1
|
Kato C, Kawai E, Shimizu N, Mikekado T, Kimura F, Miyazawa T, Nakagawa K. Determination of pyrroloquinoline quinone by enzymatic and LC-MS/MS methods to clarify its levels in foods. PLoS One 2018; 13:e0209700. [PMID: 30576372 PMCID: PMC6303014 DOI: 10.1371/journal.pone.0209700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/09/2018] [Indexed: 11/19/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) is believed to be a new B vitamin-like compound, and PQQ supplementation has received attention as a possible treatment for diseases including dementia and diabetes. However, the distribution of PQQ in foods is unclear, due to the difficulty in analyzing the compound. Therefore, in this study, enzymatic and LC-MS/MS methods were optimized to enable an accurate analysis of PQQ in foods. The optimized methods were applied to the screening of foods, in which PQQ contents were identified in ng/g or ng/mL levels. Furthermore, we newly found that some foods related to acetic acid bacteria contain PQQ at 1.94~5.59 ng/mL higher than beer, which is known to contain relatively high amounts of PQQ. These results suggest that the optimized methods are effective for the screening of foods containing PQQ. Such foods with high PQQ content may be valuable as functional foods effective towards the treatment of certain diseases.
Collapse
Affiliation(s)
- Chikara Kato
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Emiko Kawai
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Naoki Shimizu
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tsuyoshi Mikekado
- Niigata Research Laboratory, Mitsubishi Gas Chemical Company, Inc., Niigata, Japan
| | - Fumiko Kimura
- Department of Human Health and Nutrition, Shokei Gakuin University, Natori, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Japan
- Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- * E-mail:
| |
Collapse
|
2
|
Raghuvanshi R, Chaudhari A, Kumar GN. 2-Ketogluconic acid and pyrroloquinoline quinone secreting probiotic Escherichia coli Nissle 1917 as a dietary strategy against heavy metal induced damage in rats. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
3
|
Fukuda M, El-Maghrabey MH, Kishikawa N, Ikemoto K, Kuroda N. Ultrasensitive determination of pyrroloquinoline quinone in human plasma by HPLC with chemiluminescence detection using the redox cycle of quinone. J Pharm Biomed Anal 2017; 145:814-820. [PMID: 28826139 DOI: 10.1016/j.jpba.2017.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/03/2017] [Accepted: 08/05/2017] [Indexed: 11/19/2022]
Abstract
A fast, accurate, and ultrasensitive high-performance liquid chromatography method with chemiluminescence detection (HPLC-CL) was optimized and validated for the determination of pyrroloquinoline quinone (PQQ) concentration in human plasma following solid-phase extraction (SPE). This method is based on the redox cycle of the reaction between PQQ and dithiothreitol, which generates reactive oxygen species that can be detected using luminol as a CL probe. The isocratic HPLC system comprised an ODS column and 4.0mM tetra-n-butylammonium bromide in Tris-HNO3 buffer (pH 8.8; 50mM)-acetonitrile (7:3, v/v) as mobile phase. A novel, rapid, and simple SPE method was also developed providing excellent %recovery (≥95.2%) for PQQ from human plasma samples. The proposed method was linear over the range of 4.0-400nmol/L plasma of PQQ with a lower detection limit (S/N=3) of 1.08 nmol/L plasma (0.27nM). The method was successfully implemented to determine PQQ concentration in the plasma of healthy individuals after administration of PQQ supplements.
Collapse
Affiliation(s)
- Mizuho Fukuda
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mahmoud H El-Maghrabey
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Naoya Kishikawa
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | | | - Naotaka Kuroda
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
4
|
Somabhai CA, Raghuvanshi R, Nareshkumar G. Genetically Engineered Escherichia coli Nissle 1917 Synbiotics Reduce Metabolic Effects Induced by Chronic Consumption of Dietary Fructose. PLoS One 2016; 11:e0164860. [PMID: 27760187 PMCID: PMC5070853 DOI: 10.1371/journal.pone.0164860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/03/2016] [Indexed: 01/24/2023] Open
Abstract
AIMS To assess protective efficacy of genetically modified Escherichia coli Nissle 1917 (EcN) on metabolic effects induced by chronic consumption of dietary fructose. MATERIALS AND METHODS EcN was genetically modified with fructose dehydrogenase (fdh) gene for conversion of fructose to 5-keto-D-fructose and mannitol-2-dehydrogenase (mtlK) gene for conversion to mannitol, a prebiotic. Charles foster rats weighing 150-200 g were fed with 20% fructose in drinking water for two months. Probiotic treatment of EcN (pqq), EcN (pqq-glf-mtlK), EcN (pqq-fdh) was given once per week 109 cells for two months. Furthermore, blood and liver parameters for oxidative stress, dyslipidemia and hyperglycemia were estimated. Fecal samples were collected to determine the production of short chain fatty acids and pyrroloquinoline quinone (PQQ) production. RESULTS EcN (pqq-glf-mtlK), EcN (pqq-fdh) transformants were confirmed by restriction digestion and functionality was checked by PQQ estimation and HPLC analysis. There was significant increase in body weight, serum glucose, liver injury markers, lipid profile in serum and liver, and decrease in antioxidant enzyme activity in high-fructose-fed rats. However the rats treated with EcN (pqq-glf-mtlK) and EcN (pqq-fdh) showed significant reduction in lipid peroxidation along with increase in serum and hepatic antioxidant enzyme activities. Restoration of liver injury marker enzymes was also seen. Increase in short chain fatty acids (SCFA) demonstrated the prebiotic effects of mannitol and gluconic acid. CONCLUSIONS Our study demonstrated the effectiveness of probiotic EcN producing PQQ and fructose metabolizing enzymes against the fructose induced hepatic steatosis suggesting that its potential for use in treating fructose induced metabolic syndrome.
Collapse
Affiliation(s)
- Chaudhari Archana Somabhai
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara-390002, India
| | - Ruma Raghuvanshi
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara-390002, India
| | - G. Nareshkumar
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara-390002, India
| |
Collapse
|
5
|
Raghuvanshi R, Chaudhari A, Kumar GN. Amelioration of cadmium- and mercury-induced liver and kidney damage in rats by genetically engineered probiotic Escherichia coli Nissle 1917 producing pyrroloquinoline quinone with oral supplementation of citric acid. Nutrition 2016; 32:1285-94. [PMID: 27209211 DOI: 10.1016/j.nut.2016.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/26/2016] [Accepted: 03/10/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Antioxidants, chelating agents, and probiotics are used to manage the toxic effects of cadmium (Cd) and mercury (Hg). The aim of this study was to investigate the combined effects of antioxidants, chelating agents, and probiotics against heavy metal toxicity. METHOD Genetically modified probiotic Escherichia coli Nissle 1917 (EcN-20) producing a potent water soluble antioxidant pyrroloquinoline quinone (PQQ) was supplemented with oral citric acid and compared with another genetically modified probiotic EcN-21 producing PQQ and citric acid against oxidative stress induced by Cd and Hg. Rats were independently given 100 ppm Cd and 80 ppm Hg in drinking water for 4 wk. RESULTS EcN-20 was found to be more effective than EcN-2 (EcN strain with genomic integration of vgb and gfp genes) with orally given PQQ against oxidative stress induced by Cd and Hg. EcN-20 supplemented with oral citric acid was more effective against Cd and Hg toxicity compared with EcN-2+citric acid (oral), EcN-2+PQQ (oral), EcN-2+PQQ (oral)+citric acid (oral), EcN-20, and EcN-21. However, protection shown by EcN-21 was similar to EcN-20. CONCLUSION The combination therapy involving probiotic EcN-20 producing PQQ with citric acid given orally was found to be a moderately effective strategy against toxicity induced by Cd and Hg, whereas the protective effect of EcN-21 was the same as EcN-20.
Collapse
Affiliation(s)
- Ruma Raghuvanshi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat, India
| | - Archana Chaudhari
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat, India
| | - G Naresh Kumar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat, India.
| |
Collapse
|
6
|
Singh AK, Pandey SK, Saha G, Gattupalli NK. Pyrroloquinoline quinone (PQQ) producing Escherichia coli Nissle 1917 (EcN) alleviates age associated oxidative stress and hyperlipidemia, and improves mitochondrial function in ageing rats. Exp Gerontol 2015; 66:1-9. [DOI: 10.1016/j.exger.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 02/24/2015] [Accepted: 04/01/2015] [Indexed: 02/06/2023]
|
7
|
Acute and subchronic toxicity studies of pyrroloquinoline quinone (PQQ) disodium salt (BioPQQ™) in rats. Regul Toxicol Pharmacol 2014; 70:107-21. [DOI: 10.1016/j.yrtph.2014.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 11/23/2022]
|
8
|
Singh AK, Pandey SK, Naresh Kumar G. Pyrroloquinoline Quinone-Secreting ProbioticEscherichia coliNissle 1917 Ameliorates Ethanol-Induced Oxidative Damage and Hyperlipidemia in Rats. Alcohol Clin Exp Res 2014; 38:2127-37. [DOI: 10.1111/acer.12456] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/07/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Ashish K. Singh
- Molecular Microbial Biochemistry Laboratory; Department of Biochemistry; Faculty of Science; The Maharaja Sayajirao University of Baroda; Vadodara Gujarat India
| | - Sumeet K. Pandey
- Molecular Microbial Biochemistry Laboratory; Department of Biochemistry; Faculty of Science; The Maharaja Sayajirao University of Baroda; Vadodara Gujarat India
| | - Gattupalli Naresh Kumar
- Molecular Microbial Biochemistry Laboratory; Department of Biochemistry; Faculty of Science; The Maharaja Sayajirao University of Baroda; Vadodara Gujarat India
| |
Collapse
|
9
|
Pandey S, Singh A, Kumar P, Chaudhari A, Nareshkumar G. Probiotic Escherichia coli CFR 16 producing pyrroloquinoline quinone (PQQ) ameliorates 1,2-dimethylhydrazine-induced oxidative damage in colon and liver of rats. Appl Biochem Biotechnol 2014; 173:775-86. [PMID: 24718737 DOI: 10.1007/s12010-014-0897-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/30/2014] [Indexed: 01/10/2023]
Abstract
Inflammation of the gastrointestinal tract is associated with reactive oxygen species (ROS) genesis. Alleviation of oxidative stress is achieved by using antioxidants and probiotics. Present study investigates a synergistic effect of the probiotic Escherichia coli CFR 16 containing Vitreoscilla haemoglobin gene (vgb), green fluorescent protein (gfp) gene and pyrroloquinoline quinone (pqq) gene cluster on oxidative stress induced by 1,2-dimethylhydrazine (DMH). Adult virgin Charles foster male rats (3-4 months) weighing 200-250 g were administered with DMH (25 mg/kg body weight, s.c.) twice a week for eight consecutive weeks. Rats receiving only DMH dose showed increased lipid peroxidation in liver and intestinal tissues with reduced activity of antioxidant enzymes, i.e. superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Oral dose of E. coli CFR 16::vgb-gfp harbouring pqq gene cluster increased rat faecal PQQ concentration by twofold, reduced lipid peroxidation and retained SOD, CAT and GPx activities close to normal levels in liver and colonic tissues following DMH treatment. In addition, significant protection was found in colonic histological sections of these rat groups. This study demonstrates a protective efficacy in the following order: E. coli CFR 16 < E. coli CFR 16::vgb-gfp < vitamin C = PQQ < E. coli CFR 16::vgb-gfp (pqq).
Collapse
Affiliation(s)
- Sumeet Pandey
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | | | | | | | | |
Collapse
|
10
|
Harris CB, Chowanadisai W, Mishchuk DO, Satre MA, Slupsky CM, Rucker RB. Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects. J Nutr Biochem 2013; 24:2076-84. [DOI: 10.1016/j.jnutbio.2013.07.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/16/2013] [Accepted: 07/26/2013] [Indexed: 12/21/2022]
|
11
|
Involvement of a protein kinase activity inducer in DNA double strand break repair and radioresistance of Deinococcus radiodurans. J Bacteriol 2008; 190:3948-54. [PMID: 18375565 DOI: 10.1128/jb.00026-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transgenic bacteria producing pyrroloquinoline quinone, a known cofactor for dehydrogenases and an inducer of a periplasmic protein kinase activity, show resistance to both oxidative stress and protection from nonoxidative effects of radiation and DNA-damaging agents. Deinococcus radiodurans R1 encodes an active pyrroloquinoline quinone synthase, and constitutive synthesis of pyrroloquinoline quinone occurred in wild-type bacteria. Disruption of a genomic copy of pqqE resulted in cells that lacked this cofactor. The mutant showed a nearly 3-log decrease in gamma radiation resistance and a 2-log decrease in mitomycin C tolerance compared to wild-type cells. The mutant cells did not show sensitivity to UVC radiation. Expression of pyrroloquinoline quinone synthase in trans showed that there was functional complementation of gamma resistance and mitomycin C tolerance in the pqqE mutant. The sensitivity to gamma radiation was due to impairment or slow kinetics of DNA double strand break repair. Low levels of (32)P incorporation were observed in total soluble proteins of mutant cells compared to the wild type. The results suggest that pyrroloquinoline quinone has a regulatory role as a cofactor for dehydrogenases and an inducer of selected protein kinase activity in radiation resistance and DNA strand break repair in a radioresistant bacterium.
Collapse
|
12
|
McIntire WS. Newly discovered redox cofactors: possible nutritional, medical, and pharmacological relevance to higher animals. Annu Rev Nutr 1998; 18:145-77. [PMID: 9706222 DOI: 10.1146/annurev.nutr.18.1.145] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Research spurred by the discovery of pyrroloquinoline quinone (PPQ) in 1979 led to the discovery of four additional oxidation-reduction (redox) cofactors, all of which result from transmogrification of amino acyl side chains in respective enzymes. These cofactors are (a) topa quinone in copper-containing amine oxidases, enzymes found in nearly all forms of life, including human; (b) lysyl topa quinone of the copper protein lysyl oxidase, an enzyme required for proper cross-linking of collagen and elastin; (c) tryptophan tryptophylquinone of alkylamine dehydrogenases from gram-negative soil bacteria; and (d) the copper-complexed cysteinyltyrosyl radical of fungal galactose oxidase. Originally, PQQ was thought to be a covalently bound cofactor in numerous enzymes from eukaryotes and prokaryotes. Today, PQQ is only found as a noncovalent cofactor in bacterial enzymes. The ubiquity of PQQ in the environment and its steady accessibility in the human diet has raised questions concerning its role as a vitamin, or an essential or helpful nutrient. The relevance to nutrition, medicine, and pharmacology of PQQ, topa quinone, lysyl topa quinone, tryptophan trytophylquinone, the galactose oxidase cofactor, and the enzymes harboring these cofactors are discussed in this review.
Collapse
Affiliation(s)
- W S McIntire
- Department of Veterans Affairs Medical Center, San Francisco, California 94121, USA.
| |
Collapse
|
13
|
Suzuki O, Kumazawa T. Gas chromatographic-mass spectrometric analysis of pyrroloquinoline quinone. Methods Enzymol 1997; 280:150-8. [PMID: 9211311 DOI: 10.1016/s0076-6879(97)80107-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- O Suzuki
- Department of Legal Medicine, Hamamatsu University School of Medicine, Japan
| | | |
Collapse
|
14
|
Tsuchida T, Yasuyama T, Higuchi K, Watanabe A, Urakami T, Akaike T, Sato K, Maeda H. The protective effect of pyrroloquinoline quinone and its derivatives against carbon tetrachloride-induced liver injury of rats. J Gastroenterol Hepatol 1993; 8:342-7. [PMID: 8397011 DOI: 10.1111/j.1440-1746.1993.tb01525.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pyrroloquinoline quinone (PQQ) and its derivative, oxazo pyrroloquinoline (OPQ-G), protected rats from experimental liver injury induced by carbon tetrachloride (CCl4) in vivo. This effect was observed after an intraperitoneal injection of 5 mg/kg PQQ or OPQ-G, which was given twice, 10 min and 1 h before CCl4 administration. Pyrroloquinoline quinone protected primary cultured rat hepatocytes from CCl4 toxicity in vitro. This protection was most effective at a concentration of 3 mumol/L PQQ. Pyrroloquinoline quinone derivatives (oxazo pyrroloquinoline, methyl-thioethyl oxazo pyrroloquinoline and PQQ-allylester) also protected the hepatocytes from CCl4 toxicity. Pyrroloquinoline quinone and its derivatives inhibited the lucigenin-enhanced chemiluminescence from isolated hepatocytes initiated by CCl4. These results suggest that eliminating free radicals is one of the protective mechanisms of PQQ and its derivatives against CCl4-induced liver injury.
Collapse
Affiliation(s)
- T Tsuchida
- Third Department of Internal Medicine, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Japan
| | | | | | | | | | | | | | | |
Collapse
|