1
|
Rubio AO, Stuckert AMM, Geralds B, Nielsen R, MacManes MD, Summers K. What Makes a Mimic? Orange, Red, and Black Color Production in the Mimic Poison Frog (Ranitomeya imitator). Genome Biol Evol 2024; 16:evae123. [PMID: 38874406 PMCID: PMC11255871 DOI: 10.1093/gbe/evae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
Aposematic organisms rely on their conspicuous appearance to signal that they are defended and unpalatable. Such phenotypes are strongly tied to survival and reproduction. Aposematic colors and patterns are highly variable; however, the genetic, biochemical, and physiological mechanisms producing this conspicuous coloration remain largely unidentified. Here, we identify genes potentially affecting color variation in two color morphs of Ranitomeya imitator: the orange-banded Sauce and the redheaded Varadero morphs. We examine gene expression in black and orange skin patches from the Sauce morph and black and red skin patches from the Varadero morph. We identified genes differentially expressed between skin patches, including those that are involved in melanin synthesis (e.g. mlana, pmel, tyrp1), iridophore development (e.g. paics, ppat, ak1), pteridine synthesis (e.g. gch1, pax3-a, xdh), and carotenoid metabolism (e.g. dgat2, rbp1, scarb2). In addition, using weighted correlation network analysis, we identified the top 50 genes with high connectivity from the most significant network associated with gene expression differences between color morphs. Of these 50 genes, 13 were known to be related to color production (gch1, gmps, gpr143, impdh1, mc1r, pax3-a, pax7, ppat, rab27a, rlbp1, tfec, trpm1, xdh).
Collapse
Affiliation(s)
- Andrew O Rubio
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Adam M M Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - BreAnn Geralds
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- School of Biological Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Matthew D MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Kyle Summers
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
2
|
Roci I, Watrous JD, Lagerborg KA, Jain M, Nilsson R. Mapping metabolic oscillations during cell cycle progression. Cell Cycle 2020; 19:2676-2684. [PMID: 33016215 PMCID: PMC7644150 DOI: 10.1080/15384101.2020.1825203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Proliferating cells must synthesize a wide variety of macromolecules while progressing through the cell cycle, but the coordination between cell cycle progression and cellular metabolism is still poorly understood. To identify metabolic processes that oscillate over the cell cycle, we performed comprehensive, non-targeted liquid chromatography-high resolution mass spectrometry (LC-HRMS) based metabolomics of HeLa cells isolated in the G1 and SG2M cell cycle phases, capturing thousands of diverse metabolite ions. When accounting for increased total metabolite abundance due to cell growth throughout the cell cycle, 18% of the observed LC-HRMS peaks were at least twofold different between the stages, consistent with broad metabolic remodeling throughout the cell cycle. While most amino acids, phospholipids, and total ribonucleotides were constant across cell cycle phases, consistent with the view that total macromolecule synthesis does not vary across the cell cycle, certain metabolites were oscillating. For example, ribonucleotides were highly phosphorylated in SG2M, indicating an increase in energy charge, and several phosphatidylinositols were more abundant in G1, possibly indicating altered membrane lipid signaling. Within carbohydrate metabolism, pentose phosphates and methylglyoxal metabolites were associated with the cycle. Interestingly, hundreds of yet uncharacterized metabolites similarly oscillated between cell cycle phases, suggesting previously unknown metabolic activities that may be synchronized with cell cycle progression, providing an important resource for future studies.
Collapse
Affiliation(s)
- Irena Roci
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet , Stockholm, Sweden.,Division of Cardiovascular Medicine, Karolinska University Hospital , Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Jeramie D Watrous
- , Department of Medicine & Pharmacology University of California, San Diego , La Jolla, CA, USA
| | - Kim A Lagerborg
- , Department of Medicine & Pharmacology University of California, San Diego , La Jolla, CA, USA
| | - Mohit Jain
- , Department of Medicine & Pharmacology University of California, San Diego , La Jolla, CA, USA
| | - Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet , Stockholm, Sweden.,Division of Cardiovascular Medicine, Karolinska University Hospital , Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
3
|
Bentata Y. Mycophenolates: The latest modern and potent immunosuppressive drugs in adult kidney transplantation: What we should know about them? Artif Organs 2020; 44:561-576. [DOI: 10.1111/aor.13623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/25/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Yassamine Bentata
- Nephrology and Kidney Transplantation Unit University Hospital Mohammed VI University Mohammed First Oujda Morocco
- Laboratory of Epidemiology Clinical Research and Public Health Medical School University Mohammed First Oujda Morocco
| |
Collapse
|
4
|
Redzić ZB, Marković ID, Jovanović SS, Zloković BV, Rakić LM. Penetration of [3H] Tiazofurin Into Guinea Pig Eye by a Saturable Mechanism. Eur J Ophthalmol 2018; 5:131-5. [PMID: 7549442 DOI: 10.1177/112067219500500211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study investigated the transport of tiazofurin (2-beta-D-ribofuranosyl thiazole-4-carboxamide) across the blood-aqueous humor barrier, using the vascular perfusion method in the guinea pig. Volume of distribution (Vd) of [3H] tiazofurin increased almost linearly in time, from 4% of its plasma concentration at 3 min to 10% after 12 min of perfusion. Unidirectional transport constant, K(in) was 7.01 +/- 1.06 x 10(-3) ml/min/g. These results indicate that tiazofurin penetrates the aqueous humor to a considerable extent. Addition of unlabelled tiazofurin to the perfusing medium caused a significant decrease in the uptake of [3H] labelled tiazofurin (K(in) = 2.60 +/- 0.91 x 10(-3) ml/min/g). Therefore, penetration of tiazofurin from blood into aqueous humor seems to be a saturable process with a diffusional component that cannot be disregarded. Such findings could be of considerable importance since this molecule is known to affect tissue metabolism.
Collapse
Affiliation(s)
- Z B Redzić
- Institute of Biochemistry, Faculty of Medicine, Belgrade
| | | | | | | | | |
Collapse
|
5
|
Liu JX, Wang DQ, Zheng CH, Gao YL, Wu SS, Shang JL. Identifying drug-pathway association pairs based on L 2,1-integrative penalized matrix decomposition. BMC SYSTEMS BIOLOGY 2017; 11:119. [PMID: 29297378 PMCID: PMC5770056 DOI: 10.1186/s12918-017-0480-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Traditional drug identification methods follow the "one drug-one target" thought. But those methods ignore the natural characters of human diseases. To overcome this limitation, many identification methods of drug-pathway association pairs have been developed, such as the integrative penalized matrix decomposition (iPaD) method. The iPaD method imposes the L1-norm penalty on the regularization term. However, lasso-type penalties have an obvious disadvantage, that is, the sparsity produced by them is too dispersive. RESULTS Therefore, to improve the performance of the iPaD method, we propose a novel method named L2,1-iPaD to identify paired drug-pathway associations. In the L2,1-iPaD model, we use the L2,1-norm penalty to replace the L1-norm penalty since the L2,1-norm penalty can produce row sparsity. CONCLUSIONS By applying the L2,1-iPaD method to the CCLE and NCI-60 datasets, we demonstrate that the performance of L2,1-iPaD method is superior to existing methods. And the proposed method can achieve better enrichment in terms of discovering validated drug-pathway association pairs than the iPaD method by performing permutation test. The results on the two real datasets prove that our method is effective.
Collapse
Affiliation(s)
- Jin-Xing Liu
- School of Information Science and Engineering, Qufu Normal University, Rizhao, China
| | - Dong-Qin Wang
- School of Information Science and Engineering, Qufu Normal University, Rizhao, China
| | - Chun-Hou Zheng
- School of Information Science and Engineering, Qufu Normal University, Rizhao, China.
| | - Ying-Lian Gao
- Library of Qufu Normal University, Qufu Normal University, Rizhao, China.
| | - Sha-Sha Wu
- School of Information Science and Engineering, Qufu Normal University, Rizhao, China
| | - Jun-Liang Shang
- School of Information Science and Engineering, Qufu Normal University, Rizhao, China
| |
Collapse
|
6
|
Characterization of the novel Trypanosoma brucei inosine 5'-monophosphate dehydrogenase. Parasitology 2013; 140:735-45. [PMID: 23369253 DOI: 10.1017/s0031182012002090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is an alarming rate of human African trypanosomiasis recrudescence in many parts of sub-Saharan Africa. Yet, the disease has no successful chemotherapy. Trypanosoma lacks the enzymatic machinery for the de novo synthesis of purine nucleotides, and is critically dependent on salvage mechanisms. Inosine 5'-monophosphate dehydrogenase (IMPDH) is responsible for the rate-limiting step in guanine nucleotide metabolism. Here, we characterize recombinant Trypanosoma brucei IMPDH (TbIMPDH) to investigate the enzymatic differences between TbIMPDH and host IMPDH. Size-exclusion chromatography and analytical ultracentrifugation sedimentation velocity experiments reveal that TbIMPDH forms a heptamer, different from type 1 and 2 mammalian tetrameric IMPDHs. Kinetic analysis reveals calculated K m values of 30 and 1300 μ m for IMP and NAD, respectively. The obtained K m value of TbIMPDH for NAD is approximately 20-200-fold higher than that of mammalian enzymes and indicative of a different NAD binding mode between trypanosomal and mammalian IMPDHs. Inhibition studies show K i values of 3·2 μ m, 21 nM and 3·3 nM for ribavirin 5'-monophosphate, mycophenolic acid and mizoribine 5'-monophosphate, respectively. Our results show that TbIMPDH is different from its mammalian counterpart and thus may be a good target for further studies on anti-trypanosomal drugs.
Collapse
|
7
|
Dobie F, Berg A, Boitz JM, Jardim A. Kinetic characterization of inosine monophosphate dehydrogenase of Leishmania donovani. Mol Biochem Parasitol 2006; 152:11-21. [PMID: 17173987 DOI: 10.1016/j.molbiopara.2006.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 11/08/2006] [Accepted: 11/14/2006] [Indexed: 11/27/2022]
Abstract
Trypanosomatid protozoan pathogens are purine auxotrophs that are highly dependent on the enzyme inosine monophosphate dehydrogenase (IMPDH) for the synthesis of guanylate nucleotides. Enzymatic characterization of the Leishmania donovani IMPDH (LdIMPDH) overexpressed in E. coli revealed that this enzyme was highly specific for the substrates IMP and NAD(+) with K(m)(app) values of 33 and 390 microM, respectively. In contrast to other IMPDHs, LdIMPDH exhibits no substrate inhibition in high concentrations of NAD(+). Kinetic studies revealed that XMP and GMP were inhibitors with K(i) values of approximately 26 and 210 microM, respectively, suggesting that these nucleotides may regulate LdIMPDH activity. Mycophenolic acid was also a potent inhibitor of L. donovani IMPDH with a K(i) value of approximately 25 nM. Confocal immunofluorescence microscopy and subcellular fractionation localized LdIMPDH to the glycosome. Protein-protein interaction assays revealed that LdIMPDH associated tightly with glycosomal protein sorting receptor LdPEX5.
Collapse
Affiliation(s)
- Fredrick Dobie
- Institute of Parasitology, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste. Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | | | | | | |
Collapse
|
8
|
Popsavin M, Torović L, Svircev M, Kojić V, Bogdanović G, Popsavin V. Synthesis and antiproliferative activity of two new tiazofurin analogues with 2'-amido functionalities. Bioorg Med Chem Lett 2006; 16:2773-6. [PMID: 16495053 DOI: 10.1016/j.bmcl.2006.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 02/01/2006] [Accepted: 02/01/2006] [Indexed: 11/30/2022]
Abstract
Two novel tiazofurin analogues 2 and 3 were synthesized starting from d-glucose. The key step of the synthesis was the efficient one-step hydrogen sulfide-mediated conversion of 2-azido-3-O-acyl-ribofuranosyl cyanides to the corresponding 2-amido thiocarboxamides. Compounds 2 and 3 were evaluated for their in vitro antiproliferative activity against certain human tumour cell lines. Remarkably, compound 2 was found to be 570-fold more potent than tiazofurin against MCF-7 cells, while compound 3 showed the most powerful cytotoxicity against HT-29 cancer cells, being almost 100-fold more active than tiazofurin.
Collapse
Affiliation(s)
- Mirjana Popsavin
- Department of Chemistry, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad, Serbia and Montenegro.
| | | | | | | | | | | |
Collapse
|
9
|
Gu JJ, Stegmann S, Gathy K, Murray R, Laliberte J, Ayscue L, Mitchell BS. Inhibition of T lymphocyte activation in mice heterozygous for loss of the IMPDH II gene. J Clin Invest 2000; 106:599-606. [PMID: 10953035 PMCID: PMC380246 DOI: 10.1172/jci8669] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in the de novo synthesis of guanine nucleotides, which are also synthesized from guanine by a salvage reaction catalyzed by the X chromosome-linked enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). Since inhibitors of IMPDH are in clinical use as immunosuppressive agents, we have examined the consequences of knocking out the IMPDH type II enzyme by gene targeting in a mouse model. Loss of both alleles of the gene encoding this enzyme results in very early embryonic lethality despite the presence of IMPDH type I and HPRT activities. Lymphocytes from IMPDH II(+/-) heterozygous mice are normal with respect to subpopulation distribution and respond normally to a variety of mitogenic stimuli. However, mice with an IMPDH II(+/-), HPRT(-/o) genotype demonstrate significantly decreased lymphocyte responsiveness to stimulation with anti-CD3 and anti-CD28 antibodies and show a 30% mean reduction in GTP levels in lymphocytes activated by these antibodies. Furthermore, the cytolytic activity of their T cells against allogeneic target cells is significantly impaired. These results demonstrate that a moderate decrease in the ability of murine lymphocytes to synthesize guanine nucleotides during stimulation results in significant impairment in T-cell activation and function.
Collapse
Affiliation(s)
- J J Gu
- Lineberger Comprehensive Cancer Center, Department of Pathology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Metz SA, Kowluru A. Inosine monophosphate dehydrogenase: A molecular switch integrating pleiotropic GTP-dependent beta-cell functions. PROCEEDINGS OF THE ASSOCIATION OF AMERICAN PHYSICIANS 1999; 111:335-46. [PMID: 10417742 DOI: 10.1046/j.1525-1381.1999.99245.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studies of pancreatic islet function in the pathogenesis of type 2 diabetes mellitus have tended to focus on the short-term control of insulin secretion. However, the long-term control of beta-cell mass is also relevant to diabetes, since this parameter is reduced substantially even in non-insulin-dependent diabetes in humans. In animal models of type 2 diabetes, the normal balance between beta-cell proliferation and programmed cell death is perturbed. We take the perspective in this overview that inosine monophosphate dehydrogenase (IMPDH; EC 1.1.1. 205) may represent a previously neglected molecular integrator or sensor that exerts both functional (secretory) and anatomical (proliferative) effects within beta-cells. These properties reflect the fact that IMPDH is a rate-limiting enzyme in the new synthesis of the purine guanosine triphosphate (GTP), which modulates both exocytotic insulin secretion and DNA synthesis, as well as a number of other critical cellular functions within the beta-cell. Alterations in the expression or activity of IMPDH may be central to beta-cell replication, cell cycle progression, differentiation, and maintenance of adequate islet mass, effects that are probably mediated both by GTP directly, and indirectly via low molecular mass GTPases. If GTP becomes depleted, a hierarchy of beta-cell functions becomes progressively paralyzed, until eventually the effete cell is removed via apoptosis.
Collapse
Affiliation(s)
- S A Metz
- Pacific Northwest Research Institute, Seattle, WA 98122, USA
| | | |
Collapse
|
11
|
Liu Y, Riley LB, Bohn SA, Boice JA, Stadler PB, Sherley JL. Comparison of bax, waf1, and IMP dehydrogenase regulation in response to wild-type p53 expression under normal growth conditions. J Cell Physiol 1998; 177:364-76. [PMID: 9766533 DOI: 10.1002/(sici)1097-4652(199811)177:2<364::aid-jcp18>3.0.co;2-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recently, we demonstrated that downregulation of inosine-5'-monophosphate dehydrogenase (IMPD; IMP:NAD oxidoreductase, EC 1.2.1.14), the rate-limiting enzyme for guanine nucleotide biosynthesis, is required for p53-dependent growth suppression. These studies were performed with cell lines derived from immortal, nontumorigenic fibroblasts that express wild-type p53 conditionally by virtue of a metal-responsive promoter. Here, the p53-dependent properties of the original "p53-inducible" fibroblasts are presented in detail and compared to related properties of epithelial cells that also express wild-type p53 conditionally, but by virtue of a temperature-responsive promoter. Both types of p53-inducible cells were designed to approximate normal physiologic relationships between the host cell and the regulated p53 protein. Together, they were used to investigate expression relationships between IMPD and other p53-responsive genes proposed as mediators of p53-dependent growth suppression. In both types of cells, IMPD activity, protein, and mRNA were consistently coordinately reduced in response to p53 expression. In contrast, mRNAs for waf1, bax, and mdm2 showed disparate patterns of expression, being induced in one conditional cell type, but not the other. This distinction in regulation pattern suggests that under normal growth conditions, unlike IMPD downregulation, bax and waf1 induction is not a rate-determining event for p53-dependent growth suppression.
Collapse
Affiliation(s)
- Y Liu
- Division of Medical Science, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
12
|
Zimmermann AG, Gu JJ, Laliberté J, Mitchell BS. Inosine-5'-monophosphate dehydrogenase: regulation of expression and role in cellular proliferation and T lymphocyte activation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 61:181-209. [PMID: 9752721 DOI: 10.1016/s0079-6603(08)60827-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Guanine nucleotide synthesis is essential for the maintenance of normal cell growth and function, as well as for cellular transformation and immune responses. The expression of two genes encoding human inosine-5'-monophosphate dehyrogenase (IMPDH) type I and type II results in the translation of catalytically indistinguishable enzymes that control the rate-limiting step in the de novo synthesis of guanine nucleotides. Cellular IMPDH activity is increased more than 10-fold in activated peripheral blood T lymphocytes and is attributable to the increased expression of both the type I and type II enzymes. In contrast, abrogation of cellular IMPDH activity by selective inhibitors prevents T lymphocyte activation and establishes a requirement for elevated IMPDH activity in T lymphocytic responses. In order to assess the molecular mechanisms governing the expression of the IMPDH type I and type II genes in resting and activated peripheral blood T lymphocytes, we have cloned the human IMPDH type I and type II genes and characterized their genomic organization and their respective 5'-flanking regions. Both genes contain 14 highly conserved exons that vary in size from 49 to 207 base pairs. However, the intron structures are completely divergent, resulting in disparities in gene length (18 kilobases for type I and 5.8 kilobases for type II). In addition, the 5'-regulatory sequences are highly divergent; expression of the IMPDH type I gene is controlled by three distinct promoters in a tissue specific manner while the type II gene is regulated by a single promoter and closely flanked in the 5' region by a gene of unknown function. The conservation of the IMPDH type I and type II coding sequence in the presence of highly divergent 5'-regulatory sequences points to a multifactorial control of enzyme expression and suggests that tissue-specific and/or developmentally specific regulation of expression may be important. Delineation of these regulatory mechanisms will aid in the elucidation of the signaling events that ultimately lead to the synthesis of guanine nucleotides required for cellular entry into S phase and the initiation of DNA replication.
Collapse
Affiliation(s)
- A G Zimmermann
- Department of Pharmacology, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
13
|
Liu Y, Bohn SA, Sherley JL. Inosine-5'-monophosphate dehydrogenase is a rate-determining factor for p53-dependent growth regulation. Mol Biol Cell 1998; 9:15-28. [PMID: 9436988 PMCID: PMC25212 DOI: 10.1091/mbc.9.1.15] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/1997] [Accepted: 10/16/1997] [Indexed: 02/05/2023] Open
Abstract
We have proposed that reduced activity of inosine-5'-monophosphate dehydrogenase (IMPD; IMP:NAD oxidoreductase, EC 1.2.1.14), the rate-limiting enzyme for guanine nucleotide biosynthesis, in response to wild-type p53 expression, is essential for p53-dependent growth suppression. A gene transfer strategy was used to demonstrate that under physiological conditions constitutive IMPD expression prevents p53-dependent growth suppression. In these studies, expression of bax and waf1, genes implicated in p53-dependent growth suppression in response to DNA damage, remains elevated in response to p53. These findings indicate that under physiological conditions IMPD is a rate-determining factor for p53-dependent growth regulation. In addition, they suggest that the impd gene may be epistatic to bax and waf1 in growth suppression. Because of the role of IMPD in the production and balance of GTP and ATP, essential nucleotides for signal transduction, these results suggest that p53 controls cell division signals by regulating purine ribonucleotide metabolism.
Collapse
Affiliation(s)
- Y Liu
- The Molecular Oncology Group, Division of Medical Science, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
14
|
Marcussen M, Larsen PJ. Cell cycle-dependent regulation of cellular ATP concentration, and depolymerization of the interphase microtubular network induced by elevated cellular ATP concentration in whole fibroblasts. CELL MOTILITY AND THE CYTOSKELETON 1996; 35:94-9. [PMID: 8894279 DOI: 10.1002/(sici)1097-0169(1996)35:2<94::aid-cm2>3.0.co;2-i] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the present work, evidence is presented indicating that an increased cellular ATP concentration during mitosis may, in conjunction with other factors [Verde et al., 1990: Nature 343:233-238; Andersen et al., 1994: J Cell Biol. 127:1289-1299], induce depolymerization of the interphase microtubular network in cultured fibroblasts. It is shown here that the cellular ATP concentration varies through the cell cycle, reaching a peak at G2M- and minimum at late G1/early S-phase. Furthermore, we have found, using indirect immunofluorescent staining with an antitubulin antibody, that depolymerization of the interphase microtubular network may be induced by increasing the intracellular ATP concentration in cultured fibroblasts from 2.2 mM to 4.1 mM. This may be obtained through addition of adenosine and P1 to the growth medium. Our results indicate that this effect of adenosine and Pi is not mediated via adenosine receptors, but through an elevated cellular ATP concentration. ATP is suggested to act through a concentration-dependent effect on the exchangeable GTP site on tubulin, and not through the action of protein kinases or microtubule-associated proteins.
Collapse
Affiliation(s)
- M Marcussen
- Department of Medical Biochemistry and Genetics, Panum Institute, University of Copenhagen, Denmark
| | | |
Collapse
|
15
|
Mitrović DM, Redzić ZB, Marković ID, Jovanović SS, Rosić MA, Rakić LM. Tiazofurine uptake by the isolated guinea pig heart. J Chemother 1995; 7:543-8. [PMID: 8667040 DOI: 10.1179/joc.1995.7.6.543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tiazofurine is a selective inhibitor of the enzyme inosine monophosphate dehydrogenase, and exhibits potent antitumor activity. Considering the potential side effects on the heart, [3H] tiazofurine uptake into the cardiomyocytes, as well as the mechanism of transport, were studied in the isolated perfused guinea pig heart, using the rapid single circulation, paired-tracer technique. The maximal cellular uptake (Umax) of [3H] tiazofurine ranged from 19% to 25% of the injected dose, with total cellular uptake (Utot) ranging 12.1-15.6%. The addition of unlabeled tiazofurine caused inhibition of [3H] tiazofurine uptake, with a Umax value of 9.06 +/- 4.6%. Therefore, the uptake of tiazofurine into cardiomyocytes could be considered a saturable process. The inhibition of [3H] tiazofurine uptake caused by adenosine and dipyridamole was of the same degree as the inhibition by unlabeled tiazofurine. Thus, it can be assumed that nucleosides' transport system(s) are involved in transport of tiazofurine into myocardial cells.
Collapse
Affiliation(s)
- D M Mitrović
- Department of Physiology, School of Medicine, Belgrade University, Yugoslavia
| | | | | | | | | | | |
Collapse
|
16
|
Zimmermann AG, Spychala J, Mitchell BS. Characterization of the human inosine-5'-monophosphate dehydrogenase type II gene. J Biol Chem 1995; 270:6808-14. [PMID: 7896827 DOI: 10.1074/jbc.270.12.6808] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Inosine-5'-monophosphate dehydrogenase (IMPDH) activity and mRNA levels are induced up to 15-fold upon mitogenic or antigenic stimulation of human peripheral blood T lymphocytes. This increase in IMPDH activity is required for cellular proliferation and has been associated with malignant transformation. We have cloned the human IMPDH type II gene and show that it contains 14 exons and is approximately 5.8 kilobases in length. Exons vary in size from 49 to 207 base pairs and introns from 73 to 1065 base pairs. The transcription start site was mapped to a position 50 nucleotides upstream of the translation initiation site. The 5'-flanking region consisting of 463 base pairs upstream of the translation initiation site confers induced transcription and differential regulation upon a chloramphenicol acetyltransferase reporter gene when transfected into Jurkat T cells and human peripheral blood T lymphocytes, respectively. DNase I footprinting analysis using Jurkat T cell nuclear extract identified four protected regions in the promoter which coincide with consensus transcription factor binding sites for the nuclear factors AP2, ATF, CREB, Egr-1, Nm23, and Sp1. These findings suggest that several of these nuclear factors may play a critical role in the regulation of IMPDH type II gene expression during T lymphocyte activation.
Collapse
Affiliation(s)
- A G Zimmermann
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill 27599
| | | | | |
Collapse
|
17
|
|
18
|
Szekeres T, Schuchter K, Chiba P, Ressmann G, Lhotka C, Gharehbaghi K, Szalay SM, Pillwein K. Synergistic action of tiazofurin with hypoxanthine and allopurinol in human neuroectodermal tumor cell lines. Biochem Pharmacol 1993; 46:1903-7. [PMID: 7903533 DOI: 10.1016/0006-2952(93)90630-f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The activity of IMP dehydrogenase (EC 1.2.1.14), the key enzyme of de novo guanylate biosynthesis, was shown to be increased in tumor cells. Tiazofurin (TR), a potent and specific inhibitor of this enzyme, proved to be effective in the treatment of refractory granulocytic leukemia in blast crisis. We examined the effects of tiazofurin as a single agent and in combination with hypoxanthine and allopurinol in six different neuroectodermal tumor cell lines, the STA-BT-3 and 146-18 human glioblastoma cell lines, the SK-N-SH, LA-N-1 and LA-N-5 human neuroblastoma cell lines, and the STA-ET-1 Ewing tumor cell line. Tiazofurin inhibited tumor cell growth with IC50 values between 2.2 microM (LA-N-1 cell line) and 550 microM (LA-N-5 cells) and caused a significant decrease of intracellular GTP pools (GTP concentrations decreased to 39-79% of control). Incorporation of [8-14C]guanine into GTP pools was determined as a measure of guanylate salvage activity; incubation with 100 microM hypoxanthine caused a 62-96% inhibition of the salvage pathway. Incubation with tiazofurin (100 microM) and hypoxanthine (100 microM) synergistically inhibited tumor cell growth, and the addition of allopurinol (100 microM) strengthened these effects. Therefore, this drug combination, inhibiting guanylate de novo and salvage pathways, may prove useful in the treatment of human neuroectodermal tumors.
Collapse
Affiliation(s)
- T Szekeres
- Institute of Medical Chemistry, University of Vienna, Medical School, Vienna
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Fritzer M, Gharehbaghi K, Pillwein K, Chiba P, Goldenberg H, Szekeres T. GM-CSF: modulation of biochemical and cytotoxic effects of tiazofurin in HL-60 cells. Br J Haematol 1993; 84:552-4. [PMID: 8105873 DOI: 10.1111/j.1365-2141.1993.tb03120.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cytokines, such as granulocyte macrophage colony stimulating factor (GM-CSF) or interleukin-3 (IL-3) recruit quiescent cells into the cell cycle and sensitize these cells towards cell cycle specific chemotherapeutic agents. We examined the in vitro effects of GM-CSF on HL-60 cells and tested its modulatory influence on biochemical and cytotoxic effects seen with tiazofurin, a potent and specific inhibitor of IMP dehydrogenase. Incubation of HL-60 cells with 500 U/ml GM-CSF for 4 d enhanced cell proliferation, which was accompanied by a significant increase in IMP dehydrogenase activity (from 2.22 in control cells to 3.70 nmol/mg/h in cells pretreated with GM-CSF). When HL-60 cells were incubated with 100 microM tiazofurin for 2 h, intracellular GTP decreased to 46% of untreated control cells. In HL-60 cells pretreated with GM-CSF, GTP pools decreased to 38% of control after incubation with tiazofurin which is 69% of the predicted value for additive effect. The MTT chemosensitivity assay yielded significantly decreased IC50 values for tiazofurin in HL-60 cells, preincubated with GM-CSF (IC50 decreased from 13 microM to 10 microM). Therefore our results suggest that combination therapy with GM-CSF and tiazofurin may be beneficial for the treatment of refractory leukaemia patients.
Collapse
Affiliation(s)
- M Fritzer
- Institute of Medical Chemistry, University of Vienna Medical School, Austria
| | | | | | | | | | | |
Collapse
|