSST complex (SHSSTc) and silymarin were evaluated in carbon tetrachloride (CCl4) induced acute hepatotoxicity in rats. RESULTS SHHSTc (40 mg/kg/day) and silymarin (100 mg/kg/day) both decreased the CCl4-induced cirrhosis pathway-related transforming growth factor beta (TGF-β) and apoptosis pathway-related caspase-8 protein expressions, but SHSST (40 mg/kg/day) did not reduce TGF-β and caspase-8 significantly . Moreover, SHHSTc (40 mg/kg/day) enhanced the activation of insulin-like growth factor 1 receptor (IGF1R) mediated survival pathway than the silymarin (100 mg/kg/day) to protect the liver from damage induced by CCl4. CONCLUSIONS β-CD modification promotes hepato-protective effects of SHSST and reduces the required-dosage of the SHSST.
Collapse
|
3
|
Murali B, Korrapati MC, Warbritton A, Latendresse JR, Mehendale HM. Tolerance of aged Fischer 344 rats against chlordecone-amplified carbon tetrachloride toxicity. Mech Ageing Dev 2004; 125:421-35. [PMID: 15178132 DOI: 10.1016/j.mad.2004.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 02/27/2004] [Accepted: 03/01/2004] [Indexed: 01/11/2023]
Abstract
We have investigated the effects of chlordecone 1(CD)+CCl4 combination in adult (3 months), middle aged (14 months), and old aged (24 months) male Fischer 344 (F344) rats. After a non-toxic dietary regimen of CD (10 ppm) or normal powdered diet for 15 days, rats received a single non-toxic dose of CCl4 (100 microl/kg, i.p., 1:4 in corn oil) or corn oil (500 microl/kg, i.p.) alone on day 16. Liver injury was assessed by plasma ALT, AST, and histopathology during a time course of 0-96 h. Liver tissue repair was measured by [3H-CH3]-thymidine (3H-T) incorporation into hepatic nuclear DNA and proliferating cell nuclear antigen (PCNA) immunohistochemistry. Hepatomicrosomal CYP2E1 protein, enzyme activity, and covalent binding of 14CCl4-derived radiolabel were measured in normal and CD fed rats. Exposure to CCl4 alone caused modest liver injury only in 14- and 24-month-old rats but neither progression of injury nor mortality. The CD+CCl4 combination led to 100% mortality in 3-month-old rats by 72 h, whereas none of the 14- and 24-month-old rats died. Both 3- and 14-month-old rats exposed to CD+Cl4 had identical liver injury up to 36 h indicating that bioactivation-mediated CCl4 injury was the same in the two age groups. Thereafter, liver injury escalated only in 3-month-old while it declined in 14-month-old rats. In 24-month-old rats initial liver injury at 6 h was similar to the 3- and 14-month-old rats and thereafter did not develop to the level of the other two age groups, recovering from injury by 96 h as in the 14-month-old rats. Neither hepatomicrosomal CYP2E1 protein nor the associated p-nitrophenol hydroxylase activity or covalent binding of 14CCl4-derived radiolabel to liver tissue differed between the age groups or diet regimens 2 h after the administration of 14CCl4. Compensatory liver tissue repair (3H-T, PCNA) was prompt and robust soon after CCl4 liver injury in the 14- and 24-month-old rats. In stark contrast, in the 3-month-old rats it failed allowing unabated progression of liver injury. These findings suggest that stimulation of early onset and robust liver tissue repair rescue the 14- and 24-month-old F344 rats from the lethal effect of the CD+CCl4 combination.
Collapse
Affiliation(s)
- B Murali
- Department of Toxicology, Sugar Hall #306, School of Pharmacy, College of Health Sciences, The University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209, USA
| | | | | | | | | |
Collapse
|
4
|
Raymond P, Plaa GL. Ketone potentiation of haloalkane-induced hepatotoxicity: CCl4 and ketone treatment on hepatic membrane integrity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1996; 49:285-300. [PMID: 8876655 DOI: 10.1080/00984108.1996.11667602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous results in male Sprague-Dawley rats indicate that acetone (A), methyl ethyl ketone (MEK), and methyl isobutyl ketone (MiBK) pretreatments (3 d, p.o.) at a dosage of 6.8 mmol/kg potentiate CCl4 hepatotoxicity. The potentiation potency profile observed was MiBK > A > MEK. In the present study, male Sprague-Dawley rats were treated for 3 d with 6.8 mmol/kg (p.o.) of A, MEK, or MiBK using Emulphor as vehicle (10 ml/kg). Rats were either killed 18 h after the last pretreatment or treated with CCl4 (prepared in corn oil) and then killed 48 h later. Livers were perfused; purified plasma membrane (PM), sinusoidal (SM) and basal canalicular membrane (BCM) fractions were prepared. Membrane fluidity was monitored by fluorescence polarization using 1,6-diphenyl-1,3,5-hexatriene (DPH) or 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH). The following membrane enzymes were measured to monitor membrane purity and treatment effects: 5'-nucleotidase (5N), leucine aminopeptidase (LAP), and alkaline phosphatase (AP). Our results suggest that CCl4 modifies membrane integrity as indicated by a decrease in liver membrane 5N, LAP, and AP activity. CCl4 also increased the fluidity of the lipid and protein portions of the liver membranes as measured by the DPH and TMA-DPH fluorescence probes, respectively. Of the three ketones, only A altered CCl4 effects on plasma membrane enzymes and decreased BCM fluidity. The data only partially support increased susceptibility of liver membranes by ketone pretreatment as a factor implicated in the mechanism of potentiation of CCl4-induced hepatotoxicity.
Collapse
Affiliation(s)
- P Raymond
- Département de pharmacologie, Université de Montréal, Québec, Canada
| | | |
Collapse
|
5
|
Mehendale HM. Toxicodynamics of low level toxicant interactions of biological significance: inhibition of tissue repair. Toxicology 1995; 105:251-66. [PMID: 8571362 DOI: 10.1016/0300-483x(95)03220-a] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Because of the complexity of studying the toxicological effects of mixtures of chemicals, much of the mechanistic information has become available through work with binary mixtures of toxic chemicals. Mechanisms derived from studies employing chemicals at individually nontoxic doses are more useful than the mechanisms of interactive toxicity at high doses from the perspective of environmental and public health. Several examples of chemical combinations and interactive toxicity at low doses are now available. Chlordecone-potentiated halomethane hepatotoxicity, where suppression of cell division and tissue repair response permits very high amplification of CCl4 injury culminating in animal mortality, is one such model. Phenobarbital-potentiated CCl4 injury does not lead to animal mortality in spite of much higher liver injury in comparison to the chlordecone+CCl4 model. Much higher stimulation of tissue repair allows the animals to survive despite higher liver injury. Similar interactions have been reported between alcohols and halomethane toxicants. These and other studies have revealed that infliction of toxicant-induced injury is accompanied by a parallel but opposing tissue repair stimulation response which allows the animals to overcome that injury up to a threshold dose. Beyond this threshold, tissue repair response is both diminished and delayed allowing unrestrained progression of injury. Large doses of chemicals can be predictably lethal owing to these two latter effects on tissue repair. Dose-response paradigms in which tissue repair response is measured as a parallel but opposing effect to toxic injury might be useful in more precise prediction of the ultimate outcome of toxic injury in risk assessment. Autoprotection experiments with CCl4, thioacetamide, 2-butoxyethanol and related chemicals as well as heteroprotection against acetaminophen-induced lethality with thioacetamide are examples where tissue repair stimulation has been shown to rescue the animals from massive and normally lethal liver injury. The concept of toxicodynamic interaction between inflicted injury and stimulated tissue repair offers mechanistic opportunity to fine-tune other aspects of human health risk assessment procedure. Tissue repair mechanisms may also offer a mechanistic basis to explain species and strain differences as well as to more accurately assess inter-individual differences in human sensitivity to toxic chemicals. Because tissue repair is affected by nutritional status, assessment of risk from exposure to chemicals without attention to nutritional status may be misleading. Finally, the concept of using maximum tolerated doses (MTDs) in long-term toxicity studies such as cancer bioassays may need to be re-examined. MTDs might be predictably expected to maximally stimulate cell division and it is known that increased cell division is likely to lead to increased number of errors in DNA replication thereby predisposing these animals to cancer. It is clear that detailed studies of toxicodynamic interaction between tissue injury and stimulated tissue repair are likely to yield significant dividends in fine-tuning risk assessment.
Collapse
Affiliation(s)
- H M Mehendale
- Division of Toxicology, College of Pharmacy and Health Sciences, Northeast Louisiana University, Monroe 71209-0470, USA
| |
Collapse
|
6
|
Faroon O, Kueberuwa S, Smith L, DeRosa C. ATSDR evaluation of health effects of chemicals. II. Mirex and chlordecone: health effects, toxicokinetics, human exposure, and environmental fate. Toxicol Ind Health 1995; 11:1-203. [PMID: 8723616 DOI: 10.1177/074823379501100601] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This document provides public health officials, physicians, toxicologists, and other interested individuals and groups with an overall perspective of the toxicology of mirex and chlordecone. It contains descriptions and evaluations of toxicological studies and epidemiological investigations and provides conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public health. Additional substances will be profiled in a series of manuscripts to follow.
Collapse
Affiliation(s)
- O Faroon
- Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Atlanta, Georgia 30333, USA
| | | | | | | |
Collapse
|
7
|
Mehendale HM. Amplified interactive toxicity of chemicals at nontoxic levels: mechanistic considerations and implications to public health. ENVIRONMENTAL HEALTH PERSPECTIVES 1994; 102 Suppl 9:139-49. [PMID: 7535226 PMCID: PMC1566795 DOI: 10.1289/ehp.94102s9139] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
It is widely recognized that exposure to combinations or mixtures of chemicals may result in highly exaggerated toxicity even though the individual chemicals might not be toxic. Assessment of risk from exposure to combinations of chemicals requires the knowledge of the underlying mechanism(s). Dietary exposure to a nontoxic dose of chlordecone (CD; 10 ppm, 15 days) results in a 67-fold increase in lethality of an ordinarily inconsequential dose of CCl4 (100 microliters/kg, ip). Toxicity of closely related CHCl3 and BrCCl3 is also enhanced. Phenobarbital (PB, 225 ppm, 15 days) and mirex (10 ppm, 15 days) do not share the propensity of CD in this regard. Exposure to PB + CCl4 results in enhanced liver injury similar to that observed with CD, but the animals recover and survive in contrast to the greatly amplified lethality of CD + CCl4. Investigations have revealed that neither enhanced bioactivation of CCl4 nor increased lipid peroxidation offers a satisfactory explanation of these findings. Additional studies indicate that exposure to a low dose of CCl4 (100 microliters/kg, ip) results in limited injury, which is accompanied by a biphasic response of hepatocellular regeneration (6 and 36 hr) and tissue repair, which enables the animals to recover from injury. Exposure to CD + CCl4 results in suppressed tissue repair owing to an energy deficit in hepatocytes as a consequence of excessive intracellular influx of Ca2+ leading initially to a precipitous decline in glycogen and ultimately to hypoglycemia. Supplementation of cellular energy results in restoration of the tissue repair and complete recovery from the toxicity of CD + CCl4 combination. In contrast, only the early-phase hepatic tissue repair (6 hr) is affected in PB + CCl4 treatment, but this is adequately compensated for by a greater stimulation of tissue repair at 24 and 48 hr resulting in recovery from liver injury and animal survival. A wide variety of additional experimental evidence confirms the central role of stimulated tissue repair as a decisive determinant of the final outcome of liver injury inflicted by CCl4. For instance, a 35-fold greater CCl4 sensitivity of gerbils compared to rats is correlated with the very sluggish tissue repair in gerbils. These findings are consistent with a two-stage model of toxicity, where tissue injury is inflicted by the well described "mechanisms of toxicity," but the outcome of this injury is determined by whether or not sustainable tissue repair response accompanies this injury.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- H M Mehendale
- Division of Pharmacology and Toxicology, College of Pharmacy and Health Sciences, Northeast Louisiana University, Monroe 71209-0470
| |
Collapse
|
8
|
Mehendale HM, Thakore KN, Rao CV. Autoprotection: stimulated tissue repair permits recovery from injury. JOURNAL OF BIOCHEMICAL TOXICOLOGY 1994; 9:131-9. [PMID: 7983678 DOI: 10.1002/jbt.2570090304] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Autoprotection is a phenomenon whereby prior exposure to a small dose of a chemical results in protection against a subsequently administered lethal dose of the same compound. While CCl4 autoprotection has been studied the most, it has also been demonstrated for other chemicals. Recent studies indicate that the prevailing concept of decreased bioactivation of the normally lethal dose of CCl4 owing to decreased hepatic microsomal cytochrome P-450 content cannot be supported by direct end points of liver injury such as necrosis. These findings suggest a pivotal role for hepatocellular division and tissue healing processes stimulated by the protective dose in the mechanism of autoprotection. Augmentation of hepatocellular regeneration and tissue repair, stimulated by the protective dose, appears to permit timely recovery and restoration of hepatic structure and function. In the absence of the protective dose, hepatocellular division is substantially deficient and it occurs too late to tip the delicate balance between recovery from injury and progression of massive injury in favor of recovery. Abolition of autoprotection by colchicine antimitosis, under conditions where metabolism and disposition of CCl4 are not altered, is supportive of this concept. Selective colchicine antimitotic suppression of the early phase of hepatocellular division and tissue repair induced by a low dose of CCl4 results in progression of toxic liver injury, leading to hepatic failure and mortality. Studies have shown that pretreatment with phenobarbital results in postponed low-dose CCl4-stimulated cell division by 24 hours, which accordingly postpones the optimal autoprotection.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H M Mehendale
- Division of Pharmacology and Toxicology, College of Pharmacy and Health Sciences, Northeast Louisiana University, Monroe 71209-0470
| | | | | |
Collapse
|
9
|
Chaudhury S, Mehendale HM. Amplification of CCl4 toxicity by chlordecone: destruction of rat hepatic microsomal cytochrome P-450 subpopulation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1991; 32:277-94. [PMID: 1705986 DOI: 10.1080/15287399109531482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previous work has established marked amplification of CCl4 hepatotoxicity by prior exposure to chlordecone (CD). Since CCl4 is toxic by virtue of its bioactivation by the hepatomicrosomal cytochrome P-450 (cyt P-450) system, which is in turn destroyed, our first interest was to determine if cyt P-450 isozymes were selectively destroyed in this interaction. CoCl2 also decreased hepatic P-450 contents, so our other interest was to observe whether CoCl2 selectively decreased or spared CCl4 metabolizing P-450 enzymes. Solubilized hepatic microsomes from variously treated rats were used. The treatment protocol was dietary CD (10 ppm, for 15 d), and CCl4 (100 microliters/kg, ip). The treatments were CD alone, CCl4 alone, CD + CCl4 and with or without CoCl2 (60 mg/kg/d, sc for 2 d) treatment on d 13 and 14 of the dietary protocol. The control group received normal diet and corn oil vehicle. The key mixed-function oxidase (MFO) parameters measured were microsomal protein, cyt P-450 content, and aminopyrine demethylase (APD). Decrease of P-450 levels ranged from 2.2-fold (CD + CCl4) to 1.3-fold (CD + CoCl2). APD activity decreased by 48 and 26.6% in CD + CCl4 and CD + CoCl2 treatments, respectively. Using an anion-exchange high-performance liquid chromatography (HPLC) column, solubilized microsomal hemoproteins were resolved into five peaks. The P-450 content associated with each peak was determined. In CD rats there was slight increase in peak heights, whereas peak heights in CCl4 and control treatments were similar. CoCl2 decreased all peaks, the decrease of peak I being maximal. In CD + CCl4 treatment, absence of peaks II and III was noted. Microsomal proteins stained for heme showed decreased staining intensity of hemo-protein bands, particularly band 4 (MW 52,000), which was absent in CD + CCl4 interaction. These findings suggest that (1) CoCl2 does not selectively decrease or spare any P-450 isozymes and (2) CD + CCl4 interaction does destroy specific P-450 isozymes.
Collapse
Affiliation(s)
- S Chaudhury
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson 39216-4505
| | | |
Collapse
|
10
|
Abstract
The destruction of liver microsomal cytochromes P450 by a previously administered low dose of CCl4 has been widely accepted as the mechanism of CCl4 autoprotection. However, circumstantial evidence suggests that this mechanism cannot completely explain the phenomenon of autoprotection. The protective effect of a low dose of CCl4 (0.3 ml/kg, po) on the lethal effect of a subsequently administered high dose (5 ml/kg, po) was established in male Sprague Dawley rats. The protective dose permitted 100% survival, whereas only 15% survival was observed without it. Hepatotoxicity, measured by serum enzyme elevations (aspartate transaminase, alanine transaminase, and sorbitol dehydrogenase) and histopathological changes 24 hr after the treatment with high dose, was similar in both the groups, even though the protective dose had significantly decreased liver microsomal cytochromes P450 (to 62% of normal) and associated enzymes, aminopyrine demethylase and aniline hydroxylase. Rats pretreated with CoCl2 to decrease hepatic microsomal cytochrome P450 to 44% of normal levels did not show a significant protection from the hepatotoxicity of high dose of CCl4. Previous studies have established that hepatocellular regeneration is stimulated within 6 hr after the administration of a low dose of CCl4. Based on this observation, a premise that autoprotection results from augmented recovery from injury rather than decreased injury appears likely. Hence, the role of hepatocellular regeneration was evaluated by following 3H-thymidine incorporation in hepatocellular nuclear DNA, labelling index by autoradiography, and by morphometric estimation of mitotic index. After administration of the protective dose of CCl4, stimulated nuclear DNA synthesis measured by 3H-thymidine incorporation into nuclear DNA was increased and this remained high even after subsequent administration of high dose of CCl4. Forty-eight hr after the administration of a lethal dose of CCl4 alone (5 ml/kg, po), labelling index was slightly increased, but mitotic index was not increased. In the surviving rats (15%), both labelling index and mitotic index were significantly elevated after an additional 24 hr. In rats receiving the protective dose, a significantly greater elevation of labelling index as well as mitotic index occurred 48 hr after the administration of the same lethal dose of CCl4. These results suggest that hepatocellular regeneration stimulated by the protective dose, as a biological response recruited to overcome the accompanying limited injury, may augment and sustain tissue repair processes to permit tissue restoration even after the massive liver injury elicited by the subsequent large dose of CC14.
Collapse
Affiliation(s)
- K N Thakore
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson 39216-4505
| | | |
Collapse
|
11
|
Mehendale HM. Potentiation of halomethane hepatotoxicity by chlordecone: a hypothesis for the mechanism. Med Hypotheses 1990; 33:289-99. [PMID: 1708849 DOI: 10.1016/0306-9877(90)90144-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A major toxicological issue today is the possibility of unusual toxicity due to interaction of toxic chemicals upon environmental or occupational exposures to two or more chemicals, at ordinarily harmless levels individually. While some laboratory models exist for such interactions for the simplest case of only two chemicals, progress in this area has suffered for want of a model where the two interactants are individually nontoxic. One such model is available, where prior exposure to nontoxic levels of the pesticide Kepone (chlordecone) results in a 67-fold amplication of CCl4 lethality in rats. Extensive hepatotoxicity observed in this interaction is characterized by histopathological alterations, perturbation of related biochemical parameters and is followed by complete hepatic failure. This propensity for chlordecone to potentiate hepatotoxicity of halomethanes such as CCl4, CHCl3, and BrCCl3 has been a subject of intense study to unravel the underlying mechanism. Mechanisms such as induction of microsomal cytochrome P-450 by chlordecone and greater lipid peroxidation are inadequate to explain the remarkably powerful potentiation of halomethane toxicity. Compelling experimental evidence supports the hypothesis that hepatocellular division during early time points after the administration of CCl4 is an important determinant of the progression (or repair of it) of the liver injury and consequent destruction (or restoration) of the hepatolobular architecture and function. This paper advances a hypothesis for the mechanism of hepatotoxic and lethal effect of CCl4 as being primarily related to the accelerated progression of liver injury due to suppressed hepatocellular regeneration and hepatolobular restoration. This is in contrast to the widely accepted putative mechanism, one which invokes only bioactivation followed by runaway lipid peroxidation as the events determining the course of the progressive phase of liver injury. The concept being advanced in this paper accepts bioactivation (and perhaps lipid peroxidation) as the primary initiating events of cell injury, but maintains that they are not the determinants of the progressive phase of liver injury. The biological issue of whether the cells are incapacitated from regenerating is the determinant of the progression of liver injury, and therefore, the ultimate outcome of hepatotoxicity and lethality.
Collapse
Affiliation(s)
- H M Mehendale
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson 39216-4505
| |
Collapse
|
12
|
Faroon OM, Mehendale HM. Bromotrichloromethane hepatotoxicity. The role of stimulated hepatocellular regeneration in recovery: biochemical and histopathological studies in control and chlordecone pretreated male rats. Toxicol Pathol 1990; 18:667-77. [PMID: 1709515 DOI: 10.1177/019262339001800426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has been shown that BrCCl3 is a more potent hepatotoxin than CCl4. Pretreatment with nontoxic dietary levels of chlordecone (CD) results in amplification of BrCCl3 hepatotoxicity. The objective of this research was to investigate and compare the histopathological alterations during a time course after a low dose of BrCCl3 alone and in combination with dietary CD. Male Sprague-Dawley rats were maintained on 10 ppm dietary CD or normal diet for 15 days. On day 16, they received a single ip dose (30 microliters/kg) of BrCCl3 in corn oil (CO) vehicle or corn oil alone. Blood and liver samples were collected at 0, 3, 6, 12, 24, 36, 48, 72, 96, and 120 hr for serum enzymes and histopathological examination, respectively. Serum enzymes (SDH, ALT, AST) were significantly (p less than 0.05) elevated in rats receiving the CD + BrCCl3 combination in comparison to BrCCl3 alone. For 48 hr, a continuous increase in serum enzyme activities was detected in rats treated with CD + BrCCl3 combination, but not in the rats receiving other treatments (ND + BrCCl3, ND + CO, or CD + CO). The most extensive hepatolobular necrosis was observed in rats treated with the CD + BrCCl3 combination. Thirty-six hr after the administration of BrCCl3 to rats maintained on normal diet, high mitotic activity was observed, which continued through 72 hr resulting in complete restoration of hepatolobular structure. In contrast, rats receiving the combination of CD + BrCCl3 exhibited minimal and belated hepatomitotic activity for a short period of time, resulting in progressive hepatic failure, culminating in animal death. In conclusion, hepatotoxicity of a low dose of BrCCl3 alone appeared to be overcome via stimulated hepatocellular regeneration and hepatolobular restoration. CD appears to amplify BrCCl3 hepatotoxicity via interference with this hormetic mechanism, permitting a progressive and continued hepatic injury leading to complete hepatic failure, culminating in animal death.
Collapse
Affiliation(s)
- O M Faroon
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson 39216-4505
| | | |
Collapse
|
13
|
Inhibition of cell division in hepatoma cell cultures by chlordecone and carbon tetrachloride combination. Toxicol In Vitro 1990; 4:179-83. [DOI: 10.1016/0887-2333(90)90019-p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/1989] [Revised: 12/12/1989] [Indexed: 11/17/2022]
|
14
|
Abstract
There is significant interest in the possibility of unusual toxicity due to interaction of toxic chemicals upon environmental or occupational exposures even though such exposures may involve levels ordinarily considered harmless individually. While many laboratory and experimental models exist for such interactions, progress in this area of toxicology has suffered for want of a model where the interactants are individually non-toxic. We developed such a model where prior exposure to non-toxic levels of the pesticide Kepone (chlordecone) results in a 67-fold amplification of CCl4 lethality in experimental animals. The mechanism(s) by which chlordecone amplifies the hepatotoxicity of halomethanes such as CCl4, CHCl3, and BrCCl3 has been a subject of intense study. The biological effects of this interaction include extensive hepatotoxicity characterized by histopathological alterations, hepatic dysfunction, and perturbation of related biochemical parameters. Close structural analogs of chlordecone such as mirex and photomirex do not share the propensity of chlordecone to potentiate halomethane toxicity. Mechanisms such as induction of microsomal cytochrome P-450 by chlordecone and greater lipid peroxidation are inadequate to explain the remarkably powerful potentiation of toxicity and lethality. Time-course studies in which liver tissue was examined 1-36 h after CCl4 administration were conducted. While animals receiving a normally nontoxic dose of CCl4 alone show limited hepatocellular necrosis by 6 h, proceeding to greater injury after 12 h, recovery phase ensues as revealed by greatly increased number of mitotic figures. Such regeneration and hepatic tissue repair processes are totally suppressed in animals exposed to chlordecone prior to CCl4. Thus, the arrested hepatocellular repair and renovation play a key role in the potentiation of CCl4 liver injury by chlordecone. These findings have allowed us to propose a novel hypothesis for the mechanism of chlordecone amplification of halomethane toxicity and lethality. While limited injury is initiated by the low dose of CCl4 by bioactivation followed by lipid peroxidation, this normally recoverable injury permissively progresses due to arrested hepatocellular regeneration and tissue repair processes. Recent studies designed to test this hypothesis have provided additional supporting evidence. Hepatocellular regeneration stimulated by partial hepatectomy was unaffected by 10 ppm dietary chlordecone, while these animals were protected from the hepatotoxic and lethal actions of CCl4 if administered at the time of maximal hepatocellular regeneration. The protection was abolished when CCl4 was administered upon cessation of hepatocellular regeneration.
Collapse
Affiliation(s)
- H M Mehendale
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson 39216
| |
Collapse
|
15
|
Abstract
Rats were treated with pyrazole to increase the liver content of the "alcohol-inducible" form of cytochrome P-450. This treatment increased the sensitivity of these animals to CCl4-hepatotoxicity assessed by increases in SGPT and SGOT levels and decreases in microsomal cytochrome P-450 and aniline p-hydroxylase activity. However, the hepatotoxicity of CHCl3 was not increased by pyrazole-treatment. These data are consistent with the hypothesis that the "alcohol-inducible" form of cytochrome P-450 is capable of CCl4- but not CHCl3-activation.
Collapse
Affiliation(s)
- R E Ebel
- Department of Biochemistry and Nutrition, Virginia Polytechnic Institute, Blacksburg 24061
| |
Collapse
|
16
|
Kitchin KT, Brown JL. Biochemical effects of three carcinogenic chlorinated methanes in rat liver. TERATOGENESIS, CARCINOGENESIS, AND MUTAGENESIS 1989; 9:61-9. [PMID: 2567070 DOI: 10.1002/tcm.1770090108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three chlorinated methanes, carbon tetrachloride, chloroform, and methylene chloride, known to cause liver tumors in rodents, were given by oral gavage to adult female rats both 21 h and 4 h before sacrifice. Then hepatic DNA damage, ornithine decarboxylase (ODC), cytochrome P-450, glutathione content, and serum alanine aminotransferase (SGPT) activity assays were performed. Carbon tetrachloride increased rat hepatic ODC activity and decreased cytochrome P-450 content at doses both below and above cytotoxicity (as measured by increased SGPT activity). At 54 and 160 mg/kg, chloroform increased hepatic ODC activity with minimal or no elevation in SGPT activity. At 480 mg/kg chloroform increased hepatic ODC and SGPT activity. A dose of 1,275 mg/kg methylene chloride caused a small, but significant amount of hepatic DNA damage. When these three compounds are compared on either an equimolar or equitoxic (1/5 LD50) basis, their ability to induce hepatic ODC or increase SGPT activity was carbon tetrachloride greater than chloroform greater than methylene chloride. The results of this biochemical study are interpreted with respect to the ability of chemicals to cause hepatic cancer by either genetic or epigenetic mechanisms.
Collapse
Affiliation(s)
- K T Kitchin
- Environmental Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27211
| | | |
Collapse
|
17
|
Britton RS, Dolak JA, Glende EA, Recknagel RO. Potentiation of carbon tetrachloride hepatotoxicity by chlordecone: dose-response relationships and increased covalent binding in vivo. JOURNAL OF BIOCHEMICAL TOXICOLOGY 1987; 2:43-55. [PMID: 2469794 DOI: 10.1002/jbt.2570020105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chlordecone greatly potentiates carbon tetrachloride (CCl4) hepatotoxicity. In order to quantitate the degree of this potentiation, the effects of a range of doses of CCl4 on two microsomal enzymatic functions and liver enzyme release were examined in chlordecone-treated and control rats. Male Sprague-Dawley rats were pretreated with 15 mg chlordecone per kilogram body weight (BW) intragastrically or with vehicle. After 48 hours, 0 to 250 microliters CCl4 per 100 g body weight were given intraperitoneally (IP), and the rats were killed 24 hours later. Chlordecone treatment produced approximately a 17-fold potentiation of the CCl4-dependent loss of cytochrome P-450 and glucose-6-phosphatase activity, so that a dose of 6 microliters CCl4 per 100 g body weight in the chlordecone-treated animals resulted in a similar amount of damage as observed with 100 microliters CCl4 per 100 g body weight in controls. A similar potentiation by chlordecone was seen with CCl4 induced increases in serum glutamic-oxaloacetic transaminase (SGOT) levels. Chlordecone treatment also increased hepatic cytochrome P-450 levels by 67% and resulted in an increase in the covalent binding of [14-C]-CCl4-derived metabolites to microsomal protein and lipid in vivo.
Collapse
Affiliation(s)
- R S Britton
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | | | | | | |
Collapse
|