1
|
Zeng D, Peng M, Yang Q, Yang C, Liao Z, Li Q, Liu Q, Zhu W, Wang H, Li M, Chen X, Xie D, Lin Y, Chen X, Zhao Y. The Penaeus stylirostris densovirus capsid protein interacts with the Litopenaeus vannamei BCCIP protein. FISH & SHELLFISH IMMUNOLOGY 2019; 88:198-206. [PMID: 30826413 DOI: 10.1016/j.fsi.2019.02.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Viral capsid proteins play an important role in the viral infection process. To identify the cellular proteins in shrimp that interact with the Penaeus stylirostris densovirus capsid protein (PstDNV-CP), we constructed a yeast two-hybrid (Y2H) cDNA library of the muscle tissue of Litopenaeus vannamei, and hybridized the bait vector pGBKT7-CP with this library. Cloning and sequencing showed that the shrimp protein interacting with PstDNV-CP was a homolog of BRCA2 and CDKN1A(p21)-interacting protein (BCCIP). We named this protein L. vannamei BCCIP (LvBCCIP). Further analysis showed that LvBCCIP interacted with L. vannamei calmodulin (LvCaM). We validated the interactions between PstDNV-CP and LvBCCIP, and between LvBCCIP and LvCaM, with GST pulldown assays. The gene expression of LvBCCIP increased significantly after PstDNV challenge. In addition, the PstDNV titer of PstDNV-challenged shrimp was significantly reduced after LvBCCIP expression was inhibited using double-stranded RNA (dsRNA) interference. These results indicated that LvBCCIP is critical to PstDNV pathogenesis in L. vannamei. Interestingly, the growth rate of L. vannamei was significantly reduced when LvBCCIP gene expression was silenced, indicating that LvBCCIP may also be associated with growth regulation in L. vannamei. Thus, the interaction between PstDNV-CP and LvBCCIP might explain why PstDNV infection leads to runt-deformity syndrome in shrimp.
Collapse
Affiliation(s)
- Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Qiong Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Zhenping Liao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Qiangyong Li
- Guangxi Shrimp Breeding Engineering Technology Research Center, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Qingyun Liu
- Guangxi Shrimp Breeding Engineering Technology Research Center, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Weilin Zhu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Hui Wang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Min Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Xiaohan Chen
- Guangxi Shrimp Breeding Engineering Technology Research Center, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Daxiang Xie
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Yong Lin
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Yongzhen Zhao
- Guangxi Shrimp Breeding Engineering Technology Research Center, Guangxi Academy of Fisheries Sciences, Nanning, China.
| |
Collapse
|
2
|
Zhu B, Yu Y, Gao J, Feng Y, Tang L, Sun Y, Yang L. Characterization and function of a novel calmodulin-like protein from crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2017; 67:518-522. [PMID: 28602681 DOI: 10.1016/j.fsi.2017.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/24/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Calmodulin plays an important role in calcium-dependent signal transduction pathways. In this experiment, a novel calmodulin-like gene (Pc-CaM-L) was identified in the crayfish Procambarus clarkii; it encodes a polypeptide of 145 amino acids. Quantitative real-time PCR analysis revealed that Pc-CaM-L was expressed in all examined tissues, including hepatopancreas, hemocytes, heart, gill, intestine and muscle; the highest Pc-CaM-L expression level was detected in the hepatopancreas. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blot analysis demonstrated that a recombinant Pc-CaM-L protein was successfully expressed in Escherichia coli. The calcium-binding activity of the purified Pc-CaM-L protein was confirmed by gel mobility shift assay. The expression of Pc-CaM-L was significantly upregulated in gut, gill and hemocytes after lipopolysaccharide or polyinosinic:polycytidylic acid induction. These results suggest that Pc-CaM-L plays a role in the immune response of P. clarkii.
Collapse
Affiliation(s)
- Baojian Zhu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yingying Yu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Jin Gao
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yuanyuan Feng
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Lin Tang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yuxuan Sun
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Liangli Yang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Sengprasert P, Amparyup P, Tassanakajorn A, Wongpanya R. Characterization and identification of calmodulin and calmodulin binding proteins in hemocyte of the black tiger shrimp (Penaeus monodon). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 50:87-97. [PMID: 25681078 DOI: 10.1016/j.dci.2015.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 06/04/2023]
Abstract
Calmodulin (CaM), a ubiquitous intracellular calcium (Ca(2+)) sensor in all eukaryotic cells, is one of the well-known signaling proteins. Previously, CaM gene has shown a high transcriptional level in hemocyte of the pathogen infected shrimp, suggesting that shrimp CaM does not only regulate Ca(2+) metabolism, but is also involved in immune response cascade. In the present study, the CaM gene of shrimp Penaeus monodon was identified and the recombinant P.monodon CaM (rPmCaM) was produced and biochemically characterized. The identification of CaM-binding proteins was also performed. The PmCaM cDNA consisted of an open reading frame of 447 bp encoding for 149 amino acid residues with a calculated mass of 16,810 Da and an isoelectric point of 4.09. Tissue distribution showed that the PmCaM transcript was expressed in all examined tissues. The results of gel mobility shift assay, circular dichroism spectroscopy and fluorescence spectroscopy all confirmed that the conformational changes of the rPmCaM were observed after the calcium binding. According to the gene silencing of PmCaM transcript levels, the shrimp's susceptibility to pathogenic Vibrio harveyi infection increased in comparison with that of the control groups. Protein pull-down assay and LC-MS/MS analysis were performed to identify rPmCaM-binding proteins involved in shrimp immune responses and transglutaminase, elongation factor 1-alpha, elongation factor 2 and actin were found. However, by computational analysis, only the first three proteins contained CaM-binding domain. These findings suggested that PmCaM may play an important role in regulation of shrimp immune system.
Collapse
Affiliation(s)
- Panjana Sengprasert
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Pahonyothin, Bangkok 10900, Thailand
| | - Piti Amparyup
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Anchalee Tassanakajorn
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Pahonyothin, Bangkok 10900, Thailand.
| |
Collapse
|
4
|
Li S, Jia Z, Li X, Geng X, Sun J. Calmodulin is a stress and immune response gene in Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2014; 40:120-128. [PMID: 24997436 DOI: 10.1016/j.fsi.2014.06.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
Calmodulin (CaM) is a multifunctional calcium sensor protein that participates in various cellular processes under normal, stress and pathological conditions. In crabs, however, the involvement of CaM in response to environmental stress and immune challenges has not been revealed yet. In the present study, a CaM cDNA (EsCaM) was identified from Chinese mitten crab Eriocheir sinensis and its mRNA expression patterns in response to ambient (salinity and pH) stress and immune challenges was examined. EsCaM encodes a 149-amino-acid protein with a calculated molecular mass of 16.8 kDa and an isoelectric point of 4.09. In unstimulated healthy E. sinensis, EsCaM mRNA transcript was detected in all tested tissues with predominant expression in hepatopancreas and the lowest expression in haemocytes. Ambient salinity (15‰ and 30‰ salinities) and pH (pH 6 and 8.5) stress significantly altered EsCaM mRNA expression in gill, hepatopancreas, haemocytes, intestine and muscle in Chinese mitten crab. In addition, EsCaM gene expression was significantly and rapidly induced as early as 2 h after LPS and Poly(I:C) immune stimulations in haemocytes in vitro. Furthermore, EsCaM expression was significantly up-regulated in E. sinensis haemocytes, gill, hepatopancreas, intestine and muscle in response to Edwardsiella tarda and Vibrio anguillarum challenges. Collectively, our findings suggest that EsCaM is an important stress and immune response gene in Chinese mitten crab.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 Binshuixidao, Xiqing District, Tianjin 300387, China.
| | - Zirui Jia
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 Binshuixidao, Xiqing District, Tianjin 300387, China
| | - Xuejing Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 Binshuixidao, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 Binshuixidao, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
5
|
Ammar D, Nazari EM, Müller YMR, Allodi S. On the brain of a crustacean: a morphological analysis of CaMKII expression and its relation to sensory and motor pathways. PLoS One 2013; 8:e64855. [PMID: 23741406 PMCID: PMC3669419 DOI: 10.1371/journal.pone.0064855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/19/2013] [Indexed: 12/13/2022] Open
Abstract
Calcium/calmodulin kinase II (CaMKII) is a Ca2+-activated enzyme that is abundant in vertebrate and invertebrate brains. However, its characterization is poorly addressed in the nervous system of crustaceans, and, to our knowledge, no studies have determined the microanatomical location of CaMKII in a crustacean species. In this study, we found labeling of CaMKII in the eyestalk and brain of the prawn Macrobrachium acanthurus, by means of immunohistochemistry and Western blotting. Antibodies against neuron (ß tubulin III), glutamate receptor (GluA1), and FMRFamide were used in order to further characterize the CaMKII-labeled cells in the brain. In the eyestalk, strong labeling with CaMKII was observed in the photoreceptors. These cells, especially in the rhabdom, were also reactive to anti-ß tubulin III, whereas the pigment cells were labeled with anti-CaMKII. GluA1 co-located with CaMKII in the photoreceptors. Also, CaMKII appeared in the same sites as FMRFamide in the deutocerebrum, including the olfactory lobe, and in the tritocerebrum, specifically in the antennular neuropil, indicating that the synaptic areas in these regions may be related to sensory-motor processing. In the brain, the identification of cells and regions that express CaMKII contributes to the understanding of the processing of neural connections and the modulating role of CaMKII in decapod crustaceans.
Collapse
Affiliation(s)
- Dib Ammar
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Santa Catarina, Brazil
- Programa de Pós-Graduação em Morfologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Evelise M. Nazari
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Santa Catarina, Brazil
- Programa de Pós-Graduação em Morfologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yara M. R. Müller
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Santa Catarina, Brazil
| | - Silvana Allodi
- Programa de Pós-Graduação em Morfologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
6
|
Chen ZF, Wang H, Matsumura K, Qian PY. Expression of calmodulin and myosin light chain kinase during larval settlement of the Barnacle Balanus amphitrite. PLoS One 2012; 7:e31337. [PMID: 22348072 PMCID: PMC3278446 DOI: 10.1371/journal.pone.0031337] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 01/06/2012] [Indexed: 11/18/2022] Open
Abstract
Barnacles are one of the most common organisms in intertidal areas. Their life cycle includes seven free-swimming larval stages and sessile juvenile and adult stages. The transition from the swimming to the sessile stages, referred to as larval settlement, is crucial for their survivor success and subsequent population distribution. In this study, we focused on the involvement of calmodulin (CaM) and its binding proteins in the larval settlement of the barnacle, Balanus ( = Amphibalanus) amphitrite. The full length of CaM gene was cloned from stage II nauplii of B. amphitrite (referred to as Ba-CaM), encoding 149 amino acid residues that share a high similarity with published CaMs in other organisms. Quantitative real-time PCR showed that Ba-CaM was highly expressed in cyprids, the stage at which swimming larvae are competent to attach and undergo metamorphosis. In situ hybridization revealed that the expressed Ba-CaM gene was localized in compound eyes, posterior ganglion and cement glands, all of which may have essential functions during larval settlement. Larval settlement assays showed that both the CaM inhibitor compound 48/80 and the CaM-dependent myosin light chain kinase (MLCK) inhibitor ML-7 effectively blocked barnacle larval settlement, whereas Ca(2+)/CaM-dependent kinase II (CaMKII) inhibitors did not show any clear effects. The subsequent real-time PCR assay showed a higher expression level of Ba-MLCK gene in larval stages than in adults, suggesting an important role of Ba-MLCK gene in larval development and competency. Overall, the results suggest that CaM and CaM-dependent MLCK function during larval settlement of B. amphitrite.
Collapse
Affiliation(s)
- Zhang-Fan Chen
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hao Wang
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kiyotaka Matsumura
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
7
|
Ji PF, Yao CL, Wang ZY. Two types of calmodulin play different roles in Pacific white shrimp (Litopenaeus vannamei) defenses against Vibrio parahaemolyticus and WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2011; 31:260-268. [PMID: 21620975 DOI: 10.1016/j.fsi.2011.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 05/30/2023]
Abstract
Calmodulin (CaM) plays an important role in calcium-dependent signal transduction pathways. In the present study, two alternative splicing isoforms of CaM (named LvCaM-A and LvCaM-B) cDNA were cloned from the Pacific white shrimp, Litopenaeus vannamei. LvCaM-A was of 1101 bp, including a 5'-terminal untranslated region (UTR) of 70 bp, a 3'-terminal UTR of 581 bp and an open reading frame (ORF) of 450 bp encoding a polypeptide of 149 amino acids with a calculated molecular weight (Mw) of 17 kDa and pI of 4.41. LvCaM-B was 689 bp, including a same 5'-UTR of 70 bp, a 3'-terminal UTR of 109 bp and an ORF of 510 bp encoding a polypeptide of 169 amino acids with a calculated Mw of 19 kDa and pI of 4.36. Both LvCaM-A and LvCaM-B contained 4 conservative EF-hand motifs. Quantitative real-time reverse transcription PCR analysis revealed LvCaM-A to be expressed in most shrimp tissues, with the predominant expression in nerve and the weakest expression in heart. However, LvCaM-B expression level was much weaker than those of LvCaM-A in all the tested tissues with main expression in hepatopancreas. The expression of LvCaM-A and LvCaM-B after challenge with Vibrio parahaemolyticus and WSSV were tested in hemocytes, hepatopancreas and nerve. The results indicated that LvCaM-A and LvCaM-B transcripts could be significantly induced in hemocytes and hepatopancreas respectively by injection with V. parahaemolyticus. The highest expression of LvCaM-A was in the hemocytes with 2.3 times (at 48 h) greater expression than in the control (p < 0.05). However, sharp down-regulation of both LvCaM-A and LvCaM-B were detected in nerve after Vibrio- and WSSV injection (p < 0.05). These results suggested that CaM might play an important role in shrimp's defense against pathogenic infection.
Collapse
Affiliation(s)
- Pei-Feng Ji
- Key Laboratory of Science and Technology for Aquaculture and Food Safety of Fujian Province University, Jimei University, Xiamen 361021, China
| | | | | |
Collapse
|