1
|
Abrahao KP, Pava MJ, Lovinger DM. Dose-dependent alcohol effects on electroencephalogram: Sedation/anesthesia is qualitatively distinct from sleep. Neuropharmacology 2019; 164:107913. [PMID: 31843396 DOI: 10.1016/j.neuropharm.2019.107913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
Alcohol is commonly used as a sleep inducer/aid by humans. However, individuals diagnosed with alcohol use disorders have sleep problems. Few studies have examined the effect of ethanol on physiological features of sedation and anesthesia, particularly at high doses. This study used polysomnography and a rapid, unbiased scoring of vigilance states with an automated algorithm to provide a thorough characterization of dose-dependent acute ethanol effects on sleep and electroencephalogram (EEG) power spectra in C57BL/6J male mice. Ethanol had a narrow dose-response effect on sleep. Only a high dose (4.0 g/kg) produced a unique, transient state that could not be characterized in terms of canonical sleep-wake states, so we dubbed this novel state Drug-Induced State with a Characteristic Oscillation in the Theta Band (DISCO-T). After this anesthetic effect, the high dose of alcohol promoted NREM sleep by increasing the duration of NREM bouts while reducing wake. REM sleep was differentially responsive to the circadian timing of ethanol administration. EEG power spectra proved more sensitive to ethanol than sleep measures as there were clear effects of ethanol at 2.0 and 4.0 g/kg doses. Ethanol promoted delta oscillations and suppressed faster frequencies, but there were clear, differential effects on wake and REM EEG power based on the timing of the ethanol injection. Understanding the neural basis of the extreme soporific effects of high dose ethanol may aid in treating acute toxicity brought about by patterns of excessive binge consumption commonly observed in young people.
Collapse
Affiliation(s)
- Karina P Abrahao
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Matthew J Pava
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Wyatt LR, Finn DA, Khoja S, Yardley MM, Asatryan L, Alkana RL, Davies DL. Contribution of P2X4 receptors to ethanol intake in male C57BL/6 mice. Neurochem Res 2014; 39:1127-39. [PMID: 24671605 DOI: 10.1007/s11064-014-1271-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/15/2014] [Accepted: 02/26/2014] [Indexed: 11/26/2022]
Abstract
P2X receptors (P2XRs) are a family of cation-permeable ligand-gated ion channels activated by synaptically released extracellular adenosine 5'-triphosphate. The P2X4 subtype is abundantly expressed in the central nervous system and is sensitive to low intoxicating ethanol concentrations. Genetic meta-analyses identified the p2rx4 gene as a candidate gene for innate alcohol intake and/or preference. The current study used mice lacking the p2rx4 gene (knockout, KO) and wildtype (WT) C57BL/6 controls to test the hypothesis that P2X4Rs contribute to ethanol intake. The early acquisition and early maintenance phases of ethanol intake were measured with three different drinking procedures. Further, we tested the effects of ivermectin (IVM), a drug previously shown to reduce ethanol's effects on P2X4Rs and to reduce ethanol intake and preference, for its ability to differentially alter stable ethanol intake in KO and WT mice. Depending on the procedure and the concentration of the ethanol solution, ethanol intake was transiently increased in P2X4R KO versus WT mice during the acquisition of 24-h and limited access ethanol intake. IVM significantly reduced ethanol intake in P2X4R KO and WT mice, but the degree of reduction was 50 % less in the P2X4R KO mice. Western blot analysis identified significant changes in γ-aminobutyric acidA receptor α1 subunit expression in brain regions associated with the regulation of ethanol behaviors in P2X4R KO mice. These findings add to evidence that P2X4Rs contribute to ethanol intake and indicate that there is a complex interaction between P2X4Rs, ethanol, and other neurotransmitter receptor systems.
Collapse
Affiliation(s)
- Letisha R Wyatt
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90033, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Molecular targets and mechanisms for ethanol action in glycine receptors. Pharmacol Ther 2010; 127:53-65. [PMID: 20399807 DOI: 10.1016/j.pharmthera.2010.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 11/23/2022]
Abstract
Glycine receptors (GlyRs) are recognized as the primary mediators of neuronal inhibition in the spinal cord, brain stem and higher brain regions known to be sensitive to ethanol. Building evidence supports the notion that ethanol acting on GlyRs causes at least a subset of its behavioral effects and may be involved in modulating ethanol intake. For over two decades, GlyRs have been studied at the molecular level as targets for ethanol action. Despite the advances in understanding the effects of ethanol in vivo and in vitro, the precise molecular sites and mechanisms of action for ethanol in ligand-gated ion channels in general, and in GlyRs specifically, are just now starting to become understood. The present review focuses on advances in our knowledge produced by using molecular biology, pressure antagonism, electrophysiology and molecular modeling strategies over the last two decades to probe, identify and model the initial molecular sites and mechanisms of ethanol action in GlyRs. The molecular targets on the GlyR are covered on a global perspective, which includes the intracellular, transmembrane and extracellular domains. The latter has received increasing attention in recent years. Recent molecular models of the sites of ethanol action in GlyRs and their implications to our understanding of possible mechanism of ethanol action and novel targets for drug development in GlyRs are discussed.
Collapse
|
4
|
Haughey HM, Kaiser AL, Johnson TE, Bennett B, Sikela JM, Zahniser NR. Norepinephrine Transporter: A Candidate Gene for Initial Ethanol Sensitivity in Inbred Long-Sleep and Short-Sleep Mice. Alcohol Clin Exp Res 2005; 29:1759-68. [PMID: 16269905 DOI: 10.1097/01.alc.0000183009.57805.a6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Altered noradrenergic neurotransmission is associated with depression and may contribute to drug abuse and alcoholism. Differential initial sensitivity to ethanol is an important predictor of risk for future alcoholism, making the inbred long-sleep (ILS) and inbred short-sleep (ISS) mice a useful model for identifying genes that may contribute to alcoholism. METHODS In this study, molecular biological, neurochemical, and behavioral approaches were used to test the hypothesis that the norepinephrine transporter (NET) contributes to the differences in ethanol-induced loss of righting reflex (LORR) in ILS and ISS mice. RESULTS We used these mice to investigate the NET as a candidate gene contributing to this phenotype. The ILS and ISS mice carry different DNA haplotypes for NET, showing eight silent differences between allelic coding regions. Only the ILS haplotype is found in other mouse strains thus far sequenced. Brain regional analyses revealed that ILS mice have 30 to 50% lower [3H]NE uptake, NET binding, and NET mRNA levels than ISS mice. Maximal [3H]NE uptake and NET number were reduced, with no change in affinity, in the ILS mice. These neurobiological changes were associated with significant influences on the behavioral phenotype of these mice, as demonstrated by (1) a differential response in the duration of ethanol-induced LORR in ILS and ISS mice pretreated with a NET inhibitor and (2) increased ethanol-induced LORR in LXS recombinant inbred (RI) strains, homozygous for ILS in the NET chromosomal region (44-47 cM), compared with ISS homozygous strains. CONCLUSIONS This is the first report to suggest that the NET gene is one of many possible genetic factors influencing ethanol sensitivity in ILS, ISS, and LXS RI mouse strains.
Collapse
Affiliation(s)
- Heather M Haughey
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, Colorado, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Hayes DM, Knapp DJ, Breese GR, Thiele TE. Comparison of basal neuropeptide Y and corticotropin releasing factor levels between the high ethanol drinking C57BL/6J and low ethanol drinking DBA/2J inbred mouse strains. Alcohol Clin Exp Res 2005; 29:721-9. [PMID: 15897715 PMCID: PMC1360240 DOI: 10.1097/01.alc.0000164375.16838.f3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Recent genetic and pharmacological evidence indicates that low neuropeptide Y (NPY) levels in brain regions involved with neurobiological responses to ethanol promote increased ethanol consumption. Because of their opposing actions, it has been suggested that NPY and corticotropin releasing factor (CRF) exert a reciprocal regulation on drug self-administration. It has been widely reported that inbred C57BL/6 mice consume significantly higher amounts of ethanol than do DBA/2 mice. Therefore, we used immunohistochemical techniques to determine if basal NPY and/or CRF levels differed in predicted directions between C57BL/6J and DBA/2J mice. METHODS Ethanol-naive C57BL/6J and DBA/2J mice were deeply anesthetized with sodium pentobarbital (100 mg/kg) and perfused transcardially with 0.1 mM of phosphate-buffered saline followed by 4% paraformaldehyde in buffered saline. Brains were collected and postfixed for 4 hr at 4 degrees C and then were cut into 35-microm sections. Tissues containing the nucleus accumbens (NAc), hypothalamus, and amygdala were processed for NPY or CRF immunoreactivity using immunofluorescent or DAB techniques. Immunoreactivity was quantified from digital images using Image J software. RESULTS The C57BL/6J mice showed reduced NPY expression in the NAc shell, the basolateral amygdala, and the central nucleus of the amygdala when compared with DBA/2J mice. However, these strains did not differ in CRF expression in any of the brain regions analyzed. CONCLUSIONS These data suggest that low NPY levels in the amygdala and/or the shell of the NAc, which are not compensated for by similar changes in CRF levels, may contribute to the high ethanol consumption characteristic of C57BL/6J mice.
Collapse
Affiliation(s)
| | | | | | - Todd E. Thiele
- Reprint requests: Todd E. Thiele, PhD, Department of Psychology, University of North Carolina, Davie Hall, CB# 3270, Chapel Hill, NC 27599–3270; Fax: 919-962-2537; E-mail:
| |
Collapse
|
6
|
Ponomarev I, Crabbe JC. A novel method to assess initial sensitivity and acute functional tolerance to hypnotic effects of ethanol. J Pharmacol Exp Ther 2002; 302:257-63. [PMID: 12065725 DOI: 10.1124/jpet.302.1.257] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Loss of righting reflex (LRR) has traditionally been used to estimate hypnotic sensitivity to ethanol in rodents. Traditional methods of monitoring ethanol-induced sedation seems to lack accuracy in estimating blood ethanol concentration (BEC) at initial LRR, a measure of initial sensitivity. Herein, we present a novel method that improves detection of the onset of LRR by using a new apparatus and a loss-of-function criterion of 5 s. DBA/2J and C57BL/6J mice were placed in cylindrical restrainers after injection of 3 g/kg (20% v/v) ethanol. Restrainers were then turned until mice were no longer able to right themselves within 5 s from a position on their back, which represented the endpoint of the initial loss of righting reflex. Initial sensitivity and acute functional tolerance (AFT) to ethanol were assessed in the same group of mice by quantifying BEC at the initial loss and subsequent recoveries of righting reflex over four sequential injections [3 g/kg + (3 x 0.5 g/kg)]. Initial brain sensitivity was calculated from BEC at the first LRR, using the parameters of ethanol uptake kinetics. These values of initial sensitivity were similar for the two strains. On the other hand, DBA/2J mice recovered at higher BEC than C57BL/6J animals. AFT calculated as a difference between the maximum BEC at any recovery and the value of initial sensitivity was greater in DBA/2J mice. These results show that the novel method is a sensitive tool for the measurement of initial sensitivity and detection of AFT to the hypnotic effects of ethanol.
Collapse
Affiliation(s)
- Igor Ponomarev
- Department of Behavioral Neuroscience, Oregon Health & Science University, Veterans Administration Medical Center (R&D-12), 3710 SW U.S. Veterans Hospital Road, Portland, OR 97201, USA.
| | | |
Collapse
|
7
|
Findlay GS, Wick MJ, Mascia MP, Wallace D, Miller GW, Harris RA, Blednov YA. Transgenic expression of a mutant glycine receptor decreases alcohol sensitivity of mice. J Pharmacol Exp Ther 2002; 300:526-34. [PMID: 11805213 DOI: 10.1124/jpet.300.2.526] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycine receptors (GlyRs) are pentameric ligand-gated ion channels that inhibit neurotransmission in the adult brainstem and spinal cord. GlyR function is potentiated by ethanol in vitro, and a mutant GlyR subunit alpha(1)(S267Q) is insensitive to the potentiating effects of ethanol. To test the importance of GlyR for the actions of ethanol in vivo, we constructed transgenic mice with this mutation. Under the control of synapsin I regulatory sequences, transgenic expression of S267Q mutant GlyR alpha(1) subunits in the nervous system was demonstrated using [(3)H]strychnine binding and immunoblotting. These mice showed decreased sensitivity to ethanol in three behavioral tests: ethanol inhibition of strychnine seizures, motor incoordination (rotarod), and loss of righting reflex. There was no change in ethanol sensitivity in tests of acute functional tolerance or body temperature, and there was no change in ethanol metabolism. Transgene effects were pharmacologically specific for ethanol, compared with pentobarbital, flurazepam, and ketamine. These results support the idea that glycine receptors contribute to some behavioral actions of ethanol and that ethanol sensitivity can be changed in vivo by transgenic expression of a single receptor subunit.
Collapse
Affiliation(s)
- G S Findlay
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology, University of Texas at Austin, 78712, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Finn DA, Syapin PJ, Bejanian M, Jones BL, Alkana RL. Temperature dependence of ethanol depression in mice: dose response. Alcohol Clin Exp Res 1994; 18:382-6. [PMID: 8048742 DOI: 10.1111/j.1530-0277.1994.tb00029.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Manipulation of body temperature during intoxication significantly alters brain sensitivity to ethanol. The current study tested the generality of this effect within the hypnotic dose range. Drug naive, male C57BL/6J mice were injected with 3.2, 3.6, or 4.0 g/kg ethanol (20% w/v) and were exposed to 1 of 7 designated temperatures from 13 degrees to 34 degrees C to manipulate body temperature during intoxication. Rectal temperature at return of righting reflex (RORR) was significantly, positively correlated with loss of righting reflex (LORR) duration and significantly, negatively correlated with blood ethanol concentration (BEC) at RORR at all three doses. These results indicate that increasing body temperature during intoxication increased ethanol sensitivity in C57 mice at all three doses tested and demonstrate the generality of temperature dependence across hypnotic doses in these animals. Interestingly, the LORR duration was dose-dependent at each ambient temperature, but the degree of body temperature change and the BEC at RORR were not dose-dependent. Overall, these results emphasize the importance of body temperature as a variable in ethanol research.
Collapse
Affiliation(s)
- D A Finn
- Alcohol and Brain Research Laboratory, School of Pharmacy, University of Southern California, Los Angeles 90033
| | | | | | | | | |
Collapse
|
9
|
Suzuki T, Motegi H, Misawa M. Attenuation of anticonvulsant effects of diazepam after chronic treatment with bicuculline. Pharmacol Biochem Behav 1993; 45:881-7. [PMID: 8415827 DOI: 10.1016/0091-3057(93)90135-g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Changes in the GABAergic system after chronic treatment with bicuculline were examined in two strains of inbred rats, Fischer 344 (F344) and Lewis (LEW). Rats received an IP injection of either bicuculline (2 mg/kg) or vehicle once a day for 12 days. After this chronic treatment, the effects of diazepam (1 mg/kg, IP) and pentobarbital (20 mg/kg, IP) on bicuculline-induced convulsions were measured. Bicuculline was acutely infused into a tail vein at 0.0415 mg/min, and the infusion was terminated when rats showed seizure. Following the chronic bicuculline treatment, the anticonvulsant effect of diazepam, but not of pentobarbital, was significantly reduced as compared to its effect following chronic vehicle treatment in both strains. Both diazepam and pentobarbital showed a significant difference in anticonvulsant effects between strains (F344 > LEW). The hypnotic effects of muscimol, barbital, pentobarbital, and ethanol following chronic bicuculline treatment were examined. There was no significant difference in sleep time induced by these drugs between bicuculline- and vehicle-treated rats. These results suggest that the attenuation of diazepam's anticonvulsant effect after chronic bicuculline treatment may result from functional changes in benzodiazepine receptors and that the anticonvulsant effects of diazepam and pentobarbital may be influenced by genetic factors. Moreover, the hypnotic effects of several drugs tested are apparently not affected by chronic bicuculline treatment.
Collapse
Affiliation(s)
- T Suzuki
- Department of Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | | | | |
Collapse
|
10
|
Alkana RL, Finn DA, Jones BL, Kobayashi LS, Babbini M, Bejanian M, Syapin PJ. Genetically determined differences in the antagonistic effect of pressure on ethanol-induced loss of righting reflex in mice. Alcohol Clin Exp Res 1992; 16:17-22. [PMID: 1558298 DOI: 10.1111/j.1530-0277.1992.tb00629.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hyperbaric exposure antagonizes ethanol's behavioral effects in a wide variety of species. Recent studies indicating that there are genetically determined differences in the effects of body temperature manipulation on ethanol sensitivity suggested that genotype might also influence the effects of hyperbaric exposure on ethanol intoxication. To investigate this possibility, ethanol injected long sleep (LS)/Ibg (2.7 g/kg), short sleep (SS)/Ibg (4.8 g/kg), 129/J (2.9 g/kg), and C57BL/6J (3.6 g/kg) mice were exposed to one atmosphere absolute (ATA) air or to one or 12 ATA helium-oxygen (heliox) at ambient temperatures selected to offset ethanol and helium-induced hypothermia. Hyperbaric exposure significantly reduced loss of righting reflex (LORR) duration in LS, 129, and C57 mice, but not in SS mice. A second experiment found that hyperbaric exposure significantly reduced LORR duration and increased the blood ethanol concentration (BEC) at return of righting reflex (RORR) in LS mice, but did not significantly affect either measure in SS mice. These results indicate that exposure to 12 ATA heliox antagonizes ethanol-induced LORR in LS, 129 and C57 mice, but not in SS mice. Taken with previous results, the present findings suggest that the antagonism in LS, 129, and C57 mice reflects a pressure-induced decrease in brain sensitivity to ethanol and that the lack of antagonism in SS mice cannot be explained by pressure-induced or genotypic differences in ethanol pharmacokinetics.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R L Alkana
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles 90033
| | | | | | | | | | | | | |
Collapse
|
11
|
Finn DA, Bejanian M, Jones BL, Babbini M, Syapin PJ, Alkana RL. The relationship between brain temperature during intoxication and ethanol sensitivity in LS and SS mice. Alcohol Clin Exp Res 1991; 15:717-24. [PMID: 1928649 DOI: 10.1111/j.1530-0277.1991.tb00585.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present study characterized the relationship between brain temperature, rectal temperature, and ethanol sensitivity in the selectivity bred long-sleep (LS) and short-sleep (SS) mice. Radiotelemetric brain probe implanted and nonimplanted LS/lbg and SS/lbg male mice were injected with 2.5 and 4.9 g/kg ethanol, respectively, before exposure to ambient temperatures of 15 degrees C, 22 degrees C, or 34 degrees C. Ambient temperature significantly affected rectal temperature, brain temperature, and ethanol sensitivity, measured by impairment of righting reflex. Brain and rectal temperatures at return of righting reflex (RORR) were highly correlated. In SS mice brain and rectal temperatures at RORR were significantly positively correlated with loss of righting reflex (LORR) duration and significantly negatively correlated with blood ethanol concentration (BEC) at RORR. In LS mice rectal temperature at RORR was significantly negatively correlated with LORR duration, while both brain and rectal temperature at RORR were significantly positively correlated with BEC at RORR. The strength of the correlations and r2 values generated from linear regression analysis indicates that body temperature during intoxication can explain up to 52% of the variability in ethanol sensitivity in SS mice, but only 19% of the variability in ethanol sensitivity in LS mice. The correlational analyses are consistent with previous results based on comparisons between rectal temperature and ethanol sensitivity and extend to direct brain temperature measurement the evidence that decreasing temperature during intoxication decreases ethanol sensitivity in SS mice and increases ethanol sensitivity in LS mice.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D A Finn
- Alcohol and Brain Research Laboratory, School of Pharmacy, University of Southern California, Los Angeles 90033
| | | | | | | | | | | |
Collapse
|
12
|
Alkana RL, DeBold JF, Finn DA, Babbini M, Syapin PJ. Ethanol-induced depression of aggression in mice antagonized by hyperbaric exposure. Pharmacol Biochem Behav 1991; 38:639-44. [PMID: 2068201 DOI: 10.1016/0091-3057(91)90026-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present study investigated the effect of hyperbaric exposure on ethanol-induced depression of aggressive behavior measured by resident-intruder confrontations. Adult male CFW mice (residents) were paired with females and housed together for 26 days. Then, resident mice were intubated with either ethanol (2 g/kg) or water (20 ml/kg) and were exposed to 1 atmosphere absolute (ATA) air, 1 ATA helium oxygen (heliox) or 12 ATA heliox using a within-subjects counterbalanced design. Thirty minutes after intubation an intruder was introduced. Ethanol significantly decreased aggressive behaviors (attack latency, attack bites, sideways threats, tail rattles and pursuit) in 1 ATA-treated animals. Pressure completely antagonized the depression of aggression induced by ethanol. Ethanol alone and pressure alone did not significantly affect nonaggressive behaviors. There were no statistically significant differences between groups in blood ethanol concentrations 50 minutes after intubation. These results suggest that ethanol's effects on aggressive behavior result from the same membrane actions leading to loss of righting reflex, depression of locomotor activity, tolerance and dependence.
Collapse
Affiliation(s)
- R L Alkana
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles 90033
| | | | | | | | | |
Collapse
|
13
|
Phillips TJ, Terdal ES, Crabbe JC. Response to selection for sensitivity to ethanol hypothermia: genetic analyses. Behav Genet 1990; 20:473-80. [PMID: 2256890 DOI: 10.1007/bf01067713] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Selective breeding has been used to produce lines of mice differing in sensitivity to the hypothermic effects of ethanol (EtOH). Two genetically independent HOT (insensitive) and two COLD (sensitive) lines are maintained along with two nonselected control (CON) lines. The breeding program is currently in selected generation 14, and HOT and COLD mice differ by about 4 degrees C in selected hypothermic response. Estimates of heritability indicate that approximately 20% of the variance in EtOH-induced hypothermic response in mice is of additive genetic origin. Inbreeding has increased at a rate of about 1.7% per generation and no fertility problems have been detected as a result of selection. Projects designed to evaluate apparent correlated responses to selection are discussed.
Collapse
Affiliation(s)
- T J Phillips
- Research Service, VA Medical Center, Portland, Oregon 97201
| | | | | |
Collapse
|
14
|
Ferko AP. The interaction between ethanol and cysteine on the central depressant effects of ethanol in mice. Pharmacol Biochem Behav 1990; 36:619-24. [PMID: 2377662 DOI: 10.1016/0091-3057(90)90265-j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study male Swiss-Webster mice were used to examine the effects of cysteine (ICV), a precursor in the biosynthesis of taurine, on ethanol-induced loss of the righting reflex. The interaction of ethanol with gamma-aminobutyric acid (GABA) and isethionic acid, a metabolite of taurine, was also investigated on ethanol-induced central nervous system depression as measured by loss of the righting reflex experiments. Immediately after the animals regained the righting reflex following ethanol injection (IP) mice received an ICV injection of saline, cysteine (1, 15 or 25 mumol/kg), GABA (1, 15 or 25 mumol/kg) or isethionic acid (25 or 50 mumol/kg). Upon ICV administration of cysteine or GABA the mice again lost the righting reflex. This effect occurred immediately and in a dose-dependent manner. The compound, isethionic acid, failed to cause a second loss of the righting reflex following ethanol administration (IP). In the absence of ethanol cysteine or GABA (25 mumol/kg, ICV) did not produce a substantial loss of the righting reflex in mice. In another experiment mice were pretreated (IP) with L-2-oxothiazolide-4-carboxylate (OTC) 2 hr prior to ethanol administration (IP). OTC is a compound which can be converted to cysteine in the body. In the presence of ethanol OTC (15 mmol/kg) caused an enhancement of ethanol-induced central nervous system depression under certain conditions.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A P Ferko
- Hahnemann University, School of Medicine, Department of Pharmacology, Philadelphia, PA 19102
| |
Collapse
|
15
|
Finn DA, Bejanian M, Jones BL, Syapin PJ, Alkana RL. Temperature affects ethanol lethality in C57BL/6, 129, LS and SS mice. Pharmacol Biochem Behav 1989; 34:375-80. [PMID: 2622994 DOI: 10.1016/0091-3057(89)90329-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of ambient and body temperature on ethanol lethality in inbred strains and selected lines of mice was investigated. C57BL/6J, 129/J, LS/Ibg and SS/Ibg mice were exposed to 23 or 34 degrees C following IP injection of lethal ethanol doses (8.2, 6.0, 6.5 or 7.0 g/kg ethanol, respectively). All mice exposed to 23 degrees C during intoxication became markedly hypothermic, with mean body temperatures dropping to lows of 27.9, 30.3, 33.0 and 33.3 degrees C in C57, LS, SS and 129 animals, respectively. Compared to the 23 degrees C groups, exposure to 34 degrees C offset the ethanol-induced hypothermia and significantly increased percent mortality in all four mouse genotypes. Exposure to 34 degrees C increased mortality at 24 hours postinjection from 15% to 95% in SS mice, from 37.5% to 100% in 129 mice and from 50% to 100% in LS and C57 mice. Blood ethanol data suggest that the present results cannot be explained by temperature-related changes in ethanol elimination. These results provide further evidence that body temperature during intoxication can have major effects on mortality rates in mice.
Collapse
Affiliation(s)
- D A Finn
- Alcohol and Brain Research Laboratory, School of Pharmacy, University of Southern California, Los Angeles 90033
| | | | | | | | | |
Collapse
|