1
|
Prolyl carboxypeptidase in Agouti-related Peptide neurons modulates food intake and body weight. Mol Metab 2018; 10:28-38. [PMID: 29459251 PMCID: PMC5985234 DOI: 10.1016/j.molmet.2018.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/26/2018] [Accepted: 02/04/2018] [Indexed: 12/15/2022] Open
Abstract
Objective Prolyl carboxypeptidase (PRCP) plays a role in the regulation of energy metabolism by inactivating hypothalamic α-melanocyte stimulating hormone (α-MSH) levels. Although detected in the arcuate nucleus, limited PRCP expression has been observed in the arcuate POMC neurons, and its site of action in regulating metabolism is still ill-defined. Methods We performed immunostaining to assess the localization of PRCP in arcuate Neuropeptide Y/Agouti-related Peptide (NPY/AgRP) neurons. Hypothalamic explants were then used to assess the intracellular localization of PRCP and its release at the synaptic levels. Finally, we generated a mouse model to assess the role of PRCP in NPY/AgRP neurons of the arcuate nucleus in the regulation of metabolism. Results Here we show that PRCP is expressed in NPY/AgRP-expressing neurons of the arcuate nucleus. In hypothalamic explants, stimulation by ghrelin increased PRCP concentration in the medium and decreased PRCP content in synaptic extract, suggesting that PRCP is released at the synaptic level. In support of this, hypothalamic explants from mice with selective deletion of PRCP in AgRP neurons (PrcpAgRPKO) showed reduced ghrelin-induced PRCP concentration in the medium compared to controls mice. Furthermore, male PrcpAgRPKO mice had decreased body weight and fat mass compared to controls. However, this phenotype was sex-specific as female PrcpAgRPKO mice show metabolic differences only when challenged by high fat diet feeding. The improved metabolism of PrcpAgRPKO mice was associated with reduced food intake and increased energy expenditure, locomotor activity, and hypothalamic α-MSH levels. Administration of SHU9119, a potent melanocortin receptor antagonist, selectively in the PVN of PrcpAgRPKO male mice increased food intake to a level similar to that of control mice. Conclusions Altogether, our data indicate that PRCP is released at the synaptic levels and that PRCP in AgRP neurons contributes to the modulation of α-MSH degradation and related metabolic control in mice. PRCP is expressed in the arcuate NPY/AgRP neurons. PRCP is released in the synaptic space following ghrelin stimulation. Male mice with PRCP deletion in NPY/AgRP neurons show leaner phenotype with decreased food intake on standard chow diet. Female mice with PRCP deletion in NPY/AgRP neurons show leaner phenotype with decreased food intake only on high fat diet. Selective blockade of PVN melanocortin receptors increases feeding in male mice with PRCP deletion in NPY/AgRP neurons.
Collapse
|
2
|
Graham TH. Prolylcarboxypeptidase (PrCP) inhibitors and the therapeutic uses thereof: a patent review. Expert Opin Ther Pat 2017; 27:1077-1088. [PMID: 28699813 DOI: 10.1080/13543776.2017.1349104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Prolylcarboxypeptidase (PrCP) is a serine protease that produces or degrades signaling proteins in several important pathways including the renin-angiotensin system (RAS), kallikrein-kinin system (KKS) and pro-opiomelanocortin (POMC) system. PrCP has the potential to be a therapeutic target for cardiovascular, inflammatory and metabolic diseases. Numerous classes of PrCP inhibitors have been developed by rational drug design and from high-throughput screening hits. These inhibitors have been tested in mouse models to assess their potential as new therapeutics. Areas Covered: This review covers the relevant studies that support PrCP as a target for drug discovery. All the significant patent applications and primary literature concerning the development of PrCP inhibitors are discussed. Expert Opinion: The pathways where PrCP is known to operate are complex and many aspects remain to be characterized. Many potent inhibitors of PrCP have been tested in vivo. The variable results obtained from in vivo studies with PrCP inhibitors suggest that additional understanding of the biochemistry and the required therapeutic inhibitor levels is necessary. Additional fundamental research into the signaling pathways is likely required before the true therapeutic potential of PrCP inhibition will be realized.
Collapse
Affiliation(s)
- Thomas H Graham
- a Merck Research Laboratories , Merck & Co., Inc ., Kenilworth , NJ , USA
| |
Collapse
|
3
|
Pyrazoles as non-classical bioisosteres in prolylcarboxypeptidase (PrCP) inhibitors. Bioorg Med Chem Lett 2014; 24:1657-60. [PMID: 24636945 DOI: 10.1016/j.bmcl.2014.02.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/22/2014] [Accepted: 02/25/2014] [Indexed: 01/28/2023]
Abstract
Bioisosteres are integral components of modern pharmaceutical research that allow structural optimization to maximize in vivo efficacy and minimize adverse effects by selectively modifying pharmacodynamic, pharmacokinetic and physicochemical properties. A recent medicinal chemistry campaign focused on identifying small molecule inhibitors of prolylcarboxypeptidase (PrCP) initiated an investigation into the use of pyrazoles as bioisosteres for amides. The results indicate that pyrazoles are suitable bioisosteric replacements of amide functional groups. The study is an example of managing bioisosteric replacement by incorporating subsequent structural modifications to maintain potency against the selected target. A heuristic model for an embedded pharmacophore is also described.
Collapse
|
4
|
Jeong JK, Diano S. Prolyl carboxypeptidase mRNA expression in the mouse brain. Brain Res 2013; 1542:85-92. [PMID: 24161824 DOI: 10.1016/j.brainres.2013.10.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 11/17/2022]
Abstract
Prolyl carboxypeptidase (PRCP), a serine protease, is widely expressed in the body including liver, lung, kidney and brain, with a variety of known substrates such as plasma prekallikrein, bradykinin, angiotensins II and III, and α-MSH, suggesting its role in the processing of tissue-specific substrates. In the brain, PRCP has been shown to inactivate hypothalamic α-MSH, thus modulating melanocortin signaling in the control of energy metabolism. While its expression pattern has been reported in the hypothalamus, little is known on the distribution of PRCP throughout the mouse brain. This study was undertaken to determine PRCP expression in the mouse brain. Radioactive in situ hybridization was performed to determine endogenous PRCP mRNA expression. In addition, using a gene-trap mouse model for PRCP deletion, X-gal staining was performed to further determine PRCP distribution. Results from both approaches showed that PRCP gene is broadly expressed in the brain.
Collapse
Affiliation(s)
- Jin Kwon Jeong
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA; Department of Ob/Gyn & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Sabrina Diano
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA; Department of Ob/Gyn & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA; Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA; Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Debenham JS, Graham TH, Verras A, Zhang Y, Clements MJ, Kuethe JT, Madsen-Duggan C, Liu W, Bhatt UR, Chen D, Chen Q, Garcia-Calvo M, Geissler WM, He H, Li X, Lisnock J, Shen Z, Tong X, Tung EC, Wiltsie J, Xu S, Hale JJ, Pinto S, Shen DM. Discovery and optimization of orally active cyclohexane-based prolylcarboxypeptidase (PrCP) inhibitors. Bioorg Med Chem Lett 2013; 23:6228-33. [PMID: 24157366 DOI: 10.1016/j.bmcl.2013.09.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/30/2013] [Indexed: 01/17/2023]
Abstract
The synthesis, SAR, binding affinities and pharmacokinetic profiles are described for a series of cyclohexane-based prolylcarboxypeptidase (PrCP) inhibitors discovered by high throughput screening. Compounds show high levels of ex vivo target engagement in mouse plasma 20 h post oral dose.
Collapse
Affiliation(s)
- John S Debenham
- Department of Medicinal Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065-0900, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Jeong JK, Diano S. Prolyl carboxypeptidase and its inhibitors in metabolism. Trends Endocrinol Metab 2013; 24:61-7. [PMID: 23245768 PMCID: PMC3893043 DOI: 10.1016/j.tem.2012.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/30/2012] [Accepted: 11/04/2012] [Indexed: 01/09/2023]
Abstract
Proopiomelanocortin (POMC)-expressing neurons in the hypothalamus integrate a variety of central and peripheral metabolic inputs, and regulate energy homeostasis by controlling energy expenditure and food intake. To accomplish this, a precise balance of production and degradation of α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide and product of the POMC gene, in the hypothalamus, is crucial. Prolyl carboxypeptidase (PRCP) is a key enzyme that degrades α-MSH to an inactive form unable to inhibit food intake. Because it represents a new therapeutic target for the treatment of metabolic disorders, such as obesity and diabetes, efforts have been made to generate potent, brain-penetrant PRCP inhibitors. Here, we discuss the role of PRCP on energy metabolism and the development of PRCP inhibitors.
Collapse
Affiliation(s)
- Jin Kwon Jeong
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
7
|
Caseiro A, Ferreira R, Quintaneiro C, Pereira A, Marinheiro R, Vitorino R, Amado F. Protease profiling of different biofluids in type 1 diabetes mellitus. Clin Biochem 2012; 45:1613-9. [PMID: 22975642 DOI: 10.1016/j.clinbiochem.2012.08.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/20/2012] [Accepted: 08/26/2012] [Indexed: 12/11/2022]
Abstract
OBJECTIVES We aimed to disclose the proteolytic events underlying type 1 diabetes and related complication through protease profiling in the bodily fluids serum, urine and saliva. DESIGN AND METHODS Zymography followed by LC-MS/MS was performed for protease identification and quantitative comparison of proteolytic activity between healthy, type 1 diabetic patients with no complications and with retinopathy and nephropathy. Western blotting was also accomplished for MMP-9 and MMP-2 identification and expression analysis. RESULTS Only MMP-2 and MMP-9 were observed in serum with significantly increased levels and activity observed in diabetic patients. In urine and saliva other proteases besides MMPs were identified by MS and presented disease-dependent activity variations. Among these are complex MMP-9/Neutrophil gelatinase-associated lipocalin, aminopeptidase N, azurocidin and kallikrein 1 with more activity noticed in type 1 diabetes patients with nephropathy and/or retinopathy. CONCLUSION Our data highlight the usefulness of urine and saliva for the monitoring of type-1 diabetes-related proteolytic events, where aminopeptidase N, azurocidin and kallikrein 1 appear as promising screening targets for type 1 diabetes-related complications.
Collapse
Affiliation(s)
- Armando Caseiro
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | | | |
Collapse
|
8
|
Graham TH, Liu W, Verras A, Sebhat IK, Xiong Y, Bleasby K, Bhatt UR, Chen Q, Garcia-Calvo M, Geissler WM, Gorski JN, He H, Lassman ME, Lisnock J, Li X, Shen Z, Tong X, Tung EC, Wiltsie J, Xiao J, Xie D, Xu S, Hale JJ, Pinto S, Shen DM. A new class of prolylcarboxypeptidase inhibitors, part 1: discovery and evaluation. Bioorg Med Chem Lett 2012; 22:2811-7. [PMID: 22444683 DOI: 10.1016/j.bmcl.2012.02.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/18/2012] [Accepted: 02/23/2012] [Indexed: 01/22/2023]
Abstract
A new structural class of potent prolylcarboxypeptidase (PrCP) inhibitors was discovered by high-throughput screening. The series possesses a tractable SAR profile with sub-nanomolar in vitro IC(50) values. Compared to prior inhibitors, the new series demonstrated minimal activity shifts in pure plasma and complete ex vivo plasma target engagement in mouse plasma at the 20 h post-dose time point (po). In addition, the in vivo level of CNS and non-CNS drug exposure was measured.
Collapse
Affiliation(s)
- Thomas H Graham
- Department of Medicinal Chemistry, Merck Research Laboratories, Rahway, NJ 07065-0900, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Graham TH, Shen HC, Liu W, Xiong Y, Verras A, Bleasby K, Bhatt UR, Chabin RM, Chen D, Chen Q, Garcia-Calvo M, Geissler WM, He H, Lassman ME, Shen Z, Tong X, Tung EC, Xie D, Xu S, Colletti SL, Tata JR, Hale JJ, Pinto S, Shen DM. The discovery of non-benzimidazole and brain-penetrant prolylcarboxypeptidase inhibitors. Bioorg Med Chem Lett 2011; 22:658-65. [PMID: 22079761 DOI: 10.1016/j.bmcl.2011.10.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 01/18/2023]
Abstract
Novel prolylcarboxypeptidase (PrCP) inhibitors with nanomolar IC(50) values were prepared by replacing the previously described dichlorobenzimidazole-substituted pyrrolidine amides with a variety of substituted benzylamine amides. In contrast to prior series, the compounds demonstrated minimal inhibition shift in whole serum and minimal recognition by P-glycoprotein (P-gp) efflux transporters. The compounds were also cell permeable and demonstrated in vivo brain exposure. The in vivo effect of compound (S)-6e on weight loss in an established diet-induced obesity (eDIO) mouse model was studied.
Collapse
Affiliation(s)
- Thomas H Graham
- Department of Medicinal Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065-0900, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Long JZ, Cravatt BF. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem Rev 2011; 111:6022-63. [PMID: 21696217 DOI: 10.1021/cr200075y] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jonathan Z Long
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
11
|
New aspects of melanocortin signaling: a role for PRCP in α-MSH degradation. Front Neuroendocrinol 2011; 32:70-83. [PMID: 20932857 PMCID: PMC4766861 DOI: 10.1016/j.yfrne.2010.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/30/2010] [Accepted: 09/29/2010] [Indexed: 12/15/2022]
Abstract
The role of the central melanocortin system in the regulation of energy metabolism has received much attention during the past decade since gene mutations of key components in melanocortin signaling cause monogenic forms of obesity in animals and humans. In the arcuate nucleus of the hypothalamus the prohormone proopiomelanocortin (POMC) is posttranslationally cleaved to produce α-melanocyte stimulating hormone (α-MSH), a peptide with anorexigenic effects upon activation of the melanocortin receptors (MCRs). α-MSH undergoes extensive post-translational processing and its in vivo activity is short lived due to rapid degradation. The enzymatic process that controls α-MSH inactivation is incompletely understood. Recent evidence suggests that prolyl carboxypeptidase (PRCP) is an enzyme responsible for α-MSH degradation. As for many key melanocortin peptides, gene mutation of PRCP causes a change in the metabolic phenotype of rodents. This review summarizes the current knowledge on the melanocortin system with particular focus on PRCP, a newly discovered component of the melanocortin system.
Collapse
|
12
|
Zhou C, Garcia-Calvo M, Pinto S, Lombardo M, Feng Z, Bender K, Pryor KD, Bhatt UR, Chabin RM, Geissler WM, Shen Z, Tong X, Zhang Z, Wong KK, Roy RS, Chapman KT, Yang L, Xiong Y. Design and synthesis of prolylcarboxypeptidase (PrCP) inhibitors to validate PrCP as a potential target for obesity. J Med Chem 2010; 53:7251-63. [PMID: 20857914 DOI: 10.1021/jm101013m] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prolylcarboxypeptidase (PrCP) is a serine protease that may have a role in metabolism regulation. A class of reversible, potent, and selective PrCP inhibitors was developed starting from a mechanism based design for inhibiting this serine protease. Compound 8o inhibits human and mouse PrCP at IC(50) values of 1 and 2 nM and is not active (IC(50) > 25 μM) against a panel of closely related proteases. It has lower serum binding than its close analogues and is bioavailable in mouse. Subchronic dosing of 8o in PrCP(-/-) and WT mice at 100 mg/kg for 5 days resulted in a 5% reduction in body weight in WT mice and a 1% reduction in PrCP KO mice.
Collapse
Affiliation(s)
- Changyou Zhou
- Department of Medicinal Chemistry, Merck Research Laboratories,Rahway, New Jersey 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
This article focuses on four human carboxypeptidases (CPs): two metallo-CPs and two serine CPs. The metallo-CPs are members of the so-called B-type regulatory CP family, as they cleave only the C-terminal basic amino acids Arg or Lys. The plasma membrane-bound CPM and the mainly, but not exclusively, intracellular CPD are surveyed from this group of enzymes. These enzymes can regulate peptide hormone activity at the cell surface and possibly intracellularly after receptor-mediated endocytosis and may also participate in peptide hormone processing. The serine CPs, as their name indicates, contain a serine residue in the active center essential for catalytic activity that reacts with organophosphorus inhibitors. Prolylcarboxypeptidase (PRCP) (angiotensinase C) and deamidase (cathepsin A, lysosomal protective protein) are discussed here. These two enzymes are highly concentrated in lysosomes; however, they may also be active extracellularly after their release from lysosomes in soluble form or in a plasma membrane-bound complex. Whereas deamidase cleaves a variety of peptides with C-terminal or penultimate hydrophobic residues (e.g. substance P, angiotensin I, bradykinin, endothelin, fMet-Leu-Phe). PRCP cleaves only peptides with a penultimate Pro residue (e.g. des-Arg9-bradykinin, angiotensin II). These enzymes may also be involved in terminating signal transduction by inactivating peptide ligands after receptor endocytosis.
Collapse
Affiliation(s)
- R A Skidgel
- Department of Pharmacology, University of Illinois College of Medicine, Chicago 60612, USA.
| | | |
Collapse
|
14
|
Metabolism of Bradykinin by Peptidases in Health and Disease. THE KININ SYSTEM 1997. [PMCID: PMC7155640 DOI: 10.1016/b978-012249340-9/50009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
This chapter provides an overview of the metabolism of bradykinin (BK) by peptidases in health and disease. The enzymatic breakdown of kinins affects the duration of their biological actions as the plasma half-life of intravenously injected BK is in the range of seconds. Kinins are cleaved in vitro and in vivo by enzymes that belong to families, such as zinc-metallopeptidases, astacin-like metallopeptidases, and catheptic enzymes. Vane noted the importance of the pulmonary circulation in the metabolism of vasoactive substances, such as BK as well as angiotensin 1 and 5- hydroxytryptamine. It is clear after decades of research that angiotensin 1-converting enzyme (ACE) on the vascular endothelial cell surface is the most important inactivator of blood-borne BK. BK may act primarily in an autocrine and paracrine fashion, establishing the importance of local regulation of its activity by enzymes on cell surfaces. Thus, the assortment of other enzymes that can inactivate BK is important in a variety of physiological and pathological situations. Most physiological systems have redundant pathways of metabolism so that the abolishment of one pathway is compensated for by the presence of others. This is demonstrated by the pharmacological inhibition of ACE in hypertension.
Collapse
|